Computer Architecture and
Organization

John P. Hayes

7

Computer architecture and organisation

Computer architecture and organisation
Table of Contents

Preface
Index

ke

Computer architecture and organisation

Hayes, John P. (John Patrick), 1944-

This book was produced in EPUB format by the Internet Archive.

The book pages were scanned and converted to EPUB format automatically. This process relies
on optical character recognition, and is somewhat susceptible to errors. The book may not offer
the correct reading sequence, and there may be weird characters, non-words, and incorrect
guesses at structure. Some page numbers and headers or footers may remain from the scanned
page. The process which identifies images might have found stray marks on the page which are
not actually images from the book. The hidden page numbering which may be available to your
ereader corresponds to the numbered pages in the print edition, but is not an exact match;
page numbers will increment at the same rate as the corresponding print edition, but we may
have started numbering before the print book's visible page numbers. The Internet Archive is
working to improve the scanning process and resulting books, but in the meantime, we hope
that this book will be useful to you.

The Internet Archive was founded in 1996 to build an Internet library and to promote universal
access to all knowledge. The Archive's purposes include offering permanent access for
researchers, historians, scholars, people with disabilities, and the general public to historical
collections that exist in digital format. The Internet Archive includes texts, audio, moving
images, and software as well as archived web pages, and provides specialized services for
information access for the blind and other persons with disabilities.

Created with abbyy2epub (v.1.7.0)

Computer Architecture andOrganization

in

McGRAW-HILL INTERNATIONAL EDIT!

Computer Science Seri

Computer Architecture and Organization
McGraw-Hill Series in Computer Science

SENIOR CONSULTING EDITOR

C.L. Liu, University of Illinois at Urbana-Champaign
CONSULTING EDITOR

Allen B. Tucker, Bowdoin College

Fundamentals of Computing and Programming

Computer Organization and Architecture

Computers in Society/Ethics

Systems and Languages

Theoretical Foundations

Software Engineering and Database

Artificial Intelligence

Networks, Parallel and Distributed Computing

Graphics and Visualization

The MIT Electrical and Computer Science Series

McGraw-Hill Series in Computer Organization and Architecture

Bell and Newell: Computer Structures: Readings and Examples

Cavanagh: Digital Computer Arithmetic: Design and Implementation

Feldman and Retter: Computer Architecture and Logic Design

Gear: Computer Organization and Programming: With an Emphasis on Personal Computers
Hamacher, Vranesic, and Zaky: Computer Organization

Hayes: Computer Architecture and Organization

Hayes: Digital System Design and Microprocessors

Horvath: Introduction to Microprocessors Using the MC6809 or the MC68000

Hwang: Scalable Parallel and Cluster Computing: Architecture and Programming
Hwang and Briggs: Computer Architecture and Parallel Processing

Lawrence and Mauch: Real-Time Microcomputer System Design

Siweiorek, Bell and Newell: Computer Structures: Principles & Examples

Stone: Introduction to Computer Organization and Data Structures

Stone and Siewiorek: Introduction to Computer Organization and Data Structures:PDP-11 Edition
Ward and Halstead: Computational Structures

McGraw-Hill Series in Computer Engineering

SENIOR CONSULTING EDITORS

Stephen W. Director, University of Michigan, Ann Arbor

C.L. Liu, University of Illinois, Urbana-Champaign

Bartee: Computer Architecture and Logic Design

Bose, Liang: Neural Network Fundamentals with Graphs, Algorithms, and Applications
Chang and Sze: ULSI Technology

De Micheli: Synthesis and Optimization of Digital Circuits

Feldman and Retter: Computer Architecture: A Designer's Text Based on a Generic RISC
Hamacher, Vranesic, and Zaky: Computer Organization

Hayes: Computer Architecture and Organization

Horvath: Introduction to Microprocessors Using the MC6809 or the MC68000

Hwang: Advanced Computer Architecture: Parallelism, Scalability, Programmability
Hwang: Scalable Parallel and Cluster Computing: Architecture and Programming
Kang and Leblebici: CMOS Digital Integrated Circuits: Analysis and Design

Kohavi: Switching and Finite Automata Theory

Krishna and Shin: Real-Time Systems

Lawrence-Mauch: Real-Time Microcomputer System Design: An Introduction
Levine: Vision in Man and Machine

Navabi: VHDL: Analysis and Modeling of Digital Systems

Peatman: Design with Microcontrollers

Peatman: Digital Hardware Design

Rosen: Discrete Mathematics and Its Applications

Ross: Fuzzy Logic with Engineering Applications

Sandige: Modern Digital Design

Sarrafzadeh and Wong: An Introduction to VLSI Physical Design

Schalkoff: Artificial Neural Networks

Stadler: Analytical Robotics and Mechatronics

Sze: VLSI Technology

Taub: Digital Circuits and Microprocessors

Wear, Pinkert, Wear, and Lane: Computers: An Introduction to Hardware and Software Design
ABOUT THE AUTHOR

JOHN P. HAYES is a professor in the electrical engineering and computer sciencedepartment at the
University of Michigan, where he was the founding director of theAdvanced Computer Architecture
Laboratory. He teaches and conducts research inthe areas of computer architecture; computer-aided
design, verification, and testing;VLSI design; and fault-tolerant systems. Dr. Hayes is the author of two
patents,more than 150 technical papers, and five books, including Layout Minimization forCMOS Cells
(Kluwer, 1992, coauthored with R. L. Maziasz) and Introduction toDigital Logic Design (Addison-Wesley,
1993). He has served as editor of variousjournals, including the IEEE Transactions on Parallel and
Distributed Systems andthe Journal of Electronic Testing, and was technical program chairman of the
1991International Computer Architecture Symposium, Toronto.

Dr. Hayes received his undergraduate degree from the National University of Ire-land, Dublin, and his
M.S. and Ph.D. degrees in electrical engineering from the Uni-versity of Illinois, Urbana-Champaign. Prior
to joining the University of Michigan,he was a faculty member at the University of Southern California.
Dr. Hayes hasalso held visiting positions at various academic and industrial organizations, includ-ing
Stanford University, McGill University, Universite de Montreal, and Logic-Vision Inc. He is a fellow of the
Institute of Electrical and Electronics Engineersand a member of the Association for Computing
Machinery and Sigma Xi.

To My FatherPatrick J. Hayes(1910-1968)In Memoriam

CONTENTS

Preface xiii

Computing and Computers 1

1.1 The Nature of Computing 11.1.1 The Elements of Computers / 1.1.2 Limitations

of Computers

1.2 The Evolution Of Computers 127.2.7 The Mechanical Era / 1.2.2 Electronic Computers /
1.2.3 The Later Generations

1.3 The VLSI Era 35

1.3.1 Integrated Circuits / 1.3.2 Processor Architecture /1.3.3 System Architecture

1.4 Summary 56
1.5 Problems 57
1.6 References 62
Des ign Methodology 64

System Design
2.1 2.7.7 System Representation / 2.1.2 Design Process / 64

2.1.3 The Gate Level

The Register Level
2.2 2.2.7 Register-Level Components / 2.2.2 Programmable 83

Logic Devices / 2.2.3 Register-Level Design

The Processor Level

2.3 2.3.1 Processor-Level Components / 2.3.2 Processor-Level 114

Design
2.4 Summary 126
2.5 Problems 127
2.6 References 136

Processor Basics 137

3.1 CPU Organization 137

i.7.7 Fundamentals / 3.1.2 Additional Features

x 3.2 Data Representation 160

Contents 3.2.1 Basic Formats / 3.2.2 Fixed-Point Numbers /

3.2.3 Floating-Point Numbers

3.3 Instruction Sets t 1783.3.1 Instruction Formats / 3.3.2 Instruction Types /

3.3.3 Programming Considerations

3.4 Summary 211

3.5 Problems 212

3.6 References 221

4 Datapath Design 223

4.1 Fixed-Point Arithmetic 2234.1.1 Addition and Subtraction / 4.1.2 Multiplication /

4.1.3 Division

4.2 Arithmetic-Logic Units 2524.2.1 Combinational ALUs / 4.2.2 Sequential ALUs

4.3 Advanced Topics 2664.3.1 Floating-Point Arithmetic / 4.3.2 Pipeline Processing

4.4 Summary 292

4.5 Problems 293

4.6 References 301

5 Control Design 303

5.1 Basic Concepts 3035.7.7 Introduction / 5.1.2 Hardwired Control /

5.1.3 Design Examples

5.2 Microprogrammed Control 3325.2.7 Basic Concepts / 5.2.2 Multiplier Control Unit /

5.2.3 CPU Control Unit

5.3 Pipeline Control 3645.3.1 Instruction Pipelines / 5.3.2 Pipeline Performance /

5.3.3 Superscalar Processing

5.4 Summary 390

5.5 Problems 392

5.6 References 399

6 Memory Organization 400

6.1 Memory Technology 400

6.7.7 Memory Device Characteristics / 6.1.2 Random-Access Memories / 6.1.3 Serial-Access Memories
Memory Systems

6.2 426 xi
6.2.1 Multilevel Memories / 6.2.2 Address Translation /

Contents

6.2.3 Memory Allocation

6.3 Caches 452

6.3.1 Main Features / 6.3.2 Address Mapping /

6.3.3 Structure versus Performance

6.4 Summary 471

6.5 Problems 472
6.6 References 478
Sysl em Organization 480
7.1 Communication Methods 480

7.1.1 Basic Concepts / 7.1.2 Bus Control

7.2 10 And System Control 5047.2.7 Programmed 10 / 7.2.2 DMA and Interrupts /

7.2.310 Processors / 7.2.4 Operating Systems

7.3 Parallel Processing 5397.3.1 Processor-Level Parallelism / 7.3.2 Multiprocessors /7.3.3 Fault Tolerance
7.4 Summary 578

7.5 Problems 579

7.6 References 587

Index 589

PREFACE

This book is about the design of computers; it covers both their overall design, orarchitecture, and their internal details, or organization. It aims to provide a compre-
hensive and self-contained view of computer design at an introductory level, pri-marily from a hardware viewpoint. The third edition of Computer Architecture
andOrganization is intended as a text for computer science, computer engineering, andelectrical engineering courses at the undergraduate or beginning graduate levels;
itshould also be useful for self-study. This text assumes little in the way of prerequi-sites beyond some familiarity with computer programming, binary numbers, anddigital
logic. Like the previous editions, the book focuses on basic principles buthas been thoroughly updated and has substantially more coverage of performance-related issues.

The book is divided into seven chapters. Chapter 1 discusses the nature and lim-itations of computation. This chapter surveys the historical evolution of computerdesign to
introduce and motivate the key ideas encountered later. Chapter 2 dealswith computer design methodology and examines the two major computer designlevels, the
register (or register transfer) and processor levels, in detail. It alsoreviews gate-level logic design and discusses computer-aided design (CAD) andperformance evaluation
methods. Chapter 3 describes the central processing unit(CPU), or microprocessor that lies at the heart of every computer, focusing oninstruction set design and data
representation. The next two chapters address CPUdesign issues: Chapter 4 covers the data-processing part, or datapath, of a proces-sor, while Chapter 5 deals with
control-unit design. The principles of arithmetic-logic unit (ALU) design for both fixed-point and floating-point operations arecovered in Chapter 4. Both hardwired and
microprogrammed control are examinedin Chapter 5, along with the design of pipelined and superscalar processors. Chap-ter 6 deals with a computer's memory
subsystem; the chapter discusses the princi-pal memory technologies and their characteristics from a hierarchical viewpoint,with emphasis on cache memories. Finally,
Chapter 7 addresses the overall organi-zation of a computer system, including inter- and intrasystem communication,input-output (10) systems, and parallel processing to
achieve very high perfor-mance and reliability. Various representative computer systems, such as von Neu-mann's classic IAS computer, the ARM RISC microprocessor,
the Intel Pentium,the Motorola PowerPC, the MIPS RXOOO, and the Tandem NonStop fault-tolerantmultiprocessor, appear as examples throughout the book.

The book has been in use for many years at universities around the world. It con-tains more than sufficient material for a typical one-semester (15 week) course,allowing
the instructor some leeway in choosing the topics to emphasize. Much ofthe background material in Chapter 1 and the first part of Chapter 2 can be left as areading
assignment, or omitted if the students are suitably prepared. The moreadvanced material in Chapter 7 can be covered briefly or skipped if desired withoutloss of
continuity. The Instructor's Manual contains some representative courseoutlines.

This edition updates the contents of the previous edition and responds to thesuggestions of its users while retaining the book's time-proven emphasis.on basic
Preface

concepts. The third edition is somewhat shorter than its predecessors, and thematerial is more accessible to readers who are less familiar with computers. Everysection
has been rewritten to reflect the dramatic changes that have occurred in thecomputer industry over the last decade. The main structural changes are the reor-ganization
of the two old chapters on processor design and control design intothree chapters: the new Chapters 3, 4, and 5; and the consolidation of the two oldchapters on system
organization and parallel processing in the new Chapter 7. Thetreatment of performance-related topics such as pipeline control, cache design, andsuperscalar
architecture has been expanded. Topics that receive less space in thisedition include gate-level design, microprogramming, operating systems, and vec-tor processing. The
third edition also includes many new examples (case studies)and end-of-chapter problems. There are now more than 300 problems, about 80percent of which are new to
this edition. Course instructors can obtain an Instruc-tor's Manual, which contains solutions to all the problems, directly from the pub-lisher.

The specific changes made in the third edition are as follows: The historicalmaterial in Chapter 1 has been streamlined and brought up to date. Gate-leveldesign has been
de-emphasized in Chapter 2, while the discussion of performanceevaluation has been expanded. A new section on programmable logic devices(PLDs) has been added, and
the role of computer-aided design (CAD) has beenstressed. The old third chapter (on processor design) has been split into Chapter 3,"Processor Basics," and Chapter 4,
"Datapath Design." Chapter 3 contains anexpanded treatment of RISC and CISC CPUs and their instruction sets. It intro-duces the ARM and MIPS RX000 microprocessor
series as major examples; theMotorola 680X0 series continues to be used as an example, however. The materialon computer arithmetic and ALU design now appears in
Chapter 4. The old chapteron control design, which is now Chapter 5, has been completely revised with amore practical treatment of hardwired control and a briefer
treatment of micropro-gramming. A new section on pipeline control includes some material from the oldChapter 7, as well as new material on superscalar processing.
Chapter 6 presents anupdated treatment of the old fifth chapter on memory organization. Chapter 6 con-tinues to present a systematic, hierarchical view of computer
memories but has agreatly expanded treatment of cache memories. Chapter 7, "System Organization,"merges material from the old sixth and seventh chapters. The
sections on operatingsystems and parallel processing have been shortened and modernized.

The material for this book has been developed primarily for courses on computerarchitecture and organization that I have taught over the years, initially at the Uni-versity
of Southern California and later at the University of Michigan. I am gratefulto my colleagues and students at these and other schools for their many helpfulcomments and
suggestions.

As always, I owe a special thanks to my wife Terrie for proofreading assistance,as well as her never-failing support and love.
John P. Hayes

CHAPTER 1

Computing and Computers

This chapter provides a broad overview of digital computers while introducingmany of the concepts that are covered in depth later. It first examines the natureand
limitations of the computing process. Then it briefly traces the historical devel-opment of computing machines and ends with a discussion of contemporary VLSI-based
computer systems.

1.1
THE NATURE OF COMPUTING

Throughout history humans have relied mainly on their brains to perform calcula-tions; in other words, they were the computers [Boyer 1989]. As civilizationadvanced, a
variety of computing tools were invented that aided, but did notreplace, manual computation. The earliest peoples used their fingers, pebbles, ortally sticks for counting
purposes. The Latin words digitus meaning "finger" andcalculus meaning "pebble" have given us digital and calculate and indicate theancient origins of these computing
concepts.

Two early computational aids that were widely used until quite recently are theabacus and the slide rule, both of which are illustrated in Figure 1.1. The abacushas
columns of pebblelike beads mounted on rods. The beads are moved by hand topositions that represent numbers. Manipulating the beads according to certain sim-ple
rules enables people to count, add, and perform the other basic operations ofarithmetic. The slide rule, on the other hand, represents numbers by lengths markedon
rulerlike scales that can be moved relative to one another. By adding a length aon a fixed scale to a length b on a second, sliding scale, their combined length ¢ =a + b can
be read off the fixed scale. The slide rule's main scales are logarithmic,so that the process of adding two lengths on these scales effectively multiplies two

SECTION 1.1The Nature ofComputing

B =230

ITeltell -mllirimm|m111111 <11111111
i |41 i i

ifim [iiH | nii ~ ™1 [in

i
LI mill.U LLIL117,,iL,, iLL,1.,,L,1,,1,Liiil,,,1
r'm: Wil 11T

8912 ix*

19876

01 NI
1111110110111 {1111 I Tip

1456 7LiLLLLLLUNIIMI .I....T4, 1,1 T
Fri't{1'i'H'ri'H i[iniiiii|itii]i]i]

678912V*4S67891

11 i I I i 7 jg.,.. ..., 11,.., .. L. L L. L, TL LT W10 1,1 LLLLLL < LLLULLLAELLAL T

1~..

R

Tl Mo Lo BEETE, LLLLL LILLGLLLELLIALLLIEITLELITITL. L e o 2 Trr], 0,
9IA2A34S67891

0+234msb18'°

LL1111111.11111B.I.1.1L 11111 1],4)5.11.1111 L1 11 g . L0, 00,010,000, ,0,0,1,0,0,1,1,0,1,1,0,1
LT i T, i irin

4» ¢ 5

1,1,1,1,1,1,1,1,1,1,1,1,1,1,,1,0,0,1,0,0,1,0,0,1,0,,0,1,1,1,1,1 . LTI OO

A=1.30

C =299

(b)

Figure 1.1

(a) Japanese abacus (soroban) displaying the number 0011234567890;

(b) slide rule illustrating the multiplication 1.30 x 2.30 = 2.99.

numbers.1 Slide rules are marked with various other scales that allow ay experi-enced user to evaluate complicated expressions such as 2.15 X 17.9_50sin7t in sev-eral
steps.

As the size and complexity of the calculations being carried out increases, twoserious limitations of manual computation become apparent.

* The speed at which a human computer can work is limited. A typical elementaryoperation such as addition or multiplication takes several seconds or minutes.Problems
requiring billions of such operations could never be solved manually ina reasonable period of time or at reasonable cost. Fortunately, modern computersroutinely tackle
and quickly solve such problems.

* Humans are notoriously prone to error, so long calculations done by hand areunreliable unless elaborate precautions are taken to eliminate mistakes. Mostsources of
human error (distraction, fatigue, and the like) do not affect machines,so they can provide results that are, within broad limits, free from error.

The English computer pioneer Charles Babbage (1792-1871) often cited thefollowing example to justify construction of his first automatic computing

'Logarithms are defined by the relation 10° = A, where a = log]OA. A length marked A on a log scale isproportional to log10i4 = a. When we add two lengths marked A and
Bona slide rule, we are actually add-ing a = \oglOA and b = log10B. Therefore, the result c represents logl10A + log,0B. Now 10° x 10* = 10***implies ¢ = log10 A + log 10
B =1log 10 (A x B), so if we read c from the first scale, we will obtain the numberwhose log is c, that is. Ax B.

machine, the Difference Engine [Morrison and Morrison 1961]. In 1794 the Frenchgovernment began a project to compute entirely by hand an enormous set of math-
ematical tables. Among the many required tables were the logs of the numbersfrom 1 to 200,000 calculated to 19 decimal places. The entire project took twoyears to
complete and employed about 100 people. The mathematical abilities ofmost of these human computers were limited to addition and subtraction, and theyperformed their
calculations using pen and paper. A few skilled mathematiciansprovided the instructions. To minimize errors, each number was calculated inde-pendently by two human
calculators. The final set of tables occupied 17 large vol-umes. The log table alone contained about 8 million digits.

CHAPTERIComputing andComputers
1.1.1 The Elements of Computers

Every computer, human or artificial, contains the following components: a proces-sor able to interpret and execute programs; a memory for storing the programs andthe
data they process; and input-output equipment for transferring informationbetween the computer and the outside world.

The brain versus the computer. Consider the actions involved in a manual cal-culation using pencil and paper—for example, filling out an income tax return. Thepurpose of
the paper is information storage. The information stored can include alist of instructions—more formally called a program, algorithm, ox procedure—tobe followed in
carrying out the calculation, as well as the numbers or data to beused. During the calculation intermediate results and ultimately the final results arerecorded on the
paper. The data processing takes place in the human brain, whichserves as the {central) processor. The brain performs two distinct functions: a con-trol function that
interprets the instructions and ensures that they are performed inthe proper sequence and an execution function that performs specific steps such asaddition, subtraction,
multiplication, and division. A pocket calculator often servesas an aid to the brain. Figure 1.2a illustrates this view of human computation.

A computer has several key components that roughly correspond to those justmentioned; see Figure \.2b. The main memory corresponds to the paper used in themanual
calculation. Its purpose is to store instructions and data. The computer'sbrain is its central processing unit (CPU). It contains a program control unit (alsoknown as an
instruction unit) whose function is to fetch instructions from memoryand interpret them. An arithmetic-logic unit (ALU), which is part of the CPU'sdata-processing or
execution unit, carries out the instructions. The ALU is so calledbecause many instructions specify either arithmetic (numerical) operations or vari-ous forms of
nonnumerical operations that loosely correspond to logical reasoningor decision making.

There are important similarities and differences between human beings andartificial computers in the way in which they represent information. In both casesinformation
is usually in digital or discrete form. This is contrasted with analog orcontinuous information as used, for example, in the slide rule of Figure \.\b. Dis-tance is a continuous
quantity, and on a slide-rule scale it represents, or sen es as ananalog for, a continuous sequence of numbers. The problem is that such analogquantities have very limited
accuracy. The numbers on a slide rule, for example.

SECTION 1.1The Nature ofComputing

Central
processing

toput-
output
cquipment

(«)

Centralprocessing Instructions

unit Mainmemory Input-outputequipment

Programcontrol

Arithmetic-logic unit

Data

(b)
Figure 1.2
Main components of (a) human computation and (b) machine computation.

cannot be read to more than three decimal places. On the other hand, a digitaldevice can easily handle a large number of digits. Even the simple abacus of Figurel.la can
display a number—admittedly just one—to 13 places of accuracy. Thisadvantage of digital data representation over analog is also seen in the higher fidel-ity of the sound
recorded on a compact disc (CD), a digital device, compared to anold-fashioned record (LP), which is an analog device.

Humans employ languages with a wide range of digital symbols, and they usu-ally represent numbers in decimal (base 10) form. It is not practical to build com-puters to
handle symbolic or decimal data directly. Instead, computers process datain binary form, that is, using the two symbols 0 and 1 called bits (binary digits).Computers are
built from electronic switches that have two natural states: off (0)and on (1). Hence the internal "language" of computers comprises forbidding-looking strings of bits such
as 10010011 11011001. To provide communication

Read-write head

I

\

Memory tapeM
Figure 1.3

A Turing machine.

between a computer and its human users, a means of translating informationbetween human and machine (binary) formats is necessary. The input-outputequipment
shown in Figure 1.2b performs this task.

An abstract computer. We are interested in the computational abilities of gen-eral-purpose digital computers. One might raise the following question at the out-set: Are
there any computations that a "reasonable" computer can never perform?Three notions of reasonableness are widely accepted.

* The computer should not store the answers to all possible problems.

* The computer should only be required to solve problems for which a solutionprocedure or program can be given.

¢ The computer should process information at a finite speed.

A reasonable computer can therefore solve a particular problem only if it is sup-plied with a program that can generate the answer in a finite amount of time.

In the 1930s the English mathematician Alan M. Turing (1912-54) introducedan abstract model of a computer that satisfies all the foregoing criteria [Barwiseand
Etchemendy 1993]. This model, now called a Turing machine, has the struc-ture shown in Figure 1.3. As we noted earlier two essential elements of any com-puter are a
memory and a processor. The memory of a Turing machine is a tape Mwhich resembles that of a tape recorder. Unlike the tape recorder, however, theTuring machine's
tape is of unbounded length and is divided lengthwise intosquares. Each square can be blank, or it can contain one of a small set of symbols.The Turing machine's
processor P is a simple device with a small number of inter-nal configurations or states. It is linked to M by a read-write head that can read thecontents of one square Q
and write a new symbol into Q to replace the old one in asingle time step. Instead of writing on the tape, the processor can also just read thecurrent symbol and move the
tape one square to the left or right of the currentsquare Q.

We can view the Turing machine as having a set of instructions that we willwrite in the compact, four-part format

Sh Tt Oj Sk

This instruction is interpreted in the following way: If the present state of the pro-cessor P is Sh and the symbol it reads on the square of M under the read-writehead is T,,
then perform the action (such as write a new symbol or move the tape)

CHAPTER IComputing andComputers
SECTION 1.1The Nature ofComputing

specified by Oy and change the state of P to Sk. Another way of expressing thisinstruction, which is more in tune with the style of a modern computer program-ming
language, is

if oldstate = Sh and input - Tt then output = 0} and newstate = Sk;

The output operation indicated by 0} can be any one of the following:

1. Oj= Tp meaning write the symbol T on the tape to replace the symbol Tt.

2. Oj = R, meaning move the tape so that the read-write head is over the square tothe right of the current square. (The tape is moved one square to the left.)

3. Oj = L, meaning move the tape so that the read-write head is over the square tothe left of the current square. (The tape is moved one square to the right.)

4. Oj = H, meaning halt the computation.

The foregoing apparently restricted form of instruction, with just a few differ-ent symbols to write on M and a few different states for P, turns out to be sufficientto define
programs that can perform all reasonable computations. To determine thevalue of Z = F(X) via a Turing machine, where F is some function of interest, weproceed as
follows: The input data X is placed in a suitably coded form on an other-wise blank tape M. The processor P is supplied with a program that specifies asequence of steps
that are designed to compute F. The Turing machine is thenstarted and executes instruction after instruction, moving the tape M and writingintermediate results on it.
Eventually, the Turing machine should halt, and the finalresult Z should be found on the tape.

EXAMPLE 1.1 A TURING MACHINE TO ADD TWO UNARY NUMBERS. Any

natural number n, that is, a positive integer selected from the set we usually write as 0,1, 2, 3, 4, 5,..., can be written in the unary form consisting of a sequence of n Is.
Forexample, 5 can be written as 11111 and 13 as 1111111111111. When we record num-bers using tally or check marks only, we are using a unary notation.

(Surprisingly,unary numbers still have a small place in computer design [Poppelbaum et al. 1985].)

‘We will now show how to program a Turing machine to compute the sum of twounary numbers n] and n2. The tape symbols needed are 1 and b, where b denotes ablank.
‘We start with a blank tape (one containing b in every square) and write the twoinput numbers in the following format:

..bbbl 11 ...1bl11..lbbb...

‘We position the read-write head over the blank square (underlined above) to the left ofthe left-most 1. Our Turing machine then computes nx + n2 by the simple expedient
offinding the single blank that separates «, and n2 and replacing it with 1. The machinethen finds and deletes the left-most 1 of «,. The resulting pattern of Is and bs

..bbbbl1..11111..lbbb.

n, + Hi

appearing on the tape is the required answer in the same unary format as the input data.The behavior of a seven-instruction Turing machine that implements this
procedure isgiven with explanatory comments in Figure 1.4. Observe that although the tape M canhave an arbitrarily large number of states, the processor P has only the

four states S0,5,, S2, and 53.

Instruction

Comment

SB

b R 5, Move read-write head one square to right.1 R Sj Move read-write head rightward across nx.b 1 S2 Replace blank between «, and n2 by 1.

L S2 Move read-write head leftward across «,.

R 53 Blank square reached; move one square to right.

b S3 Replace left-most 1 by blank.

H 53 Halt; the result nx + n2 is now on the tape.

Figure 1.4

Turing machine program to add two unary numbers.

One of Turing's most remarkable achievements was to prove that a universalTuring machine (not unlike the above unary adding machine) can by itself performevery
reasonable computation. A universal Turing machine is essentially a simula-tor of Turing machines. If given a description of some particular Turing machineTM—a
program description like that of Figure 1.4 will do—the universal machinesimulates all the operations performed by TM. A universal Turing machine needsonly t different
tape symbols and s different processor states, where ts < 30, imply-ing that it can have a very small instruction set. Nevertheless, such a machine canperform any
reasonable computation. It can therefore do anything that any real com-puter can do and so serves as an abstract model of the modern general-purpose com-puter. The
universal Turing machine also captures a little of the flavor of reducedinstruction set computers (RISCs), which, despite having relatively few instructiontypes, are among
the most powerful computing machines available today.

CHAPTER IComputing andComputers

1.1.2 Limitations of Computers

‘We turn next to the question of what problems computers can and cannot solve,either in principle or in practice [Barwise and Etchemendy 1993; Cormen and Leis-erson
1990; Garey and Johnson 1979].

Unsolvable problems. Problems exist that no Turing machine and therefore nopractical computer can solve. There are well-defined problems, some quite famous,for which
no solutions or solution procedures are known. An example from puremathematics is Goldbach's conjecture, formulated by the mathematician ChristianGoldbach (1690-
1764), winch states that every even integer greater than 2 is thesum of exactly two prime numbers. For instance, 8 = 3 + 5 and 108 = 37 + 71. Gold-bach's conjecture has
been tested for an enormous number of even integers and istrue in all test cases. Nevertheless, it is not yet known if the conjecture is true forevery even integer, nor is
any reasonable procedure known to determine whether theconjecture is true. The number of even integers is infinite, so a complete or exhaus-tive examination of all even
integers and their prime factors is not feasible. ,,

Goldbach's conjecture is an example of an unsolved problem that may eventu-ally be solved—we just don't have a suitable solution procedure yet. Turing
8
SECTION 1.1The Nature of Computing

machines have proven another class of problems to be unsolvable, so there is nohope of ever solving them; such problems are said to be undecidable. An exampleof an
undecidable problem is to determine if an arbitrary polynomial equation of theform

a0 +axx +a”™x2 + *" + an xx"~x+a”~ =b

has a solution consisting entirely of integers. This problem may be answerable forspecific equations, but a general procedure or program can never be constructed
thatcan analyze any possible polynomial equation and decide if it has an integer solution.

Turing identified an undecidable problem that involves the basic nature of Tur-ing machines. Does a procedure exist to determine if an arbitrary Turing machinewith
arbitrary input data will ever halt once it has been set in motion? Turingproved that the answer is no, so the Turing machine halting problem as this partic-ular problem is
called, is also undecidable. This result has some practical implica-tions. A common and costly error made by inexperienced computer programmersis to write programs
that contain infinite loops and therefore fail to halt under cer-tain input conditions. It would be useful to have a debugging program that coulddetermine whether any
given program contains an infinite loop. The undecidabilityof the Turing machine halting problem implies that no such infinite-loop-detectingtool can ever be realized.
The Turing machine model of a computer has one unrealistic, if not unreason-able, aspect: The length of the tape memory, and hence the total number of states inthe
Turing machine, is infinite. Real computers have a finite amount of memoryand are therefore referred to as finite-state machines. Therefore, Turing machinescan perform
some computations that, in principle, finite-state machines cannot per-form. For example, a finite-state machine cannot multiply two arbitrarily largenumbers because it
eventually runs out of the states needed to compute the product.The number of states of a typical computer is enormous, so this finiteness limita-tion has little
significance. A typical general-purpose computer has billions ofstates and can quickly multiply numbers of any practical length.

Intractable problems. Real (finite-state) computers can solve most computa-tional problems to an acceptable degree of accuracy. The question then becomes:Can a
computer of reasonable size and cost solve a given problem in a reasonableamount of time? If so, the problem is said to be tractable; otherwise, it is intracta-ble. Whether
a given problem is tractable depends on several factors: the nature ofthe problem itself, the solution method or program used, and the computing speedor performance of
the computer available to solve it. Figure 1.5 gives an indicationof the speed of modern computers. It shows how the number of basic operations,such as the addition of
two numbers, that a CPU can perform has been evolvingwith advances in computer hardware.

Example 1.2 illustrates the impact of the solution method on problem diffi-culty.

EXAMPLE 1.2 FINDING AN EULER CIRCUIT IN A GRAPH. A well-known

problem associated with the Swiss mathematician Leonhard Euler (1707-1783) is thefollowing: Given a set of connected paths such as the aisles in an exhibition hall (Fig-
ure 1.6a), is it possible to make a tour of the hall so that one walks along every aisleexactly once and ends up at the starting point? The problem can be
representedabstractly by means of a graph, as shown in Figure \.6b. Each aisle is modeled by a

Component technology

Date

Number of basicoperations per second

Electromechanical: relays 1940 10

3

Electronic: vacuum tubes (valves) 1945 10

4

Electronic: transistors 1950 10

Small-scale integrated circuits 1960 10

Medium-scale integrated circuits 1980 10

Very large-scale integrated circuits 2000 10

Figure 1.5

Influence of hardware technology on computing speed.

CHAPTER 1Computing andComputers

line called an edge, and the junction of two or more aisles by a point called a node.The graph of Figure \.6b has five nodes A, B, C, D, and E and eight edges a, b, c, d, e,f,
g, and h. Restated in graph terms, the walking-tour problem becomes that of findinga closed path around the graph that contains every edge exactly once; such a path
isknown as an Euler circuit. We consider two possible ways to determine whether agraph contains an Euler circuit.

A "brute force" or exhaustive approach is to generate a list of the possible order-ings ox permutations of the edges of the graph. Each permutation then corresponds to
apotential tour of the exhibition hall. The list of permutations can be written in the form

abcdefgh, achdefgh, adbcefgh, aebcdfgh, afbcdegh,

(1.1)
‘We can search the permutation list and check each entry to see if it specifies an Eulercircuit. Clearly, the list is huge, and most of its entries do not represent Euler

circuits.For example, the first permutation abcdefgh does not represent an Euler circuit,because while it is possible to go from a to b and from b to c, it is not possible to
godirectly from c to d. A tour starting at node A that traverses a, b, and ¢ must continuealong g, at which point/or h may be followed. The permutation abcgfdhe appearing

s eyt
x
F3 h
D E

(a)
(b)

Figure 1.6

{a) Plan of the aisles in an exhibition hall and (b) the corresponding graphmodel.
10

SECTION 1.1The Nature ofComputing

somewhere down the list represents a circuit of the desired kind, as can be quickly ver-ified. Thus we conclude that the graph of Figure 1.6b does indeed contain an Euler
cir-cuit.

The main drawback of this brute-force method is the length the permutation list;the time needed to generate, store, and check it is enqrmous. Most of the list's entriesdo
not represent Euler circuits, but in the worst case, we might have to search the entirelist to find an Euler circuit or prove that none exists. The number of possible
permuta-tions of the eight edges in our example is 8!, which denotes eight factorial. Therefore

81 = 8X7X6X5X4X3X2X1= 40,320
is the length of list (1.1). When ¢, the number of edges present, is large, the size of thepermutation list q\ is approximated by

which shows that the size of the brute-force procedure in terms of storage requirementsand computing speed increases exponentially with q. If g were 80 instead of 8,
then wewould have q\ = 80! = 7.16 x 10118. This huge number exceeds the estimated number(1010) of neurons in the human brain. A very fast computer capable of
processing a tril-lion (1012) permutations per second would spend 2.27 x 10" years dealing with 80!permutations. We can therefore conclude with some confidence that
the problem offinding an Euler circuit is intractable via the brute-force approach.

An alternative but very tractable solution procedure for the same problem dependson Euler's discovery that a graph has the desired circuit if and only if every node is
thejunction of an even number of edges. Intuitively, this result follows from the fact thatevery edge used to enter a node must be paired with an edge used to exit the
node. Nowthe task of determining whether a graph contains an Euler cycle reduces to checkingeach node in turn and counting the edges that it connects. In the example
of Fig-ure \.6b, nodes A, B, C, D, and E form the junctions of 4, 4, 4, 2, and 2 edges, respec-tively. It follows immediately that the graph has an Euler circuit. While the
brute-forcemethod requires a computation time and a storage capacity that grow exponentiallywith the number of edges g. the second method has a computational
complexity that isproportional to q. The second method can easily solve problems with 80 or more edges.

Because the problem of finding an Euler circuit has an efficient and practicalsolution procedure, as shown in Example 1.2, we regard the problem itself asinherently
tractable. We usually regard a problem as intractable if all its knownsolution methods grow exponentially with the size of the problem. Many problems,some of great
practical importance, are inherently intractable in this way. Onlysmall versions of such intractable problems can be solved in practice, where small-ness is measured by
some problem-dependent parameter such as the number ofinput variables present.

An example of an intractable problem related to Example 1.2 is the Travelingsalesman problem. Here the goal is also to make a tour, this time by car or planethrough a
given set of n cities, and eventually return to the starting point. The dis-tance between each pair of cities is known, and the problem is to determine a tourthat minimizes
the total distance traveled. Again it is convenient to use a graphmodel with nodes denoting cities and edges denoting intercity highways with dis-tances marked on them—
the graph is tantamount to a roadmap. The best solutionprocedures known for this problem, although better than the brute-force approach

of listing all possible tours through the n cities, are exponential in n. Quite a fewpractical problems are closely related to the traveling salesman problem: Thescheduling
of airline flights, the routing of wires in an electronic circuit, and thesequencing of steps in a factory assembly line are examples. Such difficult comput-ing problems are a
major motivation for the design and construction of bigger andfaster computers.

An intractable problem can be solved exactly in a reasonable amount of timeonly when its size n is below some maximum value nMAX. The value of «<MAXdepends both on
the problem itself and on the speed of the computers available tosolve it. It might be expected that computer speeds could be increased to make"max any desired value.
‘We now present arguments to indicate that this is highlyunlikely.

11
CHAPTER 1Computing andComputers

Speed limitations. An algorithm A has time complexity of order /(«), denoted0(f(n)), if the number of basic operations—the precise nature of these operationsis not
important—A uses to solve a problem of size n is at most cj\n), where j{n) issome function of n and c is a constant. The function j\n) therefore indicates the rateat which
the computing time that A needs to obtain a solution grows with the prob-lem size n.

To gauge the impact of computing speed on the size nMAX of the largest solv-able problem, we consider four algorithms Ax, A2, A3, and A4 of varying degrees ofdifficulty.
Let the time complexities of Ax, A2, A3, and A4 be 0(n), 0(n2), O(nm),and 0(2"), respectively. Because A4 has a time complexity that is exponential in n,it is the only
obviously intractable procedure. Suppose that all four algorithms areprogrammed on a computer M having a speed of S basic operations per second. Letn{ denote the size
of the largest problem that algorithm A, can solve in a fixed timeperiod of T seconds. Let n{ denote the size of the largest problem that the samealgorithm A, can solve in
T seconds on a new computer M' that is 100 times fasterthan M; the speed of M' is therefore 100S operations per second. M' could beimplemented by a different and
faster hardware technology than M. It could also—at least in principle—be implemented by a "supercomputer" consisting of 100 cop-ies of M all working in parallel on the
same problem, a technique referred to asparallel processing.

Figure 1.7 shows the values of n{ relative to ni for the four algorithms. In thecase of the intractable algorithm A4, the increase in the size of the largest problemthat can
be handled on moving from M to M' is insignificant. This is also true forA3, even though it does not fall within the strict definition of intractability. Toincrease the size of
the maximum problem that A} and A4 can solve in the given

Time

Maximum problem size

Algorithm complexity Computer M Computer M'

O(n) "i
0(n2) "2
0(nm) "3

002") "4

B,'a 100/1,

n2' = 10n2Bj'= 1.047n,n4 = w4 + 6.644

Figure 1.7

Effect of computer speedupby 100 on four algorithms.
12

SECTION 1.2The Evolution ofComputers

time period by a factor of 100, we would need computers with speeds of 10 5 and10 °"4S, respectively. It is reasonable to expect that problems of these magnitudescan
never be solved by the given algorithms on realistic computers.

Because so many important problems are intractable, we often devise approxi-mate or inexact methods to solve them. Two major techniques follow.
1. We replace the intractable problem Q with a tractable problem Q' whose solu-tion approximates that of Q.

2. We examine a relatively small set of possible solutions to Q using reasonable,intuitive, and often poorly understood selection criteria and take the "best" ofthese as the
solution to Q. Methods that are designed to produce acceptable, ifnot optimal, answers using a reasonable amount of computing time are some-times called heuristic
procedures.

To illustrate the heuristic approach, consider again the traveling salesman prob-lem. The salesman must visit n cities and return to his starting point. All intercitydistances
are specified, and the objective of the problem is to find a tour that mini-mizes the total distance traveled by the salesman. We can represent the problem ona graph
similar to that of Figure 1.6b, whose nodes denote cities and whose edgesdenote intercity links. A brute-force approach of the kind discussed in Example 1.2,which
involves listing all n\ possible tours and their distances, is intractable, and noobviously tractable method to obtain a minimum-distance tour is known.

Real traveling salesmen often use the following simple heuristic: Qo to the pre-viously unvisited city that is closest to the current city and return to the start in thefinal leg
of the tour. Hence for each of the n legs, the only computation needed is tocompare the distances between the current city and each of at most n - 1 other cities.The city
that is the shortest distance away (if there are several such cities, select anyone of them) is visited next. Because this heuristic makes decisions that are optimalon a local
basis only, it will not always find an overall optimum. Nevertheless, formost practical problems this heuristic provides a solution of minimum or near-min-imum length, but
there is no guarantee that it will do so in any particular case.

Computers are continually being applied to new problems whose computa-tional requirements far exceed those of older problems. For example, the process-ing of high-
quality speech and visual images for multimedia applications canrequire speeds measured in trillions of basic operations per second.-To meet theever-increasing demand
for high-performance computation, we need better algo-rithms and heuristics, as well as faster computers. Although computers continue toincrease in speed because of
advances in hardware technology, the rate of increase(see Figure 1.5) has not kept pace with demand. As a result, we still need to findnew ways to improve the
performance of computers at reasonable cost—which isthe basic rationale for the study of computer architecture and organization.

1.2

THE EVOLUTION OF COMPUTERS

Calculating machines capable of performing the elementary operations of arith-metic (addition, subtraction, multiplication, and division) appeared in the 16thcentury, and
perhaps earlier [Randell 1982; Augarten 1984]. These were clever

mechanical devices constructed from gears, levers, and the like. The French philos-opher Blaise Pascal (1623-62) invented an early and influential mechanical calcu-lator

that could add and subtract decimal numbers. Decimal numerals wereengraved on counter wheels much like those in a car's odometer. Pascal's maintechnical innovation

was a ratchet device for automatically transferring a carryfrom a digit di to the digit di+1 on its left whenever dt passed from 9 to 0. In Ger-many, Gottfried Leibniz (1646-
1716) extended Pascal's design to one that couldalso perform multiplication and division. Mechanical computing devices such asthese remained academic curiosities until
the 19th century, when the commercialproduction of mechanical four-function calculators began.

13

CHAPTER 1Computing andComputers

1.2.1 The Mechanical Era

Various attempts were made to build general-purpose programmable computersfrom the same mechanical devices used in calculators. This technology posed
somedaunting problems, and they were not satisfactorily solved until the introduction ofelectronic computing techniques in the mid-20th century.

Babbage's Difference Engine. In the 19th century Charles Babbage designedthe first computers to perform multistep operations automatically, that is, without ahuman
intervening in every step [Morrison and Morrison 1961]. Again the technol-ogies were entirely mechanical. Babbage"s first computing machine, which hecalled the
Difference Engine, was intended to compute and print mathematicaltables automatically, thereby avoiding the many errors occurring in tables that arecomputed and
typeset by hand. The Difference Engine performed only one arith-metic operation: addition. However, the method of (finite) differences embodied inthe Difference Engine
can calculate many complex and useful functions by meansof addition alone.

EXAMPLE 1.3 COMPUTING X2 BY THE METHOD OF DIFFERENCES. Con-sider the task of calculating a table of the squares y- = xK for Xj = 1,2,3,... using themethod of
differences. To understand the underlying concept, suppose we alreadyhave the list of squares given in Figure 1.8<a. Subtract each square y, = xf from thenext value y;+1
= (xj + 1)2 in the list. The result (x- + 1)2 -xf = 2Xj + 1 is called the firstdifference of y and is denoted by Al y ; die corresponding list of values in Figure 1.8ais 3, 5, 7, ... If
we subtract two consecutive first-difference values, we obtain 2(xj + 1)+ 1 - (2xj + 1) = 2, which is the second difference A.2y; of y. Note that die second dif-ference is
constant for ally.

The Difference Engine evaluates xr by taking the constant second difference A~and adding it to the first difference Al y-. The result is

aVj+i = aVj+a2”™

(1.2)

which is the next value of the first difference. At the same time, the engine calculates

r;+i

=v,+A

(1.3)

which is the next value of x2. By repeatedly executing the two addition steps (1.2) and(1.3), the Difference Engine can generate any desired sequence of
consecutivesquares. It must be "primed" by manually inserting the initial valuesy, = 1. Ay, = 3,

14

SECTION 1.2The Evolution ofComputers
yj =xj: 14916 25 36

Initial values

y,=i—«C

y,- register

+ ~1 Adder

Ay, =3

1 Al ~register

First difference Alyy. 35791113

+ I Adder

Second difference A2y: 2 2 2 2 2 2 A2y, = 2—M] A2y; register

(@)

(b)
Figure 1.8
Computing jt by the method of differences: (a) a representative computation and(b) the corresponding Difference Engine configuration.

2

and Ay, = 2 for j; = 1, which appear at the left end of the corresponding lists in Fig-ure 1.8a. Then the Difference Engine computes A y2 =3 + 2 = 5 according to (1.2)and
y2 =1 + 3 =4 according to (1.3). It never has to recompute A~y , which remainsunchanged at 2 for all j. Once the values for j = 2 are known, the Difference Enginecan
calculate A y3 and y3, and so on indefinitely. At the end of the computation illus-trated in Figure 1.8a, we have y6 = 36, Ay6 = 13, and A y6 = 2. One more iterationyields
Ayl =13 + 2= 15and y7 = 36 + 13 = 49, which is, of course, 72.

Figure 1.8& outlines the essential features of a small Difference Engine that exe-cutes the foregoing procedure. It contains several registers; these are memory
devices,each of which stores a single number. Here we need three registers to store the threenumbers y-, Ay ¢, and Ay . The engine employs a pair of processing units
calledadders to perform the addition steps specified by (1.2) and (1.3). Each adder takes thecontents of two registers, calculates their sum, and returns it to one of the
registers sothat the sum becomes that register's new contents. The arrows in Figure 1.Sb indicatethe manner in which information flows through the Difference Engine
during operation.

We can easily show that the «th difference of ;c" is always a constant, fromwhich it follows the nth difference of any mh-order polynomial of the form

y(x) = a0 + axx + a-jjc2 + *++ + a”x"'1 + aj? (1.4)

is also a constant K. A Difference Engine can therefore calculate y(x) by evaluatinga set of n difference equations of the form

A'A'A'+1

A)) =Ay;_, +Avyi]

where 0 <i<n—1, A0y =y, and A"y = K. Many useful functions encountered inscience and engineering are expressible as polynomials like (1.4) and therefore canbe
evaluated by the method of differences. The trigonometric sine function, forinstance, can be written as

357911

sinx = x-° + X--X- + X--X— +

(1.5)

The first k terms of (1.5) form a (2k - 1)th-order polynomial that approximatessin*. A higher-order polynomial will produce more accurate results.

Babbage constructed a small portion of his first Difference Engine in 1832,which served as a demonstration prototype. He later designed an improved version(Difference
Engine No. 2), which was to handle seventh-order polynomials andhave 31 decimal digits of accuracy. Like some of his modern successors, Babbageconceived his
computers on a grand scale that strained the limits of the technol-ogy—and funds—available to build them. He never completed Difference EngineNo. 2, mainly because of
the difficulty of fabricating its 4000 or so high-precisionmechanical parts. The complexity of this 3-ton machine can be appreciated fromFigure 1.9, which is based on one
of Babbage's own drawings. The vertical "fig-ure-wheel columns" constitute the registers for storing 31-digit numbers, while theadders are implemented by the rack-and-
lever mechanism underneath. It was notuntil 1991 that a working version of Difference Engine No. 2 was actually con-structed (at a cost of around $500,000) by the
Science Museum in London to cele-brate the bicentennial of Babbage's birth [Swade 1993].

15
CHAPTER 1Computing andComputers

The Analytical Engine. Another reason for Babbage's failure to complete hisDifference Engine was that he conceived of a much more powerful computingmachine that he
called the Analytical Engine. This machine is considered to be thefirst general-purpose programmable computer ever designed.

The overall organization of the Analytical Engine is outlined in Figure 1.10. Itcontains in rudimentary form many of the basic features found in all subsequentcomputers—
compare Figure 1.10 to Figure 1.2. The main components of the

HANDLE
PRINTER

TR

Figure 1.9
Diagram by Babbage of Difference Engine No. 2 [Courtesy of the National Science Museum/Science & SocietyPicture Library].
16

SECTION 1.2The Evolution ofComputers

Input-outputequipment(printerand card *punch)

Arithmetic-logic unit(the mill) Data Mainmemory(the store)
n Instructions ii

Operationcards Variablecards

Proj jam control unit
Figure 1.10

Structure of Babbage's Analytical Engine.

Analytical Engine are a memory called the store and an ALU called the mill; thelatter was designed to perform the four basic arithmetic operations. To control
theoperation of the machine, Babbage proposed to use punched cards of a typedeveloped earlier for controlling the Jacquard loom. A program for the AnalyticalEngine
was composed of two sequences of punched cards: operation cards used toselect the operation to be performed by the mill, and variable cards to specify thelocations in
the store from which inputs were to be taken or results sent. An actionsuch as a x b = ¢ would be specified by an instruction consisting of an operation carddenoting
multiply and variable cards specifying the store locations assigned to a, b,and c. Babbage intended the results to be printed on paper or punched on cards.

One of Babbage's key innovations was a mechanism to enable a program toalter the sequence of its operations automatically. In modern terms he conceived ofconditional-
branch or if-then-else instructions. They were to be implemented bytesting the sign of a computed number; one course of action was taken if the signwere positive,
another if negative. Babbage also designed a device to advance orreverse the flow of punched cards to permit branching to any desired instructionwithin a program. This
type of conditional branching distinguishes the AnalyticalEngine from the Difference Engine: a program for the latter could only execute afixed set of instructions in a
fixed order. Conditional branching is the source ofmuch of the power of the Analytical Engine and subsequent computers; it is thefeature that makes them truly general
purpose.

Again Babbage proposed to build the Analytical Engine on a grand scale usingthe same mechanical technology as his Difference Engines. The store, for instance,was to
have a capacity of a thousand 50-digit numbers. He estimated that the addi-tion of two numbers would take a second, and multiplication, a minute. Babbagespent much of
the latter half of his life refining the design of the Analytical Engine,but only a small part of it was ever constructed.

Later developments. Many improvements were made to the design of four-function mechanical calculators in the 19th century, which led to their widespread
CHAPTER 1

use. The Comptometer, designed by the American Dorr E. Felt (1862-1930) in 171885, was one of the earliest calculators to use depressible keys for entering dataand
commands; it also printed its results on paper. A later innovation was the use

r.jmiie,,, . Computing and

of electric motors to drive the mechanical components, thus making calculators Com Ulers"electromechanical" and greatly increasing their speed. Another important
devel-opment was the use of punched cards to sort and tabulate large amounts of data.The punched-card tabulating machine was invented by Herman Hollerith (1860—
1929) and used to process the data collected in the 1880 United States census. In1896 Hollerith formed a company to manufacture his electromechanical equip-ment. This
company subsequently merged with several others and in 1924 wasrenamed the International Business Machines Corp. (IBM).

No significant attempts to build general-purpose, program-controlled comput-ers were made after Babbage's death until the 1930s [Randell 1982]. In Germany,Konrad
Zuse built a small mechanical computer, the ZI, in 1938, apparentlyunaware of Babbage's work. Unlike previous computers, the ZIl used binary,instead of decimal,
arithmetic. A subsequent Zuse machine, the Z3, which wascompleted in 1941, is believed to have been the first operational general-purposecomputer. Zuse's work was
interrupted by the Second World War and had littleinfluence on the subsequent development of computers. Of great influence, how-ever, was a general-purpose
electromechanical computer proposed in 1937 byHoward Aiken (1900-73), a physicist at Harvard University. Aiken arranged tohave IBM construct this computer
according to his basic design. Work began onAiken's Automatic Sequence Controlled Calculator, later called the Harvard Markl, in 1939; it became operational in 1944.
Like Babbage's machines, the Mark Iemployed decimal counter wheels for its main memory. It could store seventy-two23-digit numbers. The computer was controlled by a
punched paper tape, whichcombined the functions of Babbage's operation and variable cards. Although lessambitious than the Analytical Engine, the Mark I was in many
ways the realizationof Babbage's dream.

1.2.2 Electronic Computers

A mechanical computer has two serious drawbacks: Its computing speed is limitedby the inertia of its moving parts, and the transmission of digital information
bymechanical means is quite unreliable. In an electronic computer, on the other hand,the "moving parts" are electrons, which can be transmitted and processed reliablyat
speeds approaching that of light (300,000 km/s). Electronic devices such as thevacuum tube or electronic valve, which was developed in the early 1900s, permitthe
processing and storage of digital signals at speeds far exceeding those of anymechanical device.

The first generation. The earliest attempt to construct an electronic computerusing vacuum tubes appears to have been made in the late 1930s by John V. Atana-soff
(1903-95) at Iowa State University [Randell 1982]. This special-purposemachine was intended for solving linear equations, but it was never completed. Thefirst widely
known general-purpose electronic computer was the Electronic Numer-ical Integrator and Calculator (ENIAC) that John W. Mauchly (1907-80) and J.

18
SECTION 1.2The Evolution ofComputers

Presper Eckert (1919-95) built at the University of Pennsylvania. Like Babbage'sDifference Engine, a motivation for the ENIAC was the need to construct mathe-matical
tables automatically—this time ballistic tables for the U.S. Army. Work onthe ENIAC began in 1943 and was completed in 1946. It was an enormous machineweighing
about 30 tons and containing more than 18,000 vacuum tubes. It was alsosubstantially faster than any previous computer. While the Harvard Mark I requiredabout 3 s to
perform a 10-digit multiplication, the ENIAC required only 3 ms.

The ENIAC had a set of electronic memory units called accumulators with acombined capacity of twenty 10-digit decimal numbers. Each digit was stored in al0-bit ring
counter, where the binary pattern 1000000000 denoted the decimal digit0, 0100000000 denoted 1, 0010000000 denoted 2, and so on. The ring counter wasthe electronic
equivalent of the decimal counter wheel of earlier mechanical calcu-lators. Like counter wheels, the ENIAC's accumulators combined the function ofstorage with addition
and subtraction. Additional units performed multiplication,division, and the extraction of square roots. The ENIAC was programmed by thecumbersome process of
plugging and unplugging cables and by manually setting amaster programming unit to specify multistep operations. Results were punched oncards or printed on an
electric typewriter. In computing ability, the ENIAC isroughly comparable to a modern pocket calculator!

Like the Analytical Engine, the Harvard Mark I and the ENIAC stored theirprograms and data in separate memories. Entering or altering the programs was atedious task.
The idea of storing programs and their data in the same high-speedmemory—the stored-program concept—is attributed to the ENIAC's designers,notably the Hungarian-
born mathematician John von Neumann (1903-57) whowas a consultant to the ENIAC project. The concept was first published in a 1945proposal by von Neumann for a
new computer, the Electronic Discrete VariableComputer (EDVAC). Besides facilitating the programming process, the stored-program concept enables a program to
modify its own instructions. (Such self-modifying programs have undesirable aspects, however, and are rarely used.)

The EDVAC differed from most of its predecessors in that it stored and pro-cessed numbers in true binary or base 2 form. To minimize hardware costs, datawas processed
serially, or bit by bit. The EDVAC had two kinds of memory: a fastmain memory with a capacity of 1024 or IK words (numbers or instructions) and aslower secondary
memory with a capacity of 20K words. Prior to their execution, aset of instructions forming a program was placed in the EDVAC s main memory.The instructions were then
transferred one at a time from the main memory to theCPU for execution. Each instruction had a well-defined structure of the form

A, A2 A3 A4 OP

(1.6)

meaning: Perform the operation OP (addition, multiplication, etc.) on the contentsof main memory locations or "addresses" A, and A2 and then place the result inmemory
location A3. The fourth address A4 specifies the location of the nextinstruction to be executed. A variant of this instruction format implements condi-tional branching,

where the next instruction address is either A3 or A4, dependingon the relative sizes of the numbers stored in A, and A2. Yet another instructiontype specifies input-output
operations that transfer words between main memoryand secondary memory or between secondary memory and a printer. The EDVACbecame operational in 1951.

Input-outputequipment

Mainmemory Secondary memory,
Instructions Central processingunit (CPU) Programs, data,operator commands

(Programsand data forexecution) keyboard, printer,

etc.

Programcontrol
I
Dataprocessing

Data

Figure 1.11

Organization of a first-generation computer.
19
CHAPTER 1

Computing andComputers

In 1947 von Neumann and his colleagues began to design a new stored-pro-gram electronic computer, now referred to as the IAS computer, at the Institute forAdvanced
Studies in Princeton. Like the EDVAC, it had the general structuredepicted in Figure 1.11, with a CPU for executing instructions, a main memory forstoring active
programs, a secondary memory for backup storage, and miscella-neous input-output equipment. Unlike the EDVAC, however, the IAS machine wasdesigned to process all
bits of a binary number simultaneously or in parallel. Sev-eral reports describing the IAS computer~were published [Burks. Goldstine, andvon Neumann 1946] and had
far-reaching influence. In its overall design the IAS isquite modern, and it can be regarded as the prototype of most subsequent general-purpose computers. Because of its
pervasive influence, we will examine the [AScomputer in more detail below.

In the late 1940s and 1950s, the number of vacuum-tube computers grew rap-idly. We usually refer to computers of this period as first generation, reflecting asomewhat
narrow view of computer history [Randell 1982]. Besides those men-tioned already, important early computers included the Whirlwind I constructed atthe Massachusetts
Institute of Technology and a series of machines designed atManchester University [Siewiorek, Bell, and Newell 1982], In 1947 Eckert andMauchly formed Eckert-
Mauchly Corp. to manufacture computers commercially. Their first successful product was the Universal Automatic Computer (UNIVAC)delivered in 1951. IBM, which had
earlier constructed the Harvard Mark I. intro-duced its first electronic stored-program computer, the 701, in 1953. Besides theiruse of vacuum tubes in the CPU, first-
generation computers experimented withvarious technologies for main and secondary memory. The Whirlwind introducedthe ferrite-core memory in which a bit of
information was stored in magnetic formon a tiny ring of magnetic material. Ferrite cores remained the principal technologyfor main memories until the 1970s.

The earliest computers had their instructions written in a binary code know n asmachine language that could be executed directly. An instruction in machine lan-guage
meaning "add the contents of two memory locations" might take the form

00111011000000001001100100000111

Machine-language programs are extremely difficult for humans to write and soare very error-prone. A substantial improvement is obtained b\ allowing opera-tions and
operand addresses to be expressed in an easily understood symbolic

20

SECTION 1.2The Evolution ofComputers

form such as

ADD XI, X2

This symbolic format, which is referred to as an assembly language, came into usein the 1950s, as computer programs were growing jn size and complexity. Anassembly
language requires a special "system" program (an assembler) to translateit into machine language before it can be executed. First-generation computers weresupplied
with almost no system software; often little more than an assembler wasavailable to the user. Moreover, assembly and machine languages varied widelyfrom computer to
computer so first-generation software was far from portable.

The IAS computer. It is instructive to examine the design of the Princeton IAScomputer. Because of the size and high cost of the CPU's electronic hardware, thedesigners
made every effort to keep the CPU, and therefore its instruction set,small and simple. Cost also heavily influenced the design of the memory sub-system. Because fast
memories were expensive, the size of the main memory (ini-tially IK words but expandable to 4K) was less than most users would havewished. Consequently, a larger (16K
words) but cheaper secondary memory basedon an electromechanical magnetic drum technology was provided for bulk storage.Essentially similar cost-performance
considerations remain central to computerdesign today, despite vast changes over the years in the available technologies andtheir actual costs.

The basic unit of information in the IAS computer is a 40-bit word, which isthe standard packet of information stored in a memory location or transferred inone step
between the CPU and the main memory M. Each location in M can beused to store either a single 40-bit number or else a pair of 20-bit instructions. TheIAS's number
format is fixed-point, meaning that it contains an implicit binarypoint in some fixed position. Numbers are usually treated as signed binary frac-tions lying between -1 and
+1, but they can also be interpreted as integers. Exam-ples of the IAS's binary number format are

01101000000 0000000000 0000000000 0000000000 = +.8125

10011000000 0000000000 0000000000 0000000000 = -0.8125

Numbers that lie outside the range *+1 must be suitably scaled for processing byIAS.

An IAS instruction consists of an 8-bit opcode (operation code) OP followedby a 12-bit address A that identifies one of up to 212 = 4K 40-bit words stored inM. The IAS
computer thus has a one-address instruction format, which we repre-sent symbolically as

OP A

This format may appear very restrictive compared with the EDVAC's four-addressinstruction format (1.6). The IAS's shorter format clearly saves memory space.The fact
that it does not restrict the machine's computational capabilities followsfrom two key aspects of the IAS's design that have been incorporated into all latercomputers:

1. The CPU contains a small set of high-speed storage devices called registers,which serve as implicit storage locations for operands and results. For example,

>s Program

Addre controlunit PCU Instructiondecoder —*m Control77T signals

0 M(0) \E£}
1 AR |
1 Mil)
1
2 M(2)
1
3 Mi?i b
4 M(4) IBR L pc
5 M(5)
*u 1 ,
I
Dataprocessing 1!
unit DPL i !

Arithmetic-logic unit

4,093 M.4,093)

4,094 M(4,094) ™m + i
M(4,095) r —
4,095 AC [MQ

Mainmemory M

Legend

Program control unit PCUAR: Memory address registerIR: Instrucuon opcode registerIBR: Next- instruction buffer registerPC: Program counter
Data processing unit DPI!AC: Accumulator registerDR: General-purpose data registerMQ: Multiplier- quotient register

Figure 1.12

Organization of the CPU and main memory of the IAS computer.

21

CHAPTER 1Computing andComputers

an instruction of the form

ADD X

(1.7)

fetches the contents of the memory location X from main memory and adds it tothe contents of a CPU register known as the accumulator register AC. Theresulting sum is
then placed in AC. Hence X and AC play the role of the threememory addresses A,, A2, and A3 appearing in (1.6).2. A program's instructions are stored in M in
approximately the sequence inwhich they are executed. Hence the address of the next instruction word is usu-ally that of the current instruction plus one. Therefore, the
EDVAC's next-instruction address A4 can be replaced by a CPU register (the program counterPC), which stores the address of the current instruction word and is
incrementedby one when the CPU needs a new instruction word. Branch instructions areprovided to permit the instruction execution sequence to be varied.

Figure 1.12 gives a programmer's perspective of the IAS, using modern nota-tion and terminology. One of the two main parts of the CPU is responsible forfetching
instructions from main memory and interpreting them; this part is vari-ously known as the program control unit (PCU) or the I-unit (instruction unit). Thesecond major
part of the CPU is responsible for executing instructions and isknown as the data processing unit (DPU), the datapath, or the E-unit (executionunit).

The major components of the PCU are the instruction register IR, which storesthe opcode that is currently being executed, and the program counter PC-
whichautomatically stores and keeps track of the address of the next instruction to be

22
SECTION 1.2The Evolution ofComputers

fetched. The PCU has circuits to interpret opcodes and to issue control signals tothe DPU, M, and other circuits involved in executing instructions. The PCU canmodify the
instruction execution sequence when required to do so by branchinstructions. There is also a 12-bit address register AR in the PCU that holds theaddress of a data
operand to be fetched from or sent fo main memory. Because theIAS has the unusual feature of fetching two instructions at a time from M, it con-tains a second register,
the instruction buffer register (IBR), for holding a secondinstruction.

The main components of the DPU are the ALU, which contains the circuitsthat perform addition, multiplication, etc., as required by the possible opcodes, andseveral data
registers to store data words temporarily during program execution.The IAS has two general-purpose 40-bit data registers: AC (accumulator) and DR(data register). It
also has a third, special-purpose data register MQ (multiplier-quotient) intended for use by multiply and divide instructions.

Main memory M is a 4096 word or 4096 x 40-bit array of storage cells. Eachstorage location in M is associated with a unique 12-bit number called its address,which the
CPU uses to refer to that location. To read data from a particular mem-ory location, the CPU must have its address X (which it can store in PC or AR).The CPU
accomplishes the read operation by sending the address X to M accompa-nied by control signals that specify "read." M responds by transferring a copy ofM(X), the word
stored at address X, to the CPU, where it is loaded into DR. In asimilar way the CPU writes new data into main memory by sending to M the desti-nation address X, a data
word D to be stored, and control signals that specify"write."

Instruction set. The IAS machine had around 30 types of instructions. Thesewere chosen to provide a balance between application needs—the machine's focuswas on
numerical computation for scientific applications—and computer hardwarecosts as they existed at the time. To represent instructions, we will use a notationcalled a
hardware description language (HDL) or register-transfer language(RTL) that approximates the assembly language used to prepare programs for thecomputer; the
designers of the IAS computer also used such a descriptive language[Burks, Goldstine, and von Neumann 1946]. The HDL introduced here and usedthroughout this book
is largely self-explanatory. Storage locations in M or the CPUare referred to by acronym. The transfer of information is denoted by the assign-ment symbol :=, which
suggests the left-going arrow <—. Hence, AC := MQ meanstransfer (copy) the contents of register MQ to register AC without altering the con-tents of MQ. Elements of
main memory M are denoted by appending to M anaddress in parentheses. For example, M(X) denotes the 40-bit memory word withaddress X, while M(X,0:19) denotes
the half-word consisting of bits 0 through 190fM(X).

Figure 1.13 illustrates our descriptive notation for a simple three-instructionIAS program that adds two numbers. The numbers to be added are stored in themain memory
locations with addresses 100 and 101; their sum is placed in memorylocation 102. Note the role played by the accumulator AC as an intermediatesource and destination of
data.

The set of instructions defined for the IAS computer is given in Figure 1.14[Burks. Goldstine, and von Neumann 1946], omitting only those intended for
Instruction

Comment

AC := M(100) Load the contents of memory location 100 into the accumulator.

AC := AC + M(101) Add the contents of memory location 101 to the accumulator.M(102) := AC Store the contents of the accumulator in memory location 102.
Figure 1.13

An IAS program to add two numbers stored in main memory.

23

CHAPTER 1Computing andComputers

input-output operations. We have divided them into three categories: data-transfer,data-processing, and program-control instructions. Observe that some instructionshave
all their operands in CPU registers; others have one operand in memory loca-tion M(X). The data-processing instructions do most of the "real" work; all theothers play
supporting roles. Because only one memory address X can be speci-fied at a time, multioperand instructions such as add and multiply must use CPUregisters to store
some of their operands. Consequently, it is necessary to precedeor follow a typical data-processing instruction by data-transfer instructions thatload input operands into
CPU registers or transfer results from the CPU to mem-ory. This requirement is illustrated by the add operation in Figure 1.13, where twodata-transfer instructions and
one add instruction are needed to accomplish a sin-gle addition operation. Hence the IAS like many of its successors contains quite afew data-transfer instructions whose
purpose is to shuttle information unchanged(except possibly in sign) between CPU registers and memory. The IAS's data-pro-cessing instructions perform all the basic
operations of arithmetic on signed 40-bitnumbers. The IAS can also perform nonnumerical operations, but with some diffi-culty, because it treats all its operands as
numbers.

The group of instructions called program-control or branch instructions deter-mine the sequence in which instructions are executed. Recall that the programcounter PC
specifies the address of the next instruction to be executed. Instructionsare normally executed in a fixed order determined by incrementing the programcounter PC. The
program-control instructions are designed to change this order.The IAS has two unconditional branch instructions (also called "jump" or "go to"instructions), which load
part of X into PC and cause the next instruction to betaken from the left half or right half of M(X). The two conditional branch instruc-tions permit a program branch to
occur if and only if AC contains a nonnegativenumber. These instructions allow the results of a computation to alter the instruc-tion execution sequence and so are of

great importance.

The last two instructions listed in Figure 1.14 are "address-modify" instruc-tions that permit 12-bit addresses to be computed in the CPU and then inserteddirectly into
instructions stored in M. Address-modify instructions allow a programto alter itself, enabling, for example, the same data-processing instruction to referto different
(I)Egrands at different times. Modifying programs during their executionis now considered obsolete and undesirable, but it was an important feature of earlycomputers like
Instruction execution. The IAS fetches and executes instructions in severalsteps that form an instruction cycle. Since two instructions are packed into a 40-bit

24

SECTION 1.2The Evolution ofComputers

Instruction type Instruction

Description

Data transfer

AC := MQ

AC := M(X)M(X) := ACMQ := M(X)AC := -M(X)AC:= IM(X)IAC:=-|M(X)I

Transfer contents of register MQ to register AC.

Transfer contents of memory location X to AC.

Transfer contents of AC to memory location X.

Transfer M(X) to MQ.

Transfer minus M(X) to AC.

Transfer absolute value of M(X) to AC.

Transfer minus I M(X) I to AC.

Data processing AC := AC + M(X)AC := AC + |[M(X)|AC := AC - M(X)AC:=AC- IM(X)|AC.MQ := MQ x M(X)

MQ.AC := AC - M(X)

AC :=ACx2AC:=AC-2

Add M(X) to AC putting the result in AC.

Add absolute value of M(X) to AC.

Subtract M(X) from AC.

Subtract |[M(X)I from AC.

Multiply MQ by M(X) putting the double-wordproduct in AC and MQ.

Divide AC by M(X) putting the quotient in AC andthe remainder in MQ.

Multiply AC by two (1-bit left shift).

Divide AC by two (1-bit right shift).

Program control go to M(X, 0:19)go to M(X, 20:39)

if AC >0 then

gotoM(X, 0:19)

if AC > 0 thengo to M(X, 20:39)

M(X, 8:19):= AC (28:39)M(X, 28:39) := AC(28:39)

Take next instruction from left half of M(X)

Take next instruction from right half of M(X).

If AC contains a nonnegative number, then take nextinstruction from left half of M(X).

If AC contains a nonnegative number, then take nextinstruction from right half of M(X).

Replace left instruction address field in M(X) by 12right-most bits of AC.

Replace right instruction address field in M(X) by12 right-most bits of AC.

Figure 1.14

Instruction set of the IAS computer.

word, the IAS fetches two instructions in each instruction cycle. One instructionhas its opcode placed in the instruction register IR and its address field (if any)placed in
the address register AR. The other instruction is transferred to the IBRregister for possible later execution. Whenever the next instruction needed by theCPU is not in IBR,
the program counter PC is incremented to generate the nextinstruction address.

Once the desired instruction has been loaded into the CPU, its execution phasebegins. The PCU decodes the instruction's opcode, and the PCU's subsequentactions
depend on the opcode's bit pattern. Typically, these actions involve one ortwo register-transfer (micro) operations of the form S ~/(S"Sj, ...,Sk), where the

5,'s are the locations of operands and/is a data-transfer or arithmetic operation.For example, the add instruction AC := AC + M(X) is executed by the followingtwo
register-transfer operations:

DR := M(AR);

AC := AC + DR

First, the contents of the memory location M(AR) specified by the address registerAR are transferred to the data register DR. Then the contents of DR and the accu-
mulator AC are added via the DPU's arithmetic-logic unit, and the result is placedin AC. The unconditional branch instruction go to M(X.0:19) has an address
fieldcontaining some address X: after fetching this instruction, X is placed in AR. Thisinstruction is then executed via the single register-transfer operation PC := AR.which
makes PC point to the desired next instruction stored in the half-wordM(X,0:19).

25

CHAPTER 1Computing andComputers

EXAMPLE 1.4 AN IAS PROGRAM TO PERFORM VECTOR ADDITION. Let

A = A(l), A(2), ..., A(1000) and B = B(l), B(2) B(I0OOO) be two vectors, that is.

one-dimensional arrays, of numbers to be added. The desired vector sum C - A + B isdefined by

C(l), C(2), ..., C(1000) = A(l) + B(1), A(2) +B(2), A(1000) + B(1000)

For simplicity we will assume that the numbers processed by the IAS, including thevector elements A(I). B(I), and C(I) are 40-bit integers, and that the input vectors
areprestored in the IAS"s main memory M. We need to perform the add operation

C() := A) + B(D)

1000 times, specifically for I = 1, 2, ..., 1000. Using the operations available in the IASinstruction set. the basic addition step above can be realized by the following three-
instruction sequence (compare Figure 1.13):

AC := A(I)
AC := AC + B(I)C(I):=AC
(1.8)

Clearly, a program with 1000 copies of these three instructions, each with a differentindex I. would implement the vector addition. However, such a program, besides
beingvery inconvenient to write, would not fit in M along with the three vectors A. B. and C.We need some type of loop or iterative program that contains one copy of (1.8)
but canmodify the index I to step through all elements of the vectors.

Figure 1.15 shows such a program. The vectors A. B. and C are assumed to bestored sequentially, beginning at locations 1001, 2001, and 3001. respectively. Thesymbol to
the left of each instruction in Figure 1.15 is its location in M. For instance.2L (2R) denotes the left (right) halt" of M(2). The first location M(0> is used to store acounting
variable N and is initially set to 999. N is systematically decremented by oneafter each addition step: when it reaches -1, the program halts. The conditional
branchinstruction in 5R performs this termination test. The three instructions in locations 3L.3R. and 4L are the key ones that implement (1.8). The address-modify
instructions in8L. 9L. and 10L decrement the address parts of the three instructions in 3L.-3R. and

Z0 Location Instruction or data Comment
SECTION 1.2The Evolution of 0 999 Constant (count N).
Constant.
Computers 1 1
2 1000 Constant.
3L AC := M(2000) Load A(I) into AC.
3R AC := AC + M(3000) Compute A(I) + B(D).
4L M(4000) := AC Store sum C(I).
4R AC := M(0) Load count N into AC.
5L AC:=AC-M(1) Decrement count N by one.
5R if AC > 0 then go to M(6, 20:39) Test N and branch to 6R if nonnegative.
6L gotoM(6, 0:19) Halt.
6R M(0) := AC Update count N.
7L AC := AC + Mf 1) Increment AC by one.
7R AC := AC + M(2) Modify address in 3L.
8L M(3. 8:19):=AC(28:39)
8R AC := AC + M(2) Modify address in 3R.
9L M(3, 28:39) :=AC(28:39)
9R AC := AC + M(2) Modify address in 4L.

10L M(4, 8:19):=AC(28:39)

10R gotoM(3,0:19) Branch to 3L.

Figure 1.15
An IAS program for vector addition.

4L, respectively. Thus the program continuously modifies itself during execution. Fig-ure 1.15 shows the program before execution commences. At the end of the computa-
tion, the first three instructions will have changed to the following:

3L AC:=M(1001)
3R AC:=AC + M(2001)
4L M(3001):=AC

Critique. In the years that have elapsed since the IAS computer was com-pleted, numerous improvements in computer design have appeared. Hindsightenables us to point
out some of the IAS's shortcomings.

1. The program self-modification process illustrated in the preceding example fordecrementing the index I is inefficient. In general, writing and debugging a pro-gram
whose instructions change themselves is difficult and error-prone. Further,before every execution of the program, the original version must be reloadedinto M. Later
computers employ special instruction types and registers for indexcontrol, which eliminates the need for address-modify instructions.

2. The small amount of storage space in the CPU results in a great deal of unpro-ductive data-transfer traffic between the CPU and main memory M; it also addsto
program length. Later computers have more CPU registers and a specialmemory called a cache that acts as a buffer between the CPU register? and M.

3. No facilities were provided for structuring programs. For example, the IAS hasno procedure call or return instructions to link different programs.
4. The instruction set is biased toward numerical computation. Programs for non-numerical tasks such as text processing were difficult to write and executedslowly.
5. Input-output (10) instructions were considered of minor importance—in fact,they are not mentioned in Burks, Goldstine, and von Neumann [1946] beyondnoting that

they are necessary. IAS had two basic and rather inefficient 10instruction types [Estrin 1953]. The input instruction INPUT(X, N) transferredN words from an input device
to the CPU and then to N consecutive main mem-ory locations, starting at address X. The OUTPUT(X, N) instruction transferredN consecutive words from the memory

region with starting address X to an out-put device.
27

CHAPTER 1Computing andComputers

1.2.3 The Later Generations

In spite of their design deficiencies and the limitations on size and speed imposedby early electronic technology, the IAS and other first-generation computers intro-duced
many features that are central to later computers: the use of a CPU with asmall set of registers, a separate main memory for instruction and data storage, andan
instruction set with a limited range of operations and addressing capabilities.Indeed the term von Neumann computer has become synonymous with a computerof
conventional design.

The second generation. Computer hardware and software evolved rapidlyafter the introduction of the first commercial computers around 1950. The vacuumtube quickly
gave way to the transistor, which was invented at Bell Laboratories in1947, and a second generation of computers based on transistors superseded thefirst generation of
vacuum tube-based machines. Like a vacuum tube, a transistorserves as a high-speed electronic switch for binary signals, but it is smaller,cheaper, sturdier, and requires
much less power than a vacuum tube. Similarprogress occurred in the field of memory technology, with ferrite cores becomingthe dominant technology for main memories
until superseded by all-transistormemories in the 1970s. Magnetic disks became the principal technology for sec-ondary memories, a position that they continue to hold.

Besides better electronic circuits, the second generation, which spans thedecade 1954-64. introduced some important changes in the design of CPUs andtheir instruction
sets. The IAS computer still served as the basic model, but moreregisters were added to the CPU to facilitate data and address manipulation. Forexample, index registers
were introduced to store an index variable I of the kindappearing in the statement

C(I):=A(I) + B(I)

(1.9)

28

SECTION 1.2The Evolution ofComputers

Index registers make it possible to have indexed instructions, which increment ordecrement a designated index I before (or after) they execute their main
operation.Consequently, repeated execution of an indexed operation like (1.9) allows it tostep automatically through a large array of data. The index value I is stored in
aCPU register and not in the program, so the program Itself does not change duringexecution. Another innovation was the introduction of two program-
controlinstructions, now referred to as call and return, to facilitate the linking of pro-grams; see also Example 1.5.

"Scientific" computers of the second generation, such as the IBM 7094 whichappeared in 1962, introduced floating-point number formats and supportinginstructions to
facilitate numerical processing. Floating point is a type of scientificnotation where a number such as 0.0000000709 is denoted by 7.09 X 10"8. Afloating-point number
consists of a pair of fixed-point numbers, a mantissa Mand an exponent E, and has the value M X B~E. In the preceding example M =7.09, E = -8, and B = 10. In their
computer representation M and E are encoded inbinary and embedded in a word of suitable size; the base B is implicit. Floating-point numbers eliminate the need for
number scaling; floating-point numbers areautomatically scaled as they are processed. The hardware needed to implementfloating-point arithmetic instructions directly is
relatively expensive. Conse-quently, many computers (then and now) rely on software subroutines to imple-ment floating-point operations via fixed-point arithmetic.

Input-output operations. Computer designers soon realized that IO operations,that is, the transfer of information to and from peripheral devices like printers
andsecondary memory, can severely degrade overall computer performance if doneinefficiently. Most IO transfers have main memory as their final source or destina-tion
and involve the transfer of large blocks of information, for instance, moving aprogram from secondary to main memory for execution. Such a transfer can takeplace via the
CPU, as in the following fragment of a hypothetical IO program:

Location Instruction

Comment

LOOP AC := D(I)

M(I) := ACI:=I+1if I < MAX go to LOOP

Input word from IO device D into AC.Output word from AC to main memory.Increment index I.Test for end of loop.

Clearly, the IO operation ties up the CPU with a trivial data-transfer task.Moreover, many IO devices transfer data at low speeds compared to that of theCPU because of
their inherent reliance on electromechanical rather than electronictechnology. Thus the CPU is idle most of the time when executing an IO programdirected at a relatively
slow device such as a printer. To eliminate this bottleneck,computers such as the IBM 7094 introduced input-output processors (IOPs), orchannels in IBM parlance, which
are special-purpose processing units designedexclusively to control IO operations. They do so by executing IO programs (seepreceding sample), but channeling the data
through registers in the IO processor,rather than through the CPU. Hence IO data transfers can take place independently

of the CPU, permitting the CPU to execute user programs while 10 operations aretaking place.

Programming languages. An important development of the mid-1950s wasthe introduction of "high level" programming languages, which are far easier touse than
assembly languages because they permit programs to be written in a formmuch closer to a computer user's problem specification. A high-level language isintended to be
usable on many different computers. A special program called acompiler translates a user program from the high-level language in which it is writ-ten into the machine
language of the particular computer on which the program isto be executed.

The first successful high-level programming language was FORTRAN (fromFORmula TRANslation), developed by an IBM group under the direction of JohnBackus from
1954 to 1957. FORTRAN permits the specification of numericalalgorithms in a form approximating normal algebraic notation. For example, thevector addition task in
Figure 1.16 can be expressed by the following two-line pro-gram in the original version of FORTRAN:

DO 5 1=1, 1000
5 C(I) = A(I) + B()

FORTRAN has continued to be widely used for scientific programming and, likenatural languages, it has changed over the years. The version of FORTRAN knownas
FORTRANOO introduced in 1990 replaces the preceding DO loop with the sin-gle vector statement

C(1:1000) = A(1:1000) + B(1:1000)
(1.10)

High-level languages were also developed in the 1950s for business applica-tions. These are characterized by instructions that resemble English statements andoperate on
textual as well as numerical data. One of the earliest such languages wasCommon Business Oriented Language (COBOL), which was defined in 1959 by agroup
representing computer users and manufacturers and sponsored by the U.S.Department of Defense. Like FORTRAN. COBOL has continued (in variousrevised forms) to be
among the most widely used programming languages. FOR-TRAN and COBOL are the forerunners of other important high-level languages,including Basic, Pascal, C, and
Java, the latter dating from the mid-1990s.

EXAMPLE 1.5 A NONSTANDARD ARCHITECTURE: STACK COMPUTERS.

Although most computers follow the von Neumann model, a few alternatives wereexplored quite early in the electronic era. In the stack organization illustrated in Fig-ure
1.16a a stack memory replaces the accumulator and other CPU registers used fortemporary data storage. A stack resembles the array of contiguous storage
locationsfound in main memory, but it has a very different mode of access. Stack locations haveno external addresses; all read and write operations refer to one end of the
stack calledthe top of the stack TOS. A push operation writes a word into the next unused locationTOS + 1 and causes this location to become the new TOS. A pop
operation reads theword stored in the current TOS and causes the location TOS - 1 below TOS to becomethe new TOS. Hence TOS serves as a dynamic entry point to the
stack, which expandsand contracts in response to push and pop operations, respectively. The region abovethe stack (shaded in Figure 1.16a) is unused, but it is available
for future use. Among

29

CHAPTER 1Computing andComputers
30

SECTION 1.2The Evolution ofComputers
Program

PUSHWPUSH 3PUSH X -PUSHYSUBTRACTMULTIPLYADDPOPZ

Controlunit

Arithmetic-logicunit

sp| -4-

1/1 *__

Stack pointer

.. """~ Top of stack TOS

Stack

TOSw

PUSHW

TOSx-y

TOS 3

PUSH 3

TOS3x (x-y)

TOS X
3
v
PUSHX
Z

TOSw+ 3X (x-V)

z
TOSy
X
3
w
PUSHY

VA W+ 3 X (x->)

TOSw + 3 x (x-y)

SUBTRACT

MULTIPLY

ADD

POPZ

(A)

Figure 1.16

(a) Essentials of a stack processor; (b) stack states during the execution ofz := w + 3 x (x-y).

the earliest stack computers was the Burroughs B5000, first delivered in 1963[Siewiorek. Bell, and Newell 1982]; a recent example is the Sun picoJava micropro-cessor
designed for fast execution of compiled Java code [O'Connor and Tremblay1997].

In a stack machine an instruction's operands are stored at the top of the stack, sodata-processing instructions do not need to contain addresses as they do in a conven-
tional, von Neumann computer. The add operation x + y is specified for a stackmachine by the following sequence of three instructions:
PUSH*PUSHyADD

The first PUSH instruction loads x into TOS. Execution of PUSH y causes x's locationto become TOS - 1 and places y in the new TOS immediately above x. To execute
ADD.the top two words of the stack are popped into the ALU where they are added, and thesum is pushed back into the stack. Hence in the preceding program fragment,
ADDcomputes x + y, which replaces x and y at the top of the stack. The electronic circuits thatcarry out these actions can be complicated, but they are hidden from the
programmer. Akey component is a register called the stack pointer SP which stores the internal addressof TOS, and automatically adjusts the TOS for every push and pop
operation. A pro-gram counter PC keeps track of instruction addresses in the usual manner.

A stack computer evaluates arithmetic and other expressions using a formatknown as Polish notation, named after the Polish logician Jan Lukasiewicz (1878-1956).
Instead of placing an operator between its operands as in x + y, the operator isplaced to the right of its operands as in x y +. A more complex expression such as z :=w + 3
X (x - y) becomes

w3xy
X +:=
(1-11)

in Polish notation, and the expression is evaluated from left to right. Note that Polishnotation eliminates the need for parentheses. The Polish expression (1.11)
leadsdirectly to the eight-instruction stack program shown in Figure 1.16a. The step-by-stepexecution of this code fragment is illustrated in Figure 1.16b. Here it is
assumed thatw,x,y,z represent the values of operands stored at the memory addresses WX,Y, and Z.respectively.

Stack computers such as the B5000 employ a main memory M to store programsand data in much the same way as a conventional computer. For cost reasons, the
CPUcontains only a small stack—a two-word stack in the B5000 case—-implemented byhigh-speed registers. However, the stack expands automatically into M by
treatingsome main memory locations as if they were stack registers and coupling them withthose in the CPU. While stack processors can evaluate complex expressions
such as(1.11) efficiently, they are generally slower than von Neumann machines, especiallywhen executing vector operations such as (1.10). Large stack computers were
success-fully marketed for many years, notably by Burroughs Corp. However, the stack con-cept eventually became widely used in only two specialized applications:

Pocket calculators sometimes employ a stack organization to take advantage of theconciseness of Polish notation when entering data and commands manually via
akeypad.

Stacks are included in most conventional computers to implement subroutine calland return instructions. In its basic form, a call-subroutine instruction takes the
formCALL SUB. It first saves the current contents of PC—the calling routine's returnaddress—by pushing it into a stack region of M that is under the control of a
stackpointer SP. Then SUB. the start address of the subroutine being called, is loadedinto PC, and its execution begins. Control is returned to the calling program whenthe
subroutine executes a RETURN instruction, whose function is to pop the returnaddress from the top of the stack and load it back into PC.

1.

2.

31

CHAPTER 1Computing andComputers
32

SECTION 1.2The Evolution ofComputers

System management. In the early days, all programs or jobs were run sepa-rately, and the computer had to be halted and prepared manually for each new pro-gram to be
executed. With the improvements in 10 equipment and programmingmethodology that came with the second-generation machines, it became feasible toprepare a batch of
jobs in advance, store them on magnetic tape, and then have thecomputer process the jobs in one continuous sequence, placing the results onanother magnetic tape. This
mode of system management is termed batch process-ing. Batch processing requires the use of a supervisory program called a batchmonitor, which is permanently
resident in main memory. A batch monitor is a rudi-mentary version of an operating system, a system program (as opposed to a user orapplication program) designed to
manage a computer's resources efficiently andprovide a set of common services to its users.

Later operating systems were designed to enable a single CPU to process aset of independent user programs concurrently, a technique called multiprogram-ming. It
recognizes that a typical program alternates between program executionwhen it requires use of the CPU, and IO operations when it requires use of anIOP.
Multiprogramming is accomplished by the CPU temporarily suspending exe-cution of its current program, beginning execution of a second program, andreturning to the
first program later. Whenever possible, a suspended program isassigned an IOP, which performs any needed 10 functions. Consequently, multi-programming attempts to
keep a CPU (usually viewed as the computer's mostprecious resource) and any available IOPs busy by overlapping CPU and 10 oper-ations. Multiprogrammed computers
that process many user programs concurrentlyand support users at interactive terminals or workstations are sometimes calledtime-sharing systems.

The third generation. This generation is traditionally associated with the intro-duction of integrated circuits (ICs), which first appeared commercially in 1961, toreplace
the discrete electronic circuits used in second-generation computers. Thetransistor continued as the basic switching device, but ICs allowed large numbersof transistors
and associated components to be combined on a tiny piece of semi-conductor material, usually silicon. IC technology initiated a long-term trend incomputer design toward
smaller size, higher speed, and lower hardware cost.

Perhaps the most significant event of the third-generation period (which beganaround 1965) was recognition of the need to standardize computers in order toallow
software to be developed and used more efficiently. By the mid-1960s a fewdozen manufacturers of computers around the world were each producingmachines that were
incompatible with those of other manufacturers. The cost ofwriting and maintaining programs for a particular computer—the software cost—began to exceed that of the
computer's hardware. At the same time many big usersof computers, such as banks and insurance companies, were creating huge amountsof application software on
which their business operations were becoming verydependent. Switching to a different computer and making one's old software obso-lete was thus an increasingly
unattractive proposition.

Influenced by these considerations, IBM developed (at a cost of about $5 bil-lion) what was to be the most influential third-generation computer, the System/360, which it
announced in 1964 and delivered the following year; see Figure 1.17.System/360 was actually a series of computers distinguished by model numbers

33
—*. Control
Instruction 7V si?nals
P 10U j19)
decoder (may be rogram
control unit devices devices
microprogrammed)
PCU
CHAPTER
1
Computing
4 System /360 1 andComputers
t 1 10 interface T
1» 1AR1
10
i ii i Program status word 10processor(channel) processor
PSW
(channel)
SR PC
i v 11
i n
ii
. H i Main memorycontrol

unit

il "

Sixteen i
Four 64-bit Main
32-bit floating-
int memory
general poin!
i M

registers registers

1
! r

1

Floating-pointALU

Data-processingunit

Fixed-pointALU DecimalALU DPU

Figure 1.17
Structure of the IBM System/360.

and intended to cover a wide range of computing performance [Siewiorek, Bell,and Newell 1982; Prasad 1989]. The various System/360 models were designed tobe
software compatible with one another, meaning that all models in the seriesshared a common instruction set. Programs written for one model could be runwithout
modification on any other; only the execution time, memory usage, and thelike would change. Software compatibility enabled computer owners to upgradetheir systems
without having to rewrite large amounts of software. The System/360models also used a common operating system. OS/360, and the manufacturer sup-plied specialized
software to support such widely used applications as transactionprocessing and database management. In addition, the System/360 models hadmany hardware
characteristics in common, including the same interface for attach-ing 10 devices.

While the System/360 standardized much of IBM's own product line, it alsobecame a de facto standard for large computers, now referred to as mainframecomputers,
produced by other manufacturers. The long list of makers of System/360-compatible machines includes such companies as Amdahl in the I oiled Statesand Hitachi in
Japan. The System/360 series was also remarkably long-lived. Itevolved into various newer mainframe computer series introduced by IBM over theyears, all of which
maintained software compatibility with the original System/

34
SECTION 1.2The Evolution ofComputers
360; for example, the System/370 introduced in 1970, the 4300 introduced in 1979,and the System/390 introduced in 1990.

The System/360 added only modestly to the basic principles of the von Neu-mann computer, but it established a number of widely followed conventions anddesign styles.
It had about 200 distinct instruction'types (opcodes) with manyaddressing modes and data types, including fixed-point and floating-point numbersof various sizes. It
replaced the small and unstructured set of data registers (AC,MQ, etc.) found in earlier computers with a set of 16 identical general-purpose reg-isters, all individually
addressable. This is called the general-register organization.The System/360 had separate arithmetic-logic units for processing various datatypes; the fixed-point ALU was
used for address computations including indexing.The 8-bit unit byte was defined as the smallest unit of information for data trans-mission and storage purposes. The
System/360 also made 32 bits (4 bytes) themain CPU word size, so that 32 bits and "word" have become synonymous in thecontext of large computers.

The CPU had two major control states: a supervisor state for use by the operat-ing system and a user state for executing application programs. Certain program-control
instructions were "privileged" in that they could be executed only when theCPU was in supervisor state. These and other special control states gave rise to theconcept of a
program status word (PS W) which was stored in a special CPU regis-ter, now generally referred to as a status register (SR). The SR register encapsu-lated the key
information used by the CPU to record exceptional conditions such asCPU-detected errors (an instruction attempting to divide by zero, for example), hardware faults
detected by error-checking circuits, and urgent service requests orinterrupts generated by IO devices.

Architecture versus implementation. With the advent of the third generation, adistinction between a computer's overall design and its implementation detailshecame
apparent. As defined by System/360's designers [Prasad 1989], the archi-tecture of a computer is its structure and behavior as seen by a programmer work-ing at the
assembly-language level. The architecture includes the computer'sinstruction set, data formats, and addressing modes, as well as the general design ofits CPU, main
memory, and IO subsystems. The architecture therefore defines aconceptual model of a computer at a particular level of abstraction. A computer'simplementation, on the
other hand, refers to the logical and physical design tech-niques used to realize the architecture in any specific instance. The term computerorganization also refers to the
logical aspects of the implementation, but theboundary between the terms architecture and organization is vague.

Hence we can say that the models of the IBM System/360 series have a com-mon architecture but different implementations. These differences reflect the exist-ence of
physical circuit technologies with different cost/performance ratios forconstructing processing circuits and memories. To achieve instruction-set compati-bility across
many models, the System/360 also used an implementation techniquecalled microprogramming. Originally proposed in the early 1950s by Maurice V.Wilkes at Cambridge
University, microprogramming allows a CPU's programcontrol unit PCU to be designed in a systematic and flexible way [Wilkes andStringer 1953]. Low-level control
sequences known as microprograms are placedin a special control memory in the PCU so that an instruction from the CPU's main

instruction set is executed by invoking and executing the corresponding micropro-gram. A CPU with no floating-point arithmetic circuits can execute floating-
pointinstructions (albeit slowly) if microprograms are written to perform the desiredfloating-point operations by means of fixed-point arithmetic circuits. Micropro-
gramming allowed the smaller System/360 models to implement the full System/360 instruction set with less hardware than the larger, faster models, some of whichwere
not microprogrammed.

Other developments. The System/360 was typical of commercial computersaimed at both business and scientific applications. Efforts were also directed byvarious
manufacturers towards the design of extremely powerful (and expensive)scientific computers, loosely termed supercomputers. Control Data Corp., forinstance, produced
a series of commercially successful supercomputers beginningwith the CDC 6660 in 1964, and continuing into the 1980s with the subsequentCYBER series. These early
supercomputers experimented with various types ofparallel processing to improve their performance. One such technique called pipe-lining involves overlapping the
execution of instructions from the same programwithin a specially designed CPU. Another technique, which allows instructionsfrom different programs to be executed
simultaneously, employs a computer withmore than one CPU; such a computer is called a multiprocessor.

A contrasting development of this period was the mass production of small,low-cost computers called minicomputers. Their origins can be traced to theLINC (Laboratory
Instrument Computer) developed at MIT in the early 1960s[Siewiorek, Bell, and Newell 1982]. This machine influenced the design of thePDP (Programmed Data
Processor) series of small computers introduced by Dig-ital Equipment Corp. (Digital) in 1965, which did much to establish the mini-computer market. Minicomputers are
characterized by short word size—CPUword sizes of 8 and 16 bits were typical—limited hardware and software facili-ties, and small physical size. Most important, their
low cost made them suitablefor many new applications, such as the industrial process control where a com-puter is permanently assigned to one particular application.
The Digital VAXseries of minicomputers introduced in 1978 brought general-purpose computingto many small organizations that could not afford the high cost of a
mainframecomputer.

35

CHAPTER 1Computing andComputers
1.3

THE VLSI ERA

Since the 1960s the dominant technology for manufacturing computer logic andmemory circuits has been the integrated circuit or IC. This technology has evolvedsteadily
from ICs containing just a few transistors to those containing thousands ormillions of transistors; the latter case is termed very large-scale integration orVLSI. The impact

of VLSI on computer design and application has been profound.VLSI allows manufacturers to fabricate a CPU. main memory, or even all the elec-tronic circuits of a
computer, on a single IC that can be mass-produced at \ery lowcost. This has resulted in new classes of machines ranging from portable personalcomputers to
supercomputers that contain thousands of CPUs.

36
SECTION 1.3The VLSI Era

&>

(a) () (c)
Figure 1.18

Some representative IC packages: (a) 32-pin small-outline J-lead (SOJ); (b) 132-pin plasticquad flatpack (PQFP); (c) 84-pin pin-grid array (PGA). [Courtesy of Sharp
ElectronicsCorp.]

1.3.1 Integrated Circuits

The integrated circuit was invented in 1959 at Texas Instruments and FairchildCorporations [Braun and McDonald 1982]. It quickly became the basic buildingblock for
computers of the third and subsequent generations. (The designation ofcomputers by generation largely fell into disuse after the third generation.) An IC isan electronic
circuit composed mainly of transistors that is manufactured in a tiny-rectangle or chip of semiconductor material. The IC is mounted into a protectiveplastic or ceramic
package, which provides electrical connection points called pinsor leads that allow the IC to be connected to other ICs, to input-output devices likea keypad or screen, or
to a power supply. Figure 1.18 depicts several representativelC packages. Typical chip dimensions are 10 X 10 mm, while a package like that ofFigure 1.18b is
approximately 30 X 30 X 4 mm. The IC package is often consider-ably bigger than the chip it contains because of the space taken by the pins. ThePGA package of Figure
1.18c has an array of pins (as many as 300 or more) pro-jecting from its underside. A multichip module is a package containing several ICchips attached to a substrate
that provides mechanical support, as well as electricalconnections between the chips. Packaged ICs are often mounted on a printed cir-cuit board that serves to support
and interconnect the ICs. A contemporary com-puter consists of a set of ICs, a set of 10 devices, and a power supply. The numberof ICs can range from one IC to several
thousand, depending on the computer'ssize and the IC types it uses.

IC density. An integrated circuit is roughly characterized by its density,defined as the number of transistors contained in the chip. As manufacturing tech-niques improved
over the years, the size of the transistors in an IC and their inter-connecting wires shrank, eventually reaching dimensions below a micron or 1 pm.(By comparison, the
width of a human hair is about 75 ujn.) Consequently, IC den-sities have increased steadily, while chip size has varied very little.

The earliest ICs—the first commercial IC appeared in 1961—contained fewerthan 100 transistors and employed small-scale integration or SSI. The termsmedium-scale,
large-scale, and very-large-scale integration (MSI, LSI and VLSI.

.

1G-bit ,**
DRAM . '
a 109
u
IM-bit ./~*DRAM ./+ 64-bit
c
c j 6_bjt ./* microprocessor
C 106 microprocessor A* 32-bit
£ v~ microprocessor
| 1K-bit v» 8-bit microprocessorDRAM ./~
Wa
y 103
_,— * 4-bit microprocessorMSI
1 eSSI
iiii
1960
1970
1980 1990
Year
2000
2010
Figure 1.19

Evolution of the density of commercial ICs.
37
CHAPTER 1Computing andComputers

respectively) are applied to ICs containing hundreds, thousands, and millions oftransistors, respectively. The boundaries between these IC classes are loose, andVLSI often
serves as a catchall term for very dense circuits. Because their manu-facture is highly automated—it resembles a printing process—ICs can be manufac-tured in high
volume at low cost per circuit. Indeed, except for the latest anddensest circuits, the cost of an IC has stayed fairly constant over the years, imply-ing that newer
generations of ICs deliver far greater value (measured by computingperformance or storage capacity) per unit cost than their predecessors did.

Figure 1.19 shows the evolution of IC density as measured by two of the dens-est chip types: the dynamic random-access memory (DRAM), a basic componentof main
memories, and the single-chip CPU or microprocessor. Around 1970 itbecame possible to manufacture all the electronic circuits for a pocket calculator ona single IC chip.
This development was quickly followed by single-chip DRAMsand microprocessors. As Figure 1.19 shows, the capacity of the largest availableDRAM chip was IK = 210
bits in 1970 and has been growing steadily since then,reaching 1M = 220 bits around 1985. A similar growth has occurred in the com-plexity of microprocessors. The first
microprocessor, Intel's 4004, which wasintroduced in 1971, was designed to process 4-bit words. The Japanese calculatormanufacturer Busicom commissioned the 4004
microprocessor, but after Busi-com's early demise, Intel successfully marketed the 4004 as a programmable con-troller to replace standard, nonprogrammable logic

circuits. As IC technologyimproved and chip density increased, the complexity and performance of one-chipmicroprocessors increased steadily, as reflected in the increase
in CPU word size to8 and then 16 bits by the mid-1980s. By 1990 manufacturers could fabricate theentire CPU of a System/360-class computer, along with part of its main
memory,on a single IC. The combination of a CPU, memory, and IO circuits in one IC (or asmall number of ICs) is called a microcomputer.

SECTION 1.3The VLSI Era

IC families. Within IC technology several subtechnologies exist that are dis-tinguished by the transistor and circuit types they employ. Two of the most impor-tant of these
technologies are bipolar and unipolar; the latter is normally referred toas MOS (metal-oxide-semiconductor) after its physical structure. Both bipolar andMOS circuits
have transistors as their basic elements! They differ, however, in thepolarities of the electric charges associated with the primary carriers of electricalsignals within their
transistors. Bipolar circuits use both negative carriers (elec-trons) and positive carriers (holes). MOS circuits, on the other hand, use only onetype of charge carrier:
positive in the case of P-type MOS (PMOS) and negative inthe case of N-type MOS (NMOS). Various bipolar and MOS IC circuit types or ICfamilies have been developed
that provide trade-offs among density, operatingspeed, power consumption, and manufacturing cost. An MOS family that effi-ciently combines PMOS and NMOS
transistors in the same IC is complementaryMOS or CMOS. This technology came into widespread use in the 1980s and hasbeen the technology of choice for
microprocessors and other VLSI ICs since thenbecause of its combination of high density, high speed, and very low power con-sumption [Weste and Eshragian 1992].

EXAMPLE 1.6 A ZERO-DETECTION CIRCUIT EMPLOYING CMOS TECH-NOLOGY. To illustrate the role of transistors in computing, we examine a smallCMOS circuit
whose function is to detect when a 4-bit word x0xlx2xi becomes zero.The circuit's output z should be 1 when x0x]x2xi = 0000; it should be 0 for the other 15combinations
of input values. Zero detection is quite a common operation in data pro-cessing. For example, it is used to determine when a program loop terminates, as in theif
statement (location 5R) appearing in the IAS program of Figure 1.15.

Figure 1.20 shows a particular implementation ZD of zero detection using a repre-sentative CMOS subfamily known as static CMOS. The circuit is shown in
standardsymbolic form in Figure 1.20a. It consists of equal numbers of PMOS transistorsdenoted 5,:57 and NMOS transistors denoted SS:SU. Each transistor acts as an
on-offswitch with three terminals, where the center terminal ¢ controls the switch's state.When turned on, a signal propagation path is created between the transistor's
upper andlower terminals; when turned off, that path is broken. An NMOS transistor is turned onby applying 1 to its control terminal c; it is turned off by applying 0 to c.
A PMOS tran-sistor, on the other hand, is turned on by c - 0 and turned off by c = 1.

Each set of input signals applied to ZD causes some transistors to switch on andothers to switch off, which creates various signal paths through the circuit. In Figurel.20
the constant signals 0 and 1 are applied at various points in ZD. (These signals arederived from ZD's electrical power supply.) The 0/1 signals "flow" through the
circuitalong the paths created by the transistors and determine various internal signal values,as well as the value applied to the main output line z. Figure 1.20b shows the
signalsand signal transmission paths produced by x0xix2x3 - 0001. The first input signal x0 = Ois applied to PMOS transistor 5, and NMOS transistor 5g; hence S, is
turned on and 5gis turned off. Similarly, x, = 0 turns S2 on and S9 off. A path is created through S, andS2, which applies 1 to the internal line y,, as shown by the left-most
heavy arrow in Fig-ure 1.20b. In the same way the remaining input combinations make y2 = 0 and y3 = 1.The latter signal is applied to the two right-most transistors
turning S7 off and 514 on,which creates a path from the zero source to the primary output line via 514, so z = 0 asrequired.

If we change input x3 from 1 to 0 in Figure 1.20b, the following chain of eventsoccurs: 54 turns on and 5,, turns off, changing y2 to 1. Then 5I3 turns on and S6 turnsoff,
making y3 = 0. Finally, the new value of y3 turns 57 on and S]4 off, so z becomes 1.

Gaie € 1 Gate D

rs;l 1
I e
Grasomelin

Gae A

| & it gl

13

PMOS umnsistor NMOS traasistar
Output

Inputs

PMOS transistor NMOS transistor

(@)

Gate A 1 [JJI Gate i Gate D
5 -']s'
B ,_.1\1;
n=l
=t | 1
I J e g
B 5,
Rt R iR
[[
;=0

xQ = 0 xl = 0x2 -0 *3 = 1 Transistor switched on Transistor switched off

(b)

Figure 1.20

(a) CMOS circuit ZD for zero detection; (b) state of ZD with input combination

xQxIx2x} = 0001 making z = 0.

Hence the zero input combination x0x1x2x3 = 0000 makes c = 1 as required. It canreadily be verified that no other input combination does this.

39

CHAPTER 1Computing andComputers

A transistor circuit like that of Figure 1.20 models the behavior of a digitalcircuit at a low level of abstraction called the switch level. Because many of theICs of interest
contain huge numbers of transistors, it is rarely practical to analyzetheir computing functions at the switch level. Instead, we move to higher abstrac-tion levels, two of
which are illustrated in Figure 1.21. At the gate or logicAexe\illustrated by Figure 1.21a. we represent certain common subcircuits by symbolic

40

SECTION 1.3The VLSI Era

NOR gates

NAND gate

(a)

NOT gate(inverter)
Zerodetector

00

Figure 1.21

The zero-detection circuit of Figure 1.20 modeled at (a) the gate level and (b) the regis-ter level of abstraction.

components called (logic) gates. This particular logic circuit comprises four gatesA, B, C, and D of three different types as indicated; note that each gate type has adistinct
graphic symbol. In moving from the switch level, we collapse a multi-transistor circuit into a single gate and discard all its internal details. A key advan-tage of the logic
level is that it is technology independent, so it can be used equallywell to describe the behavior of any IC family. In dealing with computer design,we also use an even
higher level of abstraction known as the register or register-transfer level. It treats the entire zero-detection circuit as a primitive or indivisiblecomponent, as in Figure
1.21b. The register level is the level at which we describethe internal workings of a CPU or other processor as, for example, in Figures 1.2and 1.17. Observe that the
primitive components (represented by boxes) in thesediagrams include registers, ALUs, and the like. When we treat an entire CPU,memory, or computer as a primitive
component, we have moved to the highestlevel of abstraction, which is called the processor or system level.

1.3.2 Processor Architecture

By 1980 computers were classified into three main types: mainframe computers,minicomputers, and microcomputers. The term mainframe was applied to the tradi-tional
"large" computer system, often containing thousands of ICs and costing mil-lions of dollars. It typically served as the central computing facility for anorganization such as
a university, a factory, or a bank. Mainframes were thenroom-sized machines placed in special computer centers and not directly accessibleto the average user. The
minicomputer was a smaller (desk size) and slower ver-sion of the mainframe, but its relatively low cost (hundreds of thousands of dollars)made it suitable as a
"departmental" computer to be shared by a group of users—ina small business, for example. The microcomputer was even smaller, slower, andcheaper (a few thousand
dollars), packing all the electronics of a computer into ahandful of ICs, including microprocessor (CPU), memory, and IO chips.

Personal computers. Microcomputer technology gave rise to a new class ofgeneral-purpose machines called personal computers (PCs), which are intended fora single
user. These small, inexpensive computers are designed to sit on an officedesk or fold into a compact form to be carried. The more powerful desktop com-puters intended
for scientific computing are referred to as workstations. A typical

PC has the von Neumann organization, with a microprocessor, a multimegabytemain memory, and an assortment of 10 devices: a keyboard, a video monitor orscreen, a
magnetic or optical disk drive unit for high-capacity secondary memory,and interface circuits for connecting the PC to printers and to other computers. Per-sonal
computers have proliferated to the point that, in the more developed societ-ies, they are present in most offices and many homes. Two of the main applicationsof PCs are
word processing, where personal computers have assumed and greatlyexpanded all the functions of the typewriter, and data-processing tasks like finan-cial record
keeping. They are also used for entertainment, education, and increas-ingly, communication with other computers via the World Wide Web.

Personal computers were introduced in the mid-1970s by a small electronicskit maker, MITS Inc. [Augarten 1984]. The MITS Altair computer was builtaround the Intel
8008, an early 8-bit microprocessor, and cost only $395 in kitform. The most successful personal computer family was the IBM PC series intro-duced in 1981. Following
the precedent set by earlier IBM computers, it quicklybecome the de facto standard for this class of machine. A new factor also aided thestandardization process—namely,
IBM's decision to give the PC what came to becalled an open architecture, by making its design specifications available to othermanufacturers of computer hardware and
software. As a result, the IBM PChecame very popular, and many versions of it—the so-called PC clones—wereproduced by others, including startup companies that made
the manufacture oflow-cost PC clones their main business. The PC's open architecture also providedan incentive for the development of a vast amount of application-
specific softwarefrom many sources. Indeed a new software industry emerged aimed at the mass-production of low-cost, self-contained programs aimed at specific
applications ofthe IBM PC and a few other widely used computer families.

The IBM PC series is based on Intel Corp.'s 80X86 family of microprocessors,which began with the 8086 microprocessor introduced in 1978 and was followedby the 80286
(1983), the 80386 (1986), the 80486 (1989), and the Pentium?2 (1993)[Albert and Avnon 1993]; the Pentium II appeared in 1997. The IBM PC series isalso distinguished by
its use of the MS/DOS operating system and the Windowsgraphical user interface, both developed by Microsoft Corp. Another popular per-sonal computer series is Apple
Computer's Macintosh, introduced in 1984 andbuilt around the Motorola 680X0 microprocessor family, whose evolution from the68000 microprocessor (1979) parallels
that of the 80X86/Pentium [Farrell 1984|.In 1994 the Macintosh CPU was changed to a new microprocessor known as thePowerPC.

Figure 1.22 shows the organization of a typical personal computer from themid-1990s. Its legacy from earlier von Neumann computers is apparent—compareFigure 1.22
to Figure 1.17. At the core of this computer is a single-chip micropro-cessor such as the Pentium or PowerPC. As we will see, the microprocessor's inter-nal (micro)
architecture usually contains a number of speedup features not found inits predecessors. A system bus connects the microprocessui to a main memor)based on
semiconductor DRAM technology and to an IO subsystem. A separate IObus, such as the industry standard PCI (peripheral component interconnect) "'local""

41

CHAPTER 1Computing andComputers

2A legal ruling that microprocessor names that are numbers cannot have trademark protection, resulted in the80486 being followed by a microprocessor called the
Pentium rather than the 80586.

42

SECTION 1.3The VLSI Era
Microprocessor
CPU

Cache

Bus interface unit
Main

memory

M

Secondary

(hard disk)
memory
Videomonitor
Keyboard

Hard diskcontrol
—r

Videocontrol
Communicationnetwork
Keyboardcontrol
UTI

T

10 devices
Networkcontrol
10 expansionslots
r

u

zr

'Li

2

10 (local) bus

Peripheral (I0) interface control unit

irT

System bus

Figure 1.22

A typical personal computer system.

bus, connects directly to the IO devices and their individual controllers. The IO busis linked to the system bus, to which the microprocessor and memory are attachedvia a
special bus-to-bus control unit sometimes referred to as a bridge. The IOdevices of a personal computer include the traditional keyboard, a CRT-based orflat-panel video
monitor, and disk drive units for the hard and flexible (floppy) diskstorage devices that constitute secondary memory. More recent additions to the IO0device repertoire
include drive units for CD-ROMs (compact disc read-only mem-ories), which have extremely high capacity and allow sound and video images tobe stored and retrieved
efficiently. Other common audiovisual IO devices in per-sonal computers are microphones, loudspeakers, video scanners, and the like,which are referred to as multimedia
equipment.

Performance considerations. As processor hardware became much less expen-sive in the 1970s, thanks mainly to advances in VLSI technology (Figure 1.19),computer
designers increased the use of complex, multistep instructions. Thisreduces N, the total number of instructions that must be executed for a given task,since a single
complex instruction can replace several simpler ones. For example, amultiply instruction can replace a multiinstruction subroutine that implements mul-tiplication by
repeated execution of add instructions. Reducing N in this way tendsto reduce overall program execution time T, as well as the time that the CPUspends fetching
instructions and their operands from memory. The same advancesin VLSI made it possible to add new features to old microprocessors, such as newinstructions, data
types, instruction sets, and addressing modes, while retaining theability to execute programs written for the older machines.

The Intel 80X86/Pentium series illustrates the trend toward more complexinstruction sets. The 1978-vintage 8086 microprocessor chip, which contained amere 20,000
transistors, was designed to process 16-bit data words and had noinstructions for operating on floating-point numbers [Morse et al. 1978]. Twenty-five years later, its
direct descendant, the Pentium, contained over 3 million transis-tors, processed 32-bit and 64-bit words directly, and executed a comprehensive setof floating-point
instructions [Albert and Avnon 1993]. The Pentium accumulated

most of the architectural features of its various predecessors in order to enable it toexecute, with little or no modification, programs written for earlier 80X86-
seriesmachines. Reflecting these characteristics, the 80X86, 680X0, and most older com-puter series have been called complex instruction set computers (CISCs).3

By the 1980s it became apparent that complex instructions have certain disad-vantages and that execution of even a small percentage of such instructions cansometimes
reduce a computer's overall performance. To illustrate this condition,suppose that a particular microprocessor has only fast, simple instructions, each ofwhich requires k
time units, to execute. Thus the microprocessor can execute 100instructions in 100k time units. Now suppose that 5 percent of the instructions areslow, complex
instructions requiring 21k time units each. To execute an averageset of 100 instructions therefore requires (5x21+ 95)k = 200k time units, assum-ing no other factors are
involved. Consequently, the 5 percent of complex instruc-tions can, as in this particular example, double the overall program execution time.

Thus while complex instructions reduce program size, this technology does notnecessarily translate into faster program execution. Moreover, complex instructionsrequire
relatively complex processing circuits, which tend to put CISCs in the larg-est and most expensive IC category. These drawbacks were first recognized by JohnCocke and
his colleagues at IBM in the mid-1970s, who developed an experimentalcomputer called 801 that aimed to achieve very fast overall performance via astreamlined
instruction set that could be executed extremely fast [Cocke and Mark-stein 1990]. The 801 and subsequent machines with a similar design philosophyhave been called
reduced instruction set computers (RISCs). A number of commer-cially successful RISC microprocessors were introduced in the 1980s, including theIBM RISC
System/6000 and SPARC, an "open" microprocessor developed by SunMicrosystems and based on RISC research at the University of California, Berkeley[Patterson 1985].
Many of the speedup features of RISC machines have found theirway into other new computers, including such CISC microprocessors as the Pen-tium. Indeed, the term
RISC is often used to refer to any computer with an instruc-tion set and an associated CPU organization designed for very high performance:the actual size of the
instruction set is relatively unimportant.

A computer's performance is also strongly affected by other factors besidesits instruction set, especially the time required to move instructions and databetween the CPU
and main memory M and, to a lesser extent, the time required tomove information between M and IO devices. It typically takes the CPU aboutfive times longer to obtain a
word from M than from one of its internal registers.This difference in speed has existed since the first electronic computers, despitestrenuous efforts by circuit designers
to develop memory devices and processor-memory interface circuits that are fast enough to keep up with the fastest micro-processors. Indeed the CPU-M speed disparity
has become such a feature of stan-dard (von Neumann) computers that is sometimes referred to as the von Neumannbottleneck. RISC computers usually limit access to
main memory to a few loadand store instructions; other instructions, including all data-processing and pro-gram-control instructions, must have their operands in CPU
registers. This so-

43
CHAPTER IComputing andComputers

3The public became aware of CISC complexity when a design flaw affecting the floating-point divisioninstruction of the Pentium was discovered in 1994. The cost to Intel
of this bug. including the replacementcost of Pentium chips already installed in PCs. was about $475 million.

44 called load-store architecture is intended to reduce the impact of the von Neu-

section 3 mann bottleneck by reducing the total number of the memory accesses made by
The VLSI Era

the CPU.

Performance measures. A rough indication of CPU speed is the number of"basic" operations that it can perform per unit of time. A typical basic operation isthe fixed-point
addition of the contents of two registers Rl and R2, as in the sym-bolic instruction

Rl :=R1 +R2

Such operations are timed by a regular stream of signals (ticks or beats) issued by acentral timing signal, the system clock. The speed of the clock is its frequency
/measured in millions of ticks per second; the units for this are megahertz (MHz).Each tick of the clock triggers a basic operation; hence the time required to executethe
operation is 1//microseconds ((is). This value is called the clock cycle or clockperiod Tdock. For example, a computer clocked at 250 MHz can perform one basicoperation
in the clock period Tdock = 1/250 = 0.004 (is. Complicated operationssuch as division or operations on floating-point numbers can require more than oneclock cycle to
complete their execution.

Generally speaking, smaller electronic devices operate faster than larger ones,so the increase in IC chip density discussed above has been accompanied by asteady, but
less dramatic, increase in clock speed. For example, from 1981 to 1995microprocessor clock speeds increased from about 10 MHz to 100 MHz. Clockspeeds of 1 gigahertz
(1 GHz or 1000 MHz) and beyond are feasible using fasterversions of current CMOS technology. It might therefore seem possible to achieveany desired processor speed
simply by increasing the CPU clock frequency. How-ever, the rate at which clock frequency is increasing due to IC technology improve-ments is relatively slow and may be
approaching limits determined by the speed oflight, power dissipation, and similar physical considerations. Extremely fast cir-cuits also tend to be very expensive to
manufacture.

The CPU's processing of an instruction involves several steps, each of whichrequires at least one clock cycle:

1. Fetch the instruction from main memory M.

2. Decode the instruction's opcode.

3. Load (read) from M any operands needed unless they are already in CPU regis-ters.

4. Execute the instruction via a register-to-register operation using an appropriatefunctional unit of the CPU, such as a fixed-point adder.

5. Store (write) the results in M unless they are to be retained in CPU registers.

The fastest instructions have all their operands in CPU registers and can be exe-cuted by the CPU in a single clock cycle, so steps 1 to 3 all take one clock cycle.The
slowest instructions require multiple memory accesses and multiple register-to-register operations to complete their execution. Consequently, measures ofinstruction
execution performance are based on average figures, which are usuallydetermined experimentally by measuring the run times of representative or bench-mark programs.
The more representative the programs are, that is, the more accu-rately they reflect real applications, the better the performance figures they provide.

Suppose that execution of a particular benchmark program or set (suite) ofsuch programs Q on a given CPU takes T seconds and involves the execution of atotal of N
machine (object) instructions. Here N is the actual number of instructionsexecuted, including repeated executions of the same instruction; it is not the num-ber of
instructions appearing in Q. As far as the typical computer user is concerned,the key performance goal is to minimize the total program execution time T. WhileT can be
determined accurately only by measurement of <2's run time in actual orsimulated execution, we can relate T to some basic parameters of the computer'sarchitecture and
implementation. One such parameter is the (average) number ofinstructions executed per second, which we denote by IPS. Clearly, T = N/IPS s.Another common measure
of the performance of a CPU is the average number ofcycles per instruction or CPI needed to execute Q. Now CPI = (/ X \06)/IPS,where/is the CPU's clock frequency in
MHz. Hence, the program execution timeT is given by

T=

NxCPI/x106

(1.12)
It is also common to measure CPU performance in terms of millions of instruc-tions executed per second, denoted MIPS, where MIPS = IPS X 106. ClearlyMIPS =f/CPI.
Equation (1.12) indicates how the three separate factors software, architecture,and hardware technology jointly determine a computer's performance.

1. Software: The efficiency with which the programs are written and compiled intoobject code influences N, the number of instructions executed. Other factorsbeing
equal, reducing N tends to reduce the overall execution time T.

2. Architecture: The efficiency with which individual instructions are processeddirectly affects CPI, the number of cycles per instruction executed. ReducingCPI also tends
to reduce T.

3. Hardware: The raw speed of the processor circuits determines/, the clock fre-quency. Increasing/tends to reduce T.

In general, the complex instruction sets of CISC processors aim to reduce N at theexpense of CPI, whereas RISC processors aim to reduce CPI at the expense of
N.Advances in VLSI technology affecting all types of computers tend to increase/

Speedup techniques. A number of speed-enhancing features have been incor-porated into the design of computers in recent years [Hwang 1993]; they are sum-marized in
Figure 1.23. These methods were defined as far back as the 1960s and1970s for use in mainframe computers. A cache is a memory unit placed betweenthe CPU and main
memory M and used to store instructions, data, or both. It hasmuch smaller storage capacity than M, but it can be accessed (read from or writteninto) more rapidly and is
often placed (at least partly) on the same chip as the CPU.The cache's effect is to reduce the average time required to access an instruction ordata word, typically to just a
single clock cycle. Special hardware and softwaretechniques support the complex flow of information among M, the cache, and theregisters of the CPU.

Another important speedup technique known as pipelining allows the process-ing of several instructions to be partially overlapped Pipelining is most easily done

45

CHAPTER 1Computing andComputers

46 —

Feature Objective Description

SECTION 1.3 —

The VLSI Era Cache To provide the CPU with faster A cache is a memory unit inserted between

memory access to instructions and data. the CPU and main memory M. It is faster

than Mtmt has less storage capacity.

Pipehned To increase performance by allowing The CPU is constructed from independentprocessing the processing of several instructions subunits (stages), which can
hold several

to be partially overlapped. instructions in different stages of execution.

Superscalar To increase performance by allowing Multiple (pipelined) units are provided forprocessing several instructions to be processed instruction processing.
Instructions can bein parallel (full overlapping). issued simultaneously to each unit.

Figure 1.23

Some important speedup features of modern computers.

for a sequence of instructions of the same or similar types that employ a single E-unit, such as a floating-point processor. However, all the common steps involved
ininstruction processing by the CPU can be pipelined: instruction fetching (IF),instruction decoding (ID), operand loading (OL), execution (EX), and operandstoring (OS). A

pipelined system is often compared to an assembly line on whichmany products are in various stages of manufacture at the same time. In a nonpipe-lined CPU,
instructions are executed in strict sequence, as depicted in Figure 1.24a.Pipelining permits the situation shown in Figure 1.24/?, where each major step of

Instruction /[Instruction A Instruction /
~r
Instruction fetch IF: |IE| |IF:| |IF?|

Instruction decode ID: [id7| fIDTI fID”~

Operand load OL: |OL,| |OL:| |OL3

Execution EX: Ex] |EX,|

Operand store OS: |OS,[

Time (clock cycles): 123456789101112131415
(@)

Instruction fetch IF: [JET|[7f~1|1£71\~1\| || IF? |[1£7]| IF7 || || || [[TF~[rr~1|JF~[JF~lInstruction decode ID:[|[rojl[ID:||ID, |[idT1| I[*~1 ["~1 [*>] 1 I[11 1 [*~1 ["~1HOperand
load OL: | || [[OL~[5C\6w\|OL4|| ~|qLT|[qL7|[qlT]| || || ||OLg|[OL~|Execution EX: | || || ~[E~[E~|EX;||EXI1[E3q[E~[eq[E)ri| || || [fEX~

Operand store OS: | |j [| \[[|OS, [[qS~[p"s311 |[oslllgsT1loS™| ||] || |
Time (clock cycles): 1234567891011 12131415

Figure 1.24

Instruction processing: (a) sequential or nonpipelined and (b) pipelined.

instruction processing is assigned to, and handled independently by, a separate sub-unit (stage) of the CPU pipeline. In this example, up to five instructions can
beoverlapped, provided the necessary pipeline stages are available. Note that perfor-mance-reducing delays occur, as in the case of instruction 74 (shaded), which
mustuse the EX stage for two consecutive cycles. A similar problem occurs in the caseof branch instructions like 77 in Figure 1.24b, where the outcome of 77's EX
stepmust be known before the location of the next instruction (78) to be processed canbe identified.

A microprocessor's effective MIPS rate can also be increased by replicatingvarious instruction-processing circuits so that several instructions can be in thesame
processing phase at the same time. This makes it possible to start the process-ing of, or issue, two or more instructions simultaneously or in parallel; in otherwords, the
instructions can be completely overlapped. CPUs with this capability aresaid to be superscalar. (Note that two instructions in the same pipeline must beissued sequentially
rather than in parallel.) For example, if the logic needed for thelF, ID, OL, EX, and OS steps is duplicated (with or without pipelining), then twoinstructions can be issued
simultaneously. However, if the instructions are not inde-pendent, for example, if they share the same operands or one takes as input a resultcomputed by the other, then
delays not unlike those illustrated in Figure 1.247? canoccur. Pipelining and superscalar design are both instances of instruction-level par-allelism. The logic circuits
needed to deal with parallelism of this kind add consid-erable complexity to the CPU's program control and execution units.

EXAMPLE 1.7 THE POWERPC MICROPROCESSOR SERIES [MOTOROLA

19 93]. In the early 1990s Apple, IBM, and Motorola jointly developed the PowerPC.It is a family of single-chip microprocessors, including the 601, 603, and other
models,which share a common architecture derived from the POWER architecture used inIBM's RISC System/6000 [Diefendorf, Oehler, and Hochsprung 1994; Weiss
andSmith 1994]. Although it is also designated a RISC, the PowerPC has a large numberof instructions—more than 200 distinct types, in fact—and its design is far from
sim-ple. Nevertheless, it exhibits the following features that are typical of contemporaryRISC-style designs:

1. Instructions have a fixed length (32 bits or one word) and employ just a few opcodeformats and addressing modes.

2. Only load and store instructions can access main memory; all other instructionsmust have their operands in CPU registers. This load/store architecture reduces thetime
devoted to accessing memory. This time is further reduced by the use of one ormore levels of cache memory.

3. Instruction processing is heavily pipelined. For example, the PowerPC has an E-unitfor integer (fixed-point) operations that has the four pipeline stages: fetch,
decode,execute, and write results. Hence if an E-unit's pipeline can be kept full, a newresult emerges from it every clock cycle, thus achieving the ideal performance
levelof one fully executed instruction per clock cycle.

4. The CPU contains several E-units—the number depends on the model—whichallow it to issue several instructions simultaneously and puts the PowerPC in

thesuperscalar category.

The organization shown in Figure 1.25 is typical of the early PowerPC models,such as the 601 and 603, which have three E-units: an integer execution unit, a float-ing-
point unit, and a branch processing unit, allowing up to three instructions no be

47

CHAPTER 1Computing andComputers
48

SECTION 1.3The VLSI Era

Syste m bus
A
I
Cache
<
r
control Instruction
unit queue !
1
1,
1 1 " 1
General-
Branch- Integer Floating- purpose
processing execution point and
unit unit unit floating-
(pipeline) (pipeline) (pipeline) pointregisters
i T I1
I-1
Figure 1.25

Overall organization of the PowerPC.

issued in the same clock cycle. The integer unit executes all fixed-point numerical andlogic operations, including those associated with load-store instructions. Although
partof the CPU's program control unit, the branch processing unit is considered an E-unitfor branch instructions. Each PowerPC chip also contains a cache memory, whose
sizeand organization vary with the model. For example, the PowerPC 603, which wasintroduced in 1995 and is aimed at low-power applications like laptop computers,
hasa 16 KB cache, half of which stores data while the other half stores instructions. A hintof the complexity of the 603 can be seen from Figure 1.26. It contains 1.6 million
tran-sistors in an IC chip of area 7.4 x 11.5 mm (in its earliest versions) and consumes lessthan 3 watts of power.

To illustrate the PowerPC's instruction set, consider the vector addition discussedearlier and expressed by the FORTRAN90 statement

C(1: 1000) = A(l: 1000) + B(l: 1000)

Assume that each vector consists of 1000 double-precision (64-bit), floating-pointnumbers. An assembly-language program for the PowerPC that carries out this
vectoroperation appears in Figure 1.27. (We have slightly simplified the language syntaxhere.) The last five instructions form the program's main loop and are executed
1000times. The key data-processing instruction in this loop has the opcode fadd, and per-forms a double-precision, floating-point addition. All fadd's operands are in 64-
bitfloating-point registers, of which the PowerPC has 32, denoted fr0:fr31 here. Theprogram communicates with memory via the instructions lw (load word), lfdu
(loadfloating-point double-precision with update), and stfdu (store floating-point double-precision with update); these are just a few of the PowerPC's many types of load-
store

49

CHAPTER 1Computing andComputers

Figure 1.26

Photomicrograph of the PowerPC 603 micro-processor chip. [Courtesy of Motorola Inc.]

instructions. The PowerPC has 32 general-purpose registers r0:r31, several of whichserve as memory address registers in our program. The update option, indicated by
theu suffix on lIfdu and stfdu invokes a kind of automatic indexing, which causes the con-tents of the memory address register to be initially incremented. For example,
theinstruction

Ifdu frl, 1(r5)

invokes the following two operations: increment the address register r5 and then loadthe data register frl. In other words

r5:=715 + 1: frl := mem(r5):

(1.13)

Location Instruction

Comment

mtspr CTR, #1000 Move vector length N = 1000 to special register CTR.

Load start address of vector A into general register r5.

Load start address of vector B into general register r6.

Load start address of vector C into general register r7.

LOOP lfdu frl, Kr5) Load A(i + 1) into floating-point register frl: update r5.

Load B(i + 1) into floating-point register fr2; update r6.Perform floating-point addition frl := frl + fr2Store frl as C(i + 1); update r7.Decrement CTR. then branch to LOOP
if CTR * 0.

lw 15, #A
lw 16. #B
Iw r7,#C

Ifdu frl, Kr5)

Ifdu fr2. I(r6)

fadd frl, fr2, frl

stfdu frl. I(r7)

bne LOOP

Figure 1.27

A PowerPC program for vector addition.

SECTION 1.3The VLSI Era

50 The memory data denoted by mem(r5) in (1.13) is normally in the PowerPC's

cache memory which, at any time, mimics a portion of the main memory M that is inactive use. Thus if the current memory address defined by r5 is assigned to the
cache,the data required by 1fdu is fetched from the cache, rather than from M, where a "mas-ter" copy of the same data resides. Similarly, the store instruction stfdu
writes its datainto a cache location, although (eventually) the corresponding data in M must beupdated. Should mem(r7) not be currently assigned to the cache, the
PowerPC's elabo-rate memory access control automatically transfers data between M and the cache toassign the relevant portion of the processor's address space to the
cache. The lastinstruction bne (branch if not equal) appearing in Figure 1.27 is a powerful conditionalbranch instruction. First bne automatically decrements the "special"
register calledCTR (counter) and tests it for zero. If CTR * 0, then the next instruction executed is theone stored in location LOOP. When CTR reaches zero, the vector
addition terminatesand the instruction following bne is executed. Observe that the five-instruction pro-gram loop typically resides in the cache for the duration of the
program's execution.

As Figure 1.25 indicates, the Power PC has three (more in some models) separateE-units for executing integer, floating-point, and branch instructions. This
superscalardesign allows up to three separate instructions to be dispatched (issued) for executionin every clock cycle. Moreover, these E-units are pipelined to varying
degrees, so thatan active E-unit can contain several consecutive instructions in various stages of execu-tion. Hence, for our vector addition task, we would expect to find
the CPU concur-rently executing several operations of the form

C():=AQG +B(,CG+1):=AG+1)+BG+1),CG+2):=AG+2)+Bj+2), ..

The concurrency achieved, and therefore the execution time of the program, depend onvarious implementation details and cannot be determined from inspection of the
pro-gram code alone.

The vector addition programs for the IAS (Figure 1.15) and the PowerPC (Fig-ure 1.27) reflect the evolution of computer architecture over a 50-year period. Thetwo
programs are fundamentally similar in that each program is designed to loop TVtimes through the three basic steps: load data from M, add data in CPU registers,and
store results in M. The computers share the same basic features of the vonNeumann architecture. However, the IAS machine has far fewer data types, amuch weaker
instruction set (especially in the area of program control), and essen-tially no instruction-level parallelism. The IAS lacks floating-point data formatsand instructions, so a
much more complicated IAS program would be required tohandle double-precision, floating-point numbers comparable to those assumed inFigure 1.27. The IAS also lacks
the following features of the PowerPC's instruc-tion set: indexed addressing modes; conditional branch instructions that can decre-ment and test a variable; and powerful
arithmetic instructions such as multiply,divide, and multiply-and-add. Note also the vast differences in physical size, per-formance, and cost between the IAS and PowerPC.
1.3.3 System Architecture

‘We next review the overall organization of contemporary computer systems,including those formed by linking computers together into large networks.

Central

processing unit

CPU

Main

memory

M

Instructions

£
Data

Input-outputports

Stored programsand data

Svstem bus

Input-outputtransfers

Input-output devices

(keyboard, video display, secondary memories,
multimedia devices, etc.)

Figure 1.28

Overview of computer system operation.

51

CHAPTER 1Computing andComputers

Basic organization. A stand-alone computer system, which is most commonlyseen as a desktop machine (a PC or workstation) intended for a single user, has thebasic
organization illustrated by Figure 1.28; see also Figure 1.22. This organiza-tion has changed little from that found in earlier generations, despite the
massiveimprovements in implementation technologies that have occurred in recent years.The computer's main hardware components continue to be a CPU. a main
memory,and an 10 subsystem, which communicate with one another over a system bus. Itsmain software component is an operating system that performs most system
man-agement functions.

The key hardware element is a single-chip microprocessor, embodying a mod-ern version of the von Neumann architecture. The microprocessor serves as the com-puter's
CPU and is responsible for fetching, decoding, and executing instructions.Data and instructions are typically composed of 32-bit words, which constitute thebasic
information units processed by the computer. The CPU is characterized by aninstruction set containing up to 200 or so instruction types, which perform datatransfer, data
processing, and program control operations that have changed littleover the years. The CPU may be augmented by on-chip or off-chip coprocessors thatimplement such
specialized functions as managing the graphical user interface(GUI).

The role of the computer's main or primary memory M is to store programsand data as they are being processed by the CPU. M is a random-access memory(RAM)
comprising a linear store of items (usually 8-bit bytes), each of which isassigned a unique address that permits the CPU to read or change (write) its con-tents via load or
store instructions, respectively. M is backed up by a much largerbut slower secondary memory, typically implemented by hard disks employing

SECTION 1.3The VLSI Era

magnetic or optical storage technology and forming part of the 10 subsystem. As inthe PowerPC (Figure 1.25), an intermediate memory called a cache may also beinserted
between the CPU and M. Thus we find a hierarchy of memory devicescomposed of the CPU's registers, the cache, the main memory, and the secondarymemory. This
complex structure results from the /act that the fastest memorydevices are also the most costly. The memory hierarchy is intended to provide theCPU with fast access to
large amounts of data at a fairly low cost.

The purpose of the 10 system is to enable a user to communicate with the com-puter. 10 devices are attached to the host computer by means of 10 ports, whosefunction is
to control data transfers between 10 devices and main memory. Activeprograms communicate with IO ports in much the same way as they communicatewith M. An 10
device is assigned a set of memory-like addresses, which allowinput and output instructions to be implemented in essentially the same way as loadand store instructions,
respectively. However, the CPU usually takes much longerto access a word stored in the 10 system than to access a word stored in M—most10 operations are quite slow.

The traditional input and output devices are a keyboard and screen (providedby a CRT or a flat-panel display), respectively, which are convenient for handlingtextual
information. Adding a pointing device like a mouse makes a display screeninto an input device, permitting communication between the user and the computervia
graphical images. Special software, such as the Windows interface found inpersonal computers, supports GUIs. Audio interfaces for speech generation andrecognition

extend the computer into a multimedia system. A major component ofmost 10 systems is a set of secondary memory devices that provide bulk storage ofprograms and
data. Rapid transfer of information between primary and secondarymemories is often a key factor in a system's overall performance.

Microcontrollers. Their small size and low cost have made it feasible to useminiature general-purpose computers, referred to as microcontrollers, for tasks thatpreviously
employed either special-purpose control circuits or had no control logicat all, for example, controlling a home washing machine or the ignition system of acar. Programs
stored in a read-only memory (ROM) that forms a part of the mainmemory tailor a microcontroller to a particular application. The microcontroller isbuilt into, or
embedded in, the controlled device, often in a way that is invisible tothe end user. Hence an embedded microcontroller that has been programmed tohandle the
application in question can replace application-specific control circuits,often at substantial cost savings. Furthermore, by bringing the power of a computerto bear on
relatively mundane applications, manufacturers can readily introducemany new features to improve flexibility, performance, or ease of use. As a result,most computers in
operation today are microcontrollers in embedded systems.

Figure 1.29 shows one of the first applications of a microcontroller: a point-of-sale (POS) terminal that has replaced cash registers in retail stores. The microcon-troller
has a conventional computer organization built around a system bus towhich are attached a microprocessor (the CPU), one or more ROM chips for pro-gram storage, and
one or more RAM chips for data and working storage. All 10devices are also connected to the system bus using IO ports with standard inter-faces. The 10 devices in a
typical POS terminal are a keyboard, a receipt printer, avisual display, a product-code scanner, and a credit-card reader. The latter is used

Centralcomputer

CPU(microprocessor)

H

RAM

E

ROM

Totelephonenetwork

10

port

ik

53

CHAPTER 1

Computing andComputers

10

port

Systembus
Microcontroller

10

port

n

10

port

10

port
Product-codescanner
Keyboard

10port

Printer

anddisplay
Credit-cardreader
Figure 1.29

A microcontroller-based point-of-sale terminal.

for credit authorization and requires a connection to the telephone system. Thefinal component is a link to a central computer used to provide pricing information,perform
inventory control, and so forth.

Computer networks. The computer in Figure 1.29 is linked directly to a centralcomputer and indirectly to a potentially huge number of computers via the tele-phone
network. The linking of computers to form networks of various types hasbecome an increasingly important feature of modern computing; see Figure 1.30. A

Servercomputer

Personalcomputer D

D) @) () n

c

Gatewaycomputer

Communication cables

Links to othercomputer networks

Figure 1.30

A local-area computer network.

54 computer in an office or industrial environment is typically linked to other comput-

»n_--.s , €S in the same organization via communication links that can be thought of as an
SECTION 1.3 °

The vlsi Era extension to the system bus. The linked computers then form a small, closed com-

puter network known as a local-area network (LAN) or intranet. The physicallinks between the computers can be built in various ways, including electricalcables, optical
fibers, and radio (wireless) links. Special 10 programs (communica-tion software) enable the computers on the network to exchange information andaccess common
computing resources called servers.

Computer networks have several advantages over the large, centralized (main-frame) computers that they have come to replace. The individual user has directaccess to a
computer (his or her personal computer) that can quickly and conve-niently handle many routine computing tasks. Users can also access computingfacilities that they
need less frequently, for example a high-performance supercom-puter or costly 10 equipment, via the computer network. Many widely dispersedusers can share such
specialized equipment via the network, thus lowering its costto individual users. Furthermore, a computer network provides useful new servicessuch as electronic mail,
remote library services, and on-line shopping.

Several LANs can be linked together by various means including the telephonenetworks, which increasingly are designed to accommodate digital data transmis-sion,
including video data, as well as the traditional (digitized) voice communication.In Figure 1.30, one computer serves as a gateway device that manages communica-tion
between the LAN and other computer networks. A collection of linked LANsforms a large computer network that can be worldwide in scope. In the early 1990sa network
of this sort known as the Internet emerged, which because of its huge sizeand global reach—an estimated 16 million server sites in 180 countries with 72 mil-lion users in
1997—has had a profound impact on the way people compute and com-municate.

The Internet had its origins in a computer network called the ARPANET spon-sored by the Advanced Research Projects Agency of the U.S. Department ofDefense around
1970. This experimental network was originally designed to con-nect research institutions in the United States via leased lines; Figure 1.31 shows thestructure of the
ARPANET at an early stage in its evolution (1972) when it linked26 research organizations in the United States. The ARPANET pioneered an infor-mation-transmission
technique called packet switching, which divides both longand short messages into packets of fixed length that can be transmitted indepen-dently from source to
destination via variable numbers of intermediate nodes. Eachnode contains a server that is responsible for sorting the packets from the variousmessages and forwarding
them to the appropriate next destinations. Different pack-ages can be sent by different routes determined by the network traffic conditions. Atthe final destination, a
message is reassembled from its constituent packets. Thecommunication software designed for the ARPANET and known as TCP/IP(Transmission Control
Protocol/Internet Protocol) defines the communicationstandards for the Internet.

In the early years the Internet was used almost exclusively to transfer text filessuch as electronic mail (e-mail) messages. This situation changed fundamentally in1989
when scientists at CERN (Centre Europeen pour la Recherche Nucleaire) inGeneva overlaid on TCP/IP a new, high-level protocol called http {hypertext trans-port
protocol) and an associated programming language html {hypertext markup

55

CHAPTER 1Computing andComputers
Figure 1.31
The ARPANET in 1972.

language) to permit the linking of diverse file types—text, still pictures, movies,sound, etc.—in an simple way. This combination enabled users to create multime-dia files
easily and transmit them rapidly over the Internet. For example, using html,a text file can be tagged with commands that tell a computer where to find and insertvisual
images into the text file; the required image files can be located anywhere onthe Internet. The human end user can access the information from a remote host viaa simple
point-and-click operation on a PC or workstation. The result is an enor-mously rich collection of easily accessible data that has come to be known as theWorld Wide Web.

Parallel processing. So-called supercomputers capable of executing manyinstructions in parallel have existed since the 1950s. Early commercial supercom-puters relied
heavily on pipeline processing and had a single CPU organizedaround one or more multistage pipelines. This organization allows several instruc-tions to be in process
simultaneously in each pipeline, resulting in a potentialincrease in performance of a factor of n per «-stage pipeline. The Cray-1 super-computer, first marketed by Cray
Research Inc. in 1976, contained 12 pipeline pro-cessors for arithmetic-logic operations, several of which could operate in parallel[Russell 1978]. The Cray-1 could
execute up to 160 million operations such asfloating-point addition per second. Computers of this type have been most success-fully applied to scientific computations
involving large amounts of vector andmatrix calculations; consequently they are sometimes called vector processors.The degree of parallelism n possible with a pipeline is
small, typically less than 10.As the PowerPC demonstrates (Example 1.7), pipeline processing of instructions isnow a standard feature of microprocessors. Indeed, single-
chip microprocessorsreached the Cray-Fs level of performance in scientific computation in the mid-1990s.

56 An alternative approach to parallel processing with the potential of achieving
unlimited degrees of parallelism is to use many independent processors operating
Summary *n umson- F°r example, a network of computers can be programmed to work con-

currently on different parts of the same task. Such a loosely coupled or distributedsystem is useful for computing tasks that can easily be partitioned into
independentsubtasks, with infrequent communication of results among the subtasks. However,many large-scale scientific computations permit a task to be partitioned into
sub-tasks but require frequent and rapid exchange of results between the subtasks. Thetime required for such exchanges—they are essentially slow 10 transfers—
limitsthe usefulness of a computer network as a supercomputer. To address the interpro-cessor communication problem, computers have been built that employ n
separateCPUs that are tightly coupled, both physically and logically. Processors in thesemachines can access one another's data rapidly and are called multiprocessors.
Thetask of writing parallel programs and optimizing compilers for multiprocessors isfar less well understood than the corresponding problem for a single (pipelined
ornonpipelined) processor. Nevertheless, machines of this type have been studied formany years, and in the 1980s powerful multiprocessors employing many low-
costmicroprocessors as their CPUs began to be manufactured commercially, mainly asscientific computers.

Two types of multiprocessors are shared-memory and distributed-memorymachines. In shared-memory machines all the processors have access to a commonmain memory
through which they communicate to share programs and data. Indistributed-memory machines each processor has only a private or local mainmemory and communicates
with other processors by sending them messagesthrough an 10 subsystem linking the processors. In each case a key issue is todesign processor-to-memory or processor-
to-processor interconnection networksthat are of high-speed and reasonable cost. For small multiprocessors containingup to 30 or so processors, a fast bus can serve as
an interconnection network. Ineffect, the basic organization of Figure 1.30 is used with multiple CPUs attached toa high-speed system bus. To construct massively parallel
multiprocessors, that is,computers with hundreds or thousands of CPUs, various specialized interconnec-tion networks have been developed, which we will examine in
Chapter 7. Mas-sively parallel multiprocessors are difficult to program and cannot runconventional (uniprocessor) programs efficiently. As a result, these machines haveso
far had a limited impact on the commercial computer marketplace.

1.4SUMMARY

Humans have struggled with difficult computations since ancient times. Some ofthese problems are inherently unsolvable—they cannot be solved even in principleby a
Turing machine, which is a simple, abstract, but completely general digitalcomputer. Some theoretically solvable problems are intractable in that they cannotbe solved
within a reasonable amount of time by practical computers. However,given a suitable algorithm or solution method as well as a computer of sufficientpower, many
important problems can be satisfactorily solved. Designing practicalcomputers that provide the highest possible performance at acceptable cost is thebasic job of the
computer architect.

The design of computing machines has evolved over a long period of time.Charles Babbage conceived the concept of a general-purpose, program-controlledcomputer in
the mid-19th century. Such a machine was not completed until the1940s, however, when the first electronic computers were successfully con-structed. Since then,
progress has been dramatic, mainly driven by advances incomputer hardware technology.

John von Neumann and others defined the basic organization of the moderncomputer. It comprises the following major components: a CPU responsible forfetching and
executing instructions; a main memory used for instruction and datastorage; and a set of input-output devices, such as user terminals, printers, and sec-ondary memory
devices. Three main instruction types are found in every com-puter: data-transfer, data-processing, and program-control instructions. Theinstruction set and the way the
instructions are processed define the power of acomputer. The computer is typically programmed in a high-level language such asC++ or Java, which is automatically
compiled into executable code (object pro-grams) built from its instruction set.

Integrated circuit technology has had a profound impact on computer designvia the single-chip microprocessor and the high-capacity RAM chip. IC technol-ogy has
enabled manufacturers to build very small, low-cost computers for gen-eral use (personal computers and workstations) as well as for specialapplications (embedded
microcontrollers). IC technology has also been the driv-ing force in the proliferation of large-scale computer networks—the Internet, forexample—and high-performance
multiprocessors.

As the computer industry has matured, a few computer series have tended tobecome de facto architectural standards, notably IBM's System/360 mainframefamily
introduced in the 1960s and its PC personal computer family introducedin the 1980s. Recent computer families are distinguished by powerful RISC-style instruction sets
and such performance-enhancing features as pipelining,instruction-level parallelism, and cache memories. Continuing advances in hard-ware and software technology,
such as the introduction of multimedia comput-ing and the World Wide Web, suggest that major advances in computer designwill continue into the foreseeable future.

57
CHAPTER 1Computing andComputers
1.5PROBLEMS

1.1. To what extent does each of the following items play the role of processor and/or mem-ory when used in numerical computations: an abacus; a slide rule; an electronic
pocketcalculator?

1.2. Consider the Turing machine program of Figure 1.4, which adds two unary numbers n,and n2. A unary zero is represented by one or more blanks, which is an
undesirable fea-ture of the unary system. Determine how the given Turing machine behaves (a) if n, =n2 = 0, that is, the initial tape is entirely blank; and (b) if/i, * 0 but
ru = 0. In each casespecify the final contents of the tape.

1.3. Design a a Turing machine that subtracts a unary number n: (rem another unary num-ber nx > n2. Assume that n, n2, and the result n, - n: are stored in the formats
described

58 in Example 1.1. That is, the tape initially contains only n, and n2 separated by a blank,

while the final tape should contain only n, - n2. Describe your machine by a programlisting with comments, following the style used in Figure 1.4.

SECTION 1.5Problems

1.4. Construct a Turing machine program Countjup in the style of Figure 1.4 that incre-ments an arbitrary binary number by one. For example, if the number 10011
denoting19 is initially on an otherwise blank tape, Count up should replace it with 10100 de-noting 20. Assume that the read-write head starts and ends on the blank

square imme-diately to the left of the number on the tape. Describe your machine by a programlisting with comments, following the style used in Figure 1.4. [Hint: Fewer
than 20 in-structions employing fewer than 10 states suffice for this problem.]

1.5. The number of possible sequences of moves (distinct games) in chess has been estimat-ed at around 10120. Is developing a surefire winning strategy for chess
therefore an un-solvable problem?

1.6. Determine whether each of the following computational tasks is unsolvable. unde-cidable, or intractable. Explain your reasoning, (a) Determining the
minimumamount of wire needed to connect any set of n points (wiring terminals) that are inspecified but arbitrary positions on a rectangular circuit board. Assume that at
mosttwo wires may be attached to each terminal, (b) Solving the preceding wiring prob-lem when the n points and the wires that connect them are constrained to lie on
theperiphery of the board; that is, the wire segments connecting the n points must lie ona fixed rectangle.

1.7. Most word-processing computer programs contain a spelling checker. An obviousbrute-force method to check the spelling of a word Wis to search the entire on-line
dic-tionary from beginning to end and compare W to every entry in the dictionary. Outlinea faster method to check spelling and compare its time complexity to that of the
brute-force method.

1.8. Consider the four algorithms listed in Figure 1.7. With the given data, calculate themaximum problem size that each algorithm can handle on a computer M' that is
10,000times faster than M. Repeat the calculation for a computer M" that is 1,000.000 timesfaster than M.

1.9. The brute-force technique illustrated by the Euler-circuit algorithm in Example 1.2,which involves the enumeration and examination of all possible cases, is applicable
tomany computing problems. To make the method tractable, problem-specific tech-niques are used to reduce the number of cases that need to be considered. For
example,the eight-edge graph of Figure 1.6b can be simplified by replacing the edge-pair egwith a single edge because any Euler circuit that contains ¢ must also contain
g, andvice versa. Similarly, the pair dh can be replaced by a single edge. The problem thenreduces to checking for an Euler circuit in a six-edge graph. For the same
problem, sug-gest another method that can sometimes substantially reduce the number of cases thatmust considered, illustrating it with a different graph example.

1.10. Consider the heuristic method to solve the traveling salesman problem discussed brief-ly in section 1.1.2. Construct a specific problem involving at most five cities,
for whichthe total distance dhem traveled in the heuristic solution is not the minimum distancedmin. Conclude from your example (or from other considerations) that the
heuristic so-lution can be made arbitrarily bad, that is, "worst case" problems can be contrived indmin can be made arbitrarily large.

1.11. Consider the computation of x2 by the method of differences covered in Example 1.3.Suppose we want to determine x2 forx = 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, that is, at
intervalsof 0.5. Explain how to modify the method of Example 1.3 to accomplish this task.

1.12. Use the method of differences embodied in Babbage's Difference Engine to computex for integer values of * from 1 to 10.

1.13. Use the method of differences to compute x5, for integer values of x from 1 to 8. Whatis the smallest value of / for which the z'th difference of x5 is a constant? What
is thevalue of that constant?

1.14. Consider the problem of computing a table of the natural logarithms of the integersfrom 1 to 200,000 to 19 decimal places, a task carried out manually in 1795.
Select anymodern commercially available computer system with which you are familiar and es-timate the total time it would require to compute and print this table.
Define all the pa-rameters used in your estimation.

1.15. Discuss the advantages and disadvantages of storing programs and data in the samememory (the stored program concept). Under what circumstances is it desirable
to storeprograms and data in separate memories?

1.16. Computers with separate program and data memories implemented in RAMs andROMs, respectively, are sometimes called Hanard-class machines after the
HarvardMark 1 computer. Computers with a single (RAM) memory for program and data stor-age are then called Princeton-class after the IAS computer. Most currently
installedcomputers belong to one of these classes. Which one? Explain why the class you se-lected is the most widely used.

1.17. Write a program using the IAS computer's instruction set (Figure 1.14) to compute x2by means of the method of finite differences described in Example 1.3. For
simplicity,assume that the numbers being processed are 40-bit integers and that the only data-processing instructions you may use are the IAS's add and subtract
instructions. Theresultsx2, (x + 1)2, (x + 2)2, ...,(x + k- 1)2, should be stored in k consecutive memorylocations with starting address 3001.

1.18. A vector of 10 nonnegative numbers is stored in consecutive locations beginning in lo-cation 100 in the memory of the IAS computer. Using the instruction set of
Figure 1.14.write a program that computes the address of the largest number in this array. If severallocations contain the largest number, specify the smallest address.

1.19. The designers of the IAS decided not to implement a square root instruction (ENIAChad one), citing the fact that y = xm can be computed iteratively—and very
efficiently—via the following formula known in ancient Babylon:

>'TH\ =(v, + *y)/2

Here; =1, 2, 3, ..., and >, is an initial approximation to x]f2. Assuming that IAS pro-cesses real (floating-point) numbers directly, construct a program in the style of Fig-
ure 1.15 to calculate the square root of a given positive number x according to thisformula.

1.20. Early computer literature describes the IAS and other first-generation computers as"parallel." unlike some of their predecessors. In what sense was the IAS a
parallel com-puter? What forms of parallelism do modern computers have that are lacking in theIAS?

1.21. The IAS had no call or return instructions designed for transferring control betweenprograms, (a) Describe how call and return can be programmed using the IAS's
59

CHAPTER 1Computing andComputers

60 original instruction set. (b) What feature would you suggest adding to the IAS to

support call and return operations?SECTION 1.5Problen” 1-22. Construct both a Polish expression and a stack program of the kind given in Figure

1.16a to evaluate the following expression:

f:=(4x(a2 + b + c)-d)/(e+fxg) (1.14)

1.23. From the data presented in Figure 1.19, estimate how long it takes, on average, for thedensity of leading-edge ICs to double. This doubling rate, which has remained
remark-ably constant over the years, is referred to as Moore's law, after Gordon E. Moore, acofounder of Intel Corp., who formulated it in the 1960s.

1.24. Using the circuit of Figure 1.20 as an illustration, discuss and justify the followinggeneral properties of CMOS circuits: (a) Power consumption is very low and most
ofit occurs when the circuit is changing state (switching), (b) The logic signals 0 and 1correspond to electrical voltage levels, (c) The subcircuits that constitute logic
gatesdraw their power directly from the global power supply rather than from the external(primary) input signals: hence the gates perform signal amplification.

1.25. The CMOS zero-detection circuit of Figures 1.20 and 1.21 can be implemented as asingle four-input logic gate. Identify the gate in question and redesign the circuit
in themore compact single-gate form.

1.26. Design a CMOS ones-detection circuit in the multigate style of Figure 1.20. It shouldproduce the output z = 1 if and only if x0x]x2x3 - 1111. Give both a transistor
(switch-level) circuit and a gate-level circuit for your design.

1.27. Discuss the impact of developments in computer hardware technology on the evolutionof each of the following: (a) the logical complexity of the smallest replaceable
compo-nents; (b) the operating speed of the smallest replaceable components; and (c) the for-mats used for data and instruction representation.

1.28. Define the terms software compatibility and hardware compatibility. What role havethey played in the evolution of computers?

1.29. Identify and briefly describe three distinct ways in which parallelism can be introducedinto the microarchitecture of a computer in order to increase its overall
instruction ex-ecution speed.

1.30. Compare and contrast the IAS and PowerPC processors in terms of the complexity ofwriting assembly-language programs for them. Use the vector addition
programs ofFigures 1.15 and 1.27 to illustrate your answer.

1.31. A popular microprocessor of the 1970s was the Intel 8085, a direct ancestor of the80X86/Pentium series, which has the structure shown in Figure 1.32. The data
wordsize in the CPU and M is 8 bits, while the address size is 16 bits. Because the 8085'sIC package has only 40 pins, the lines AD for transmitting addresses and data
betweenthe CPU and M are shared (multiplexed) as indicated. AD is used to attach IO devicesas well as M to the 8085; there is also a separate serial (two line) IO port.
The 8085 hasabout 70 different instruction types. Its most complex arithmetic instructions are addi-tion and subtraction of 8-bit fixed-point (binary and decimal) numbers.
There are six8-bit registers designated B, C, D, E, H, and L, which, with the accumulator A, form ageneral-purpose CPU register file. The register-pairs BC, DE, and HL
serve as 16-bitaddress registers. A program counter PC maintains the address of the next instructionbyte required from M in the usual manner. The 8085 also has stack
pointer SP thatpoints to the top of a user-defined stack area in M. (a) What is the maximum capacity

Serial 10 devices
Li

Seriall0 port

B C

*_8—p «— 8—»e

Data/ AddressAddress low high Control
System bus(to M and 10)

8-bit internal data bus

Accumu-lator A

Statusregister SR

8-bit

ALU

8/16-bit register file

Figure 1.32

Structure of the Intel 8085 microprocessor.
Instructionregister IR

Programcontrol

Stack pointer SP

Program counter PC

61

CHAPTER 1Computing andComputers
Location

Instruction

Comment

ADDEC:

LOOP:

LXI D, NUM1

LXI H, NUM2

MVI C, 16

LDAX D

ADC M

DAA

MOV M,A

DCX D

DCX H

DCR C

JNZ LOOP

+ 16 Initialize address: DE := NUM1 + 16.+ 16 Initialize address: HL := NUM2 + 16.
Initialize count: C := 16.

Load data: D := M(DE).

A:= A+ CY + M(HL). Update CY flag.

Convert sum in A to decimal.

Store data: M(HL) := A.

Decrement address: DE := DE - 1.

Decrement address: HL := HL - 1.

Decrement count: C := C - 1. Update Z flag.

Jump to LOOP if Z * 1.

Figure 1.33

An 8085 program to add two 32-digit decimal integers.

of the 8085's main memory? (b) What is the size of PC? (c) What is the purpose of SP?(d) Identify three common features of more recent microprocessors that the 8085
lacks.

1.32. Consider the Intel 8085 described in the preceding problem. A taste of its software canbe found in Figure 1.33, which lists a program ADDEC written in 8085
assembly lan-guage that performs the addition of two long (n digit) decimal numbers NUM1 andNUM2. The numbers are added two digits (8 bits) at a time using the
instructions ADC(add with carry) and DAA (decimal adjust accumulator). ADC takes a byte from Mand, treating it as an 8-bit binary number, adds it and a carry bit CY to

the contents of

SECTION 1.6References

62 the A register. DAA then changes the binary sum in A to binary-coded decimal form.

This calculation uses several flag bits of the status register SR: the carry flag CY, whichis set to 1 (0) whenever the 9th bit resulting from an 8-bit addition is 1 (0); and the
zeroflag Z, which is set to 1 (0) when the result of an arithmetic instruction such as add ordecrement is 0 (non-0), (a) From the information given here, determine the size
n ofthe numbers being added and the (symbolic) location in M where the sum NUM1 +NUM2 is stored, (b) Ignoring the size of the 8085's instruction set, would you
classifyit as CISC or RISC? Justify your answers.

1.33. The performance of a 100 MHz microprocessor P is measured by executing10,000,000 instructions of benchmark code, which is found to take 0.25 s. What are
thevalues of CPl and MIPS for this performance experiment? Is P likely to be superscalar?

1.34. Suppose that a single-chip microprocessor P operating at a clock frequency of 50 MHzis replaced by a new model P, which has the same architecture as P but has a
clockfrequency of 75 MHz. (a) If P has a performance rating of p MIPS for a particularbenchmark program Q, what is the corresponding MIPS rating p for P ? (b) P
takes250 s to execute Q in a particular personal computer system C. On replacing P by P inC, the execution time of Q drops only to 220 s. Suggest a possible reason for
this dis-appointing performance improvement.

1.35. {a) What are the usual definitions of the terms CISC and RISC? Identify two key archi-tectural features that distinguish recent RISC and CISC machines, (b) When
develop-ing the RISC/6000, the direct predecessor of the PowerPC, IBM viewed the word RISCto mean "reduced instruction set cycles." Explain why this meaning might
be more ap-propriate for the PowerPC than the usual one.

1.6REFERENCES

1. Albert, D. and D. Avnon. "Architecture of the Pentium Microprocessor." IEEE Micro,vol. 13 (June 1993) pp. 11-21.

2. Augarten, S. Bit by Bit: An Illustrated History of Computers. New York: Ticknor andFields, 1984.

3. Barwise, J. and J. Etchemendy. Turing's World 3.0: An Introduction to ComputabilityTheory. Stanford, CA: CSLI Publications, 1993.

4. Boyer, C. B. A History of Mathematics. 2nd ed. New York: Wiley, 1989.

5. Braun, E. and S. MacDonald. Revolution in Miniature. The History and Impact of Semi-conductor Electronics. 2nded. Cambridge, England: Cambridge University Press,
1982.

6. Burks, A. W, H. H. Goldstine, and J. von Neumann. "Preliminary Discussion of theLogical Design of an Electronic Computing Instrument." Report prepared for U.S.
ArmyOrdnance Department, 1946. (Reprinted in Ref. 26, vol. 5, pp. 34-79.)

7. Cocke, J. and V. Markstein. "The Evolution of RISC Technology at IBM." IBM Journalof Research and Development, vol. 34 (January 1990) pp. 4-11.

8. Cormen, T. H., C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,Cambridge, MA, and McGraw-Hill, New York, 1990.

9. Diefendorf, K., R. Oehler, and R. Hochsprung. "Evolution of the PowerPC Architec-ture." IEEE Micro, vol. 14 (April 1994) pp. 34-°9.

10. Estrin, G. "The Electronic Computer at the Institute for Advanced Studies." Mathemat-ical Tables and Other Aids to Computation, vol. 7 (April 1953) pp. 108-14.
11. Farrell, J. J. "The Advancing Technology of Motorola's Microprocessors and Micro-computers." IEEE Micro, vol. 4 (October 1984) pp. 55-63.

12. Garey, M. R. and D. S. Johnson. Computers and Intractability. San Francisco: W. H.Freeman, 1979.

13. Goldstine, H. H. and J. von Neumann. "Planning and Coding Problems for an ElectronicComputing Instrument." Part II, vols. 1 to 3. Three reports prepared for U.S.
Army Ord-nance Department, 1947-1948. (Reprinted in Ref. 26, vol. 5, pp. 80-235.)

14. Hwang, K. Advanced Computer Architecture. New York: McGraw-Hill, 1993.

15. Morrison, P. and E. Morrison (eds.). Charles Babbage and His Calculating Engines.New York: Dover, 1961.

16. Morse, S. P. et al. "Intel Microprocessors: 8008 to 8086." Santa Clara, CA: Intel, 1978.(Reprinted in Ref. 24, pp. 615-46.)

17. Motorola Inc. PowerPC 601 RISC Microprocessor User's Manual. Phoenix, AZ, 1993.(Also published by IBM Microelectronics, Essex Junction, VT, 1993).
18. O'Connor, J. M. and M. Tremblay. "picoJava-I: The Java Virtual Machine in Hard-ware." IEEE Micro, vol. 17 (March/April 1997) pp. 45-53.

19. Patterson, D. "Reduced Instruction Set Computers." Communications of the ACM, vol.28, (January 1985) pp. 8-21.

20. Poppelbaum, W. J. et al. "Unary Processing." Advances in Computers, vol. 26, ed. M.Yovits. New York: Academic Press, 1985, pp. 47-92.

21. Prasad, N. S. IBM Mainframes: Architecture and Design. New York: McGraw-Hill, 1989.

22. Randell, B. (ed.) The Origins of Digital Computers: Selected Papers. 3rd ed. Berlin:Springer-Verlag, 1982.

23. Russell, R. M. "The CRAY-1 Computer System." Communications of the ACM, vol. 21(January 1978), pp. 63-78. (Reprinted in Ref. 24, pp. 743-52.)
24. Siewiorek, D. P, C. G. Bell, and A. Newell. Computer Structures: Readings and Exam-ples. New York: McGraw-Hill, 1982.

25. Swade, D. D. "Redeeming Charles Babbage's Mechanical Computer." Scientific Amer-ican, vol. 268 (February 1993) pp. 86-91.

26. von Neumann, J. Collected Works, ed. A. Taub, 6 vols. New York: Pergamon, 1963.

27. Weiss, S. and J. E. Smith. Power and PowerPC. San Francisco, CA: Morgan Kaufmann,1994.

28. Weste, N. and K. Eshragian. Principles of CMOS VLSI Design. 2nd ed. Reading, MA:Addison-Wesley, 1992.

29. Wilkes, M. V. and]J. B. Stringer. "Microprogramming and the Design of Control Cir-cuits in an Electronic Digital Computer." Proc. Cambridge Phil. Soc, pt. 2, vol.
49(April 1953) pp. 230-38. (Reprinted in Ref. 24, pp. 158-63.)

63

CHAPTER 1

Computing andComputers
CHAPTER 2

Design Methodology

This chapter views the design process for digital systems at three basic levels ofabstraction: the gate, the register, and the processor levels. It discusses the natureof the
design process, examines design at the register and processor levels in detail,and briefly introduces computer-aided design (CAD) and analysis methods.

2.1
SYSTEM DESIGN

A computer is an example of a system, which is defined informally as a collec-tion—often a large and complex one—of objects called components, that are con-nected to
form a coherent entity with a specific function or purpose. The functionof the system is determined by the functions of its components and how the compo-nents are
connected. We are interested in information-processing systems whosefunction is to map a set A of input information items (a program and its data, forexample) into
output information B (the results computed by the program acting onthe data). The mapping can be expressed formally by a mathematical function/from A to B. If/maps
element a of A onto element b of B, we write b = /(a) or b :=f(a). We also restrict membership of A and B to digital or discrete quantities, whosevalues are defined only at
discrete points of time.

2.1.1 System Representation
A useful way of modeling a system is a graph. A (directed) graph consists of aset of objects V = {v,~",...”,,} called nodes or vertices and a set of edges Ewhose members

are (ordered) pairs of nodes taken from the set {(vl,v2),(V!,v3),...,(vn _,,v,)}of all such pairs. The edge e = (v,-,yp joins or connects nodev, to node v.-. A graph is often
defined by a diagram in which nodes are repre-

64

sented by circles, dots, or other symbols and edges are represented by lines: thisdiagram is synonymous with the graph. The ordering implied by the notation(v,,v) may be
indicated in the diagram by an arrowhead pointing from v, to v as,for instance, in Figure 2.1.

The systems of interest comprise two classes of objects: a set of information-processing components C and a set of lines S that carry information signalshetween
components. In modeling the system by a graph G, we associate C withthe nodes of G and S with the edges of G; the resulting graph is often called ablock diagram. This
name comes from the fact that it is convenient to draw eachnode (component) as a block or box in which its name and/or its function can bewritten. Thus the various
diagrams of computer structures presented in Chapter 1—Figure 1.29, for instance—are block diagrams. Figure 2.2 shows a block diagramrepresenting a small gate-level
logic circuit called an EXCLUSIVE-OR or modulo-2adder. This circuit has the same general form as the more abstract graph of Fig-ure 2.1.

65

CHAPTER 2

Design

Methodology

Structure versus behavior. Two central properties of any system are its struc-ture and behavior; these very general concepts are often confused. We define thestructure of
a system as the abstract graph consisting of its block diagram with nofunctional information. Thus Figure 2.1 shows the structure of the small system ofFigure 2.2. A
structural description merely names components and defines theirinterconnection. A behavioral description, on the other hand, enables one to deter-mine for any given
input signal a to the system, the corresponding output/(a). Wedefine the function/to be the behavior of the system. The behavior/may be repre-sented in many different
ways. Figure 2.3 shows one kind of behavioral descriptionfor the logic circuit of Figure 2.2. This tabulation of all possible combinations ofinput-output values is called a
truth table. Another description of the sameEXCLUSIVE-OR behavior can be written in terms of mathematical equations asfollows, noting that/(a) =/(x,”c2):

/(0,0) =0

/(0,1)=1

/(1,0) =1

/(U)=0

Figure 2.1

A graph with eight nodes and nine edges.
66

SECTION 2.1System Design

AND
*1
NOT
OR
NOT
AND
p
X2 0 "
»0 X, © x2
Figure 2.2

A block diagram representing an EXCLUSIVE-OR logic circuit.

The structural and behavioral descriptions embodied in Figures 2.1 and 2.3 areindependent: neither can be derived from the other. The block diagram of Figure2.2 serves
as both a structural and behavioral description for the logic circuit inquestion, since from it we can derive Figures 2.1 and 2.3.

In general, a block diagram conveys structure rather than behavior. For exam-ple, some of the block diagrams of computers in Chapter 1 identify blocks as
beingarithmetic-logic units or memory circuits. Such functional descriptions do notcompletely describe the behavior of the components in question; therefore, we can-not
deduce the behavior of the system as a whole from the block diagram. If weneed a more precise description of system behavior, we generally supply a separatenarrative
text, or a more formal description such as a truth table or a list of equa-tions.

Hardware description languages. As we have seen, we can fully describe asystem's structure and behavior by means of a block diagram—the term schematicdiagram is
also used—in which we identify the functions of the components. Wecan convey the same detailed information by means of a hardware description lan-guage (HDL), a
format that resembles (and is usually derived from) a high-levelprogramming language such as Ada or C. The construction of such description lan-guages can be traced

back at least as far as Babbage [Morrison and Morrison1961]. Babbage's notation, of which he was very proud, centered around the use ofspecial symbols such as —> to
represent the movement of mechanical components.In modern times Claude E. Shannon [Shannon 1938] introduced Boolean algebra

Input a Output

x\x2 fia)

00 0

01 1

10 1
11 0
Figure 2.3

Truth table for the EXCLUSIVE-OR function.

as a concise and rigorous descriptive method for logic circuits. Beginning in the1950s, academic and industrial researchers developed many ad hoc HDLs.
Theseeventually evolved into a few widely used languages, notably VHDL and Verilog, 1which were standardized in the 1980s and 90s [Smith 1996; Thomas and
Moorby1996].

Hardware description languages such as VHDL have several advantages. Theycan provide precise, technology-independent descriptions of digital circuits at vari-ous
levels of abstraction, primarily the gate and register levels. Consequently, theyare widely used for documentation purposes. Like programming languages, HDLscan be
processed by computers and so are suitable for use with computer-aideddesign (CAD) programs which, as discussed later, play an important role in thedesign process. For
example, an HDL description of a processor P can beemployed to simulate the behavior of P before all the details of its design havebeen specified. On the negative side,
HDL descriptions are often long and verbose;they lack the intuitive appeal and rapid insights that circuit diagrams and less for-mal descriptive methods provide.

67

CHAPTER 2

Design

Methodology

EXAMPLE 2.1 VHDL DESCRIPTION OF A HALF ADDER. To illustrate the use

of HDLs, we give in Figure 2.4a a VHDL description of a simple logic componentknown as a half adder. Its purpose is to add two 1-bit binary numbers x and y to form a2-
bit result consisting of a sum bit sum and a carry bit carry. For example, if x = y= 1.the half adder should produce carry = 1, sum = 0, corresponding to the binary

numberlO0, that is, two.

A VHDL description has two main parts: an entity part and an architecture part.The entity part is a formal statement of the system's structure at the highest level, thatis,
as a single component. It describes the system's interface, which is the "face" pre-sented to external devices but says nothing about the system's behavior or its
internalstructure. In this example the entity statement gives the half adder's formal namehalf adder and the names assigned to its input-output (I0) signals; 10 signals
arereferred to in VHDL by their connection terminals or ports. Inputs and outputs are

entity half adder is

port (x.y: in bit; sum. earn-, out bit);end half judder;

architecture behavior of half adder ishegin

sum <= X XOr'y;

carry <= x and v;end behavior;

(a)

sumhalf adder
Inputs Outputs

Xv sum carry

00 00
01 10
10 10
11 01
(b)

(c)

Figure 2.4

Half adder: (a) behavioral VHDL description; (b) block symbol; and (c) truth table.

'VHDL was sponsored by the U.S. Department of Defense. Its name stands for VHSIC hardware descriptionlanguage, where VHSIC (very high-speed integrated circuits) is
the acronym of another Department ofDefense research program. VHDL is based on the programming language Ada. while Verilog. whose originsare industrial, is based
on the C language. Both HDLs are now embodied in fonrul standards sponsored bythe Institute of Electrical and Electronics Engineers (IEEE).

SECTION 2.1

68 distinguished by the keywords in and out, respectively. The size of each 10 port,

meaning the number of signals associated with it, is specified here as 1 bit by the key-word bit. Thus we can conclude from the entity part of Figure 2.4a that half adder

System esign nas tWQ i_1>it inputs, named x and y, and two 1-bit outputs, named sum and earn-. Fig-

ure 2.4b presents the same information in graphical form.lt is customary in such dia-grams to put inputs on the left and outputs on the right, eliminating the need
forarrowheads to indicate the direction of signal flow.

The architecture part of a VHDL description specifies behavior and/or internalstructure. Figure 2.4a defines the half adder's behavior only; we are assuming for
themoment that it is a primitive module or "black box," whose internal structure is eithernot known or not of interest. The functions of the half adder's two outputs sum
andcarry are specified by two Boolean functions xor and and, which are built into VHDL;that is, they are predefined functions. In VHDL xor stands for the EXCLUSIVE-
ORfunction, which we have encountered already—it is defined in Figure 2.3. The ANDfunction denoted by and is another basic logic function, which may be defined as fol-
lows: AND(jc,v) = 1 if and only if x = 1 and y = 1. Note that VHDL expresses AND(jc,v)in the equivalent "infix" format x and y. An alternative description of the behavior
ofhalf adder appears in Figure 2.4c in the form of a truth table.

Figure 2.4a illustrates a few of the many notational conventions of VHDL, whichcollectively make the language quite complex. The symbol <= is called signal assign-ment
and indicates that the value of the expression on the right of <= is assigned to thesignal on the left. Hence

carry <=xandy (2.1)

means that the signal carry is the AND function of x and y. This notation is equivalentto writing carry = AND(jc, v) in ordinary mathematical notation. The other features
ofFigure 2.4a such as the use of begin-end to bracket related items represent minor syn-tactical details borrowed from programming languages.

VHDL is a rich language that can say the same thing in several ways. For exam-ple, we might replace (2.1) by

if xy - '11' then carry <= 1 else carry <= 0;

VHDL can also convey timing or performance information in various ways. For exam-ple, to indicate that it takes 5 ns for the carry signal to change in response to a
changein its input signals x and y, we can rewrite statement (2.1) as

carry <= x and y after 5 ns;

If the half adder's internal structure is of interest, we can specify it by means of astructural architecture description, as shown in Figure 2.5a. The same structure
isdefined by the block diagram of Figure 2.5b. Again inputs are assumed to be on the leftand outputs on the right. Two internal component types are identified and are
describedby VHDL component statements that have much the same form as entity. They namethe component types {xor circuit and nand_gate in the example) and specify
the namesand types of the components' 10 signals. Internal signals (lines or buses) created byconnections between the components are specified by a signal statement, in
this case al-bit internal signal named alpha. Finally, all the copies of each component used in thecircuit are individually named and their 10 connections are specified. This
is accom-plished by the part of the architecture description in Figure 2.5a bracketed by begin-end, which may be thought of as a (wiring) network specification or netlist.
There isone copy named XOR of xor circuix and two copies of nand_gate named NAND1 andNAND?2. The second line in this netlist

NAND1: nand_gate port map (d => x, e => >,/=> alpha);

entity half adder is

port (x,y: in bit; sum, carry: out bit);end half adder;

architecture structure of half adder is

component xor_circuit port (a,b: in bit; c: out bit); end component;

component nand_gate port (d,e: in bit;/: out bit); end component;

signal alpha: bit;begin

XOR: xor_circuit port map (a => x, b =>y, ¢ => sum);

NANDI1: nand_gate port map (d => *, e => >',/=> alpha);

NAND2: nand_gate port map (d => alpha, e => alpha./=> carry);end structure:

(a)

69

CHAPTER 2

Design

Methodology

xor_circuitXOR c

nand_gateNAND1 /

half adder

alpha

c

nand_gateNAND?2 /

Figure 2.5

Half adder: (a) structural VHDL description; (b) block diagram.

states that half adder has a component called NAND1. which is of type nand_gate andhas its d, e, and/ports (terminals) mapped (connected) to the signals x, v, and
alpha,respectively.

2.1.2 Design Process

Given a system's structure, the task of determining its function or behavior istermed analysis. The converse problem of determining a system structure thatexhibits a
given behavior is design or synthesis.

Design problem. We can now state in broad terms the problem facing the com-puter designer or, indeed, any system designer.

Given a desired range of behavior and a set of available components, determine astructure (design) formed from these components that achieves the desired behav-ior
with acceptable cost and performance.

While assuring the correctness of the new design's behavior is the overriding goalof the design process, other typical requirements are to minimize cost as measured

70

SECTION 2.1System Design

by the cost of manufacture and to maximize performance as measured by the speedof operation. There are some other performance- and cost-related constraints to sat-
isfy such as high reliability, low power consumption, and compatibility with exist-ing systems. These multiple objectives interact in poorly understood ways thatdepend on
the complexity and novelty of the design.

Despite careful attention to detail and the assistance of CAD tools, the initialversions of a new system often fail to meet some design objective, sometimes insubtle and
hard-to-detect ways. This failure can be attributed to incomplete specifi-cations for the design (some mode of behavior was overlooked), errors made byhuman designers
or their CAD tools (which are also ultimately due to humanerror), and unanticipated interactions between structure, performance, and cost. Forexample, increasing a
system's speed to a desired level can make the cost unac-ceptably high.

The complexity of computer systems is such that the design problem must bebroken down into smaller, easier tasks involving various classes of components.These smaller
problems can then be solved independently by different designers ordesign teams. Each major design step is often implemented via the multistep oriterative process
depicted by a flowchart in Figure 2.6. An initial design is created,perhaps in ad hoc fashion, by adapting an existing design of a similar system. Theresult is then evaluated
to see if it meets the relevant design objectives. If not, thedesign is revised and the result reevaluated. Many iterations through the redesignand evaluation steps of Figure
2.6 may be necessary to obtain a satisfactory design.

Computer-aided design. The emergence of powerful and inexpensive desktopcomputers with good graphics interfaces provides designers with a range of pro-grams to
support their design tasks. CAD tools are used to automate, at least in

(Begin]
Construct aninitial design

Evaluate its costand performance
Are
the design goals.
met?

Modify the designto meet the goals

Figure 2.6
Flowchart of an iterativedesign process.

part, the more tedious design and evaluation steps and contribute in three importantways to the overall design process.

* CAD editors or translators convert design data into forms such as HDL descrip-tions or schematic diagrams, which humans, computers, or both can efficientlyprocess.

» Simulators create computer models of a new design, which can mimic thedesign's behavior and help designers determine how well the design meets vari-ous
performance and cost goals.

» Synthesizers automate the design process itself by deriving structures that imple-ment all or part of some design step.

Editing is the easiest of these three tasks, and synthesis the most difficult. Some synthesis methods incorporate exact or optimal algorithms which, even ifeasy to program
into CAD tools, often demand excessive amounts of computingresources. Many synthesis approaches are therefore based on trial-and error meth-ods and experience with
earlier designs. These computationally efficient but inex-act methods are called heuristics and form the basis of most practical CA©® t»«ls.

Design levels. The design of a complex system such as a computer is carriedout at several levels of abstraction. Three such levels are generally recognized incomputer
design, although they are referred to by various different names in the lit-erature:

« The processor level, also called the architecture, behavior, or system level.
« The register level, also called the register-transfer level (RTL).
* The gate level, also called the logic level.

As Figure 2.7 indicates we are naming each level for a key component treated asprimitive or indivisible at that level of abstraction. The processor level correspondsto a
user's or manager's view of a computer. The register level is approximatelythe level of detail seen by a programmer. The gate level is primarily the concern ofthe hardware
designer. These three design levels also correspond roughly to themajor subdivisions of integrated-circuit technology into VLSI, MSI, and SSI com-ponents. The
boundaries between the levels are far from clear-cut, and it is com-mon to encounter descriptions that mix components from more than one level.

71
CHAPTER 2
Design
Methodology

It Information
Level Components density units Time units
Gate Logic gates, flip-flops. SSI Bits 10-'2to 10"9s
Register Registers, counters,combinational circuits,small sequential circuits. MSI Words Ifr'toio™s
Processor CPUs, memories, 10 devices. VLSI Blocks ofwords ur'io io-'s
Figure 2.7

The major computer design levels.

72 A few basic component types from each design level are listed in Figure 2.7.

PPN

section 2 ~e c fates rec®gnized as primitive at the gate level include AND, OR,

System Design NAND, NOR, and NOT gates. Consequently, the EXCLUSIVE-OR circuit of

Figure 2.2 is an example of a gate-level circuit composed of five gates. Thecomponent marked XOR in Figure 2.5b performs the EXCLUSIVE-OR functionand so can be
thought of as a more abstract or higher-level view of the circuitof Figure 2.2, in which all internal structure has been abstracted away. Similarly,the half-adder block of
Figure 2Ab represents a higher-level view of the three-component circuit of Figure 2.5b. We consider a half adder to be a register-levelcomponent. We might regard the
circuit of Figure 2.5b as being at the registerlevel also, but because NAND is another gate type and XOR is sometimes treatedas a gate, this circuit can also be viewed as
gate level.

Figure 2.7 indicates some further differences between the design levels. Theunits of information being processed increase in complexity as one goes from thegate to the
processor level. At the gate level individual bits (Os and Is) are pro-cessed. At the register level information is organized into multibit words or vec-tors, usually of a small
number of standard types. Such words represent numbers,instructions, and the like. At the processor level the units of information are blocksof words, for example, a
program or a data set. Another important difference lies inthe time required for an elementary operation; successive levels can differ by sev-eral orders of magnitude in
this parameter. At the gate level the time required toswitch the output of a gate between 0 and 1 (the gate delay) serves as the time unitand typically is a nanosecond (ns)
or less. A clock cycle of, say, 10 ns, is a com-monly used unit of time at the register level. The time unit at the processor levelmight be a program's execution time, a
quantity that can vary widely.

System hierarchy. It is customary to refer to a design level as high or low; themore complex the components, the higher the level. In this book we are primarilyconcerned
with the two highest levels listed in Figure 2.7, the processor and regis-ter levels, which embrace what is generally regarded as computer architecture. Theordering of the
levels suggested by the terms high and low is, in fact, quite strong.A component in any level L, is equivalent to a (sub) system of components takenfrom the level L, _,
beneath it. This relationship is illustrated in Figure 2.8. For-mally speaking, there is a one-to-one mapping ht between components in L, anddisjoint subsystems in level
L,-.,;a system with levels of this type is called a hier-archical system. Thus in Figure 2.8 the subsystem composed of blocks 1, 3, and 4in the low-level description maps
onto block A in the high-level description. Fig-ures 2Ab and 2.5b show two hierarchical descriptions of a half-adder circuit.

Complex systems, both natural and artificial, tend to have a well-defined hier-archical organization. A profound explanation of this phenomenon has been givenby Herbert
A. Simon [Simon 1962]. The components of a hierarchical system ateach level are self-contained and stable entities. The evolution of systems fromsimple to complex
organizations is greatly helped by the existence of stable inter-mediate structures. Hierarchical organization also has important implications in thedesign of computer
systems. It is perhaps most natural to proceed from higher tolower design levels because this sequence corresponds to a progression of succes-sively greater levels of
detail. Thus if a complex system is to be designed usingsmall-scale ICs or a single IC composed of standard cells, the design process mightconsist of the following three
steps.

x\ 1 2
*
1
A 5
1
rl 3 »4 5
to *

(a)
Figure 2.8

Two descriptions of a hierarchical system: (a) low level; (b) high level.

1. Specify the processor-level structure of the system.

2. Specify the register-level structure of each component type identified in step 1.
3. Specify the gate-level structure of each component type identified in step 2.

This design approach is termed top down; it is extensively used in both hardwareand software design. If the foregoing system is to be designed using medium-scaleICs or
standard cells, then the third step, gate-level design, is no longer needed.

As might be expected, the design problems arising at each level are quite dif-ferent. Only in the case of gate-level design is there a substantial theoretical basis(Boolean
algebra). The register and processor levels are of most interest in com-puter design, but unfortunately, design at these levels is largely an art that dependson the
designers' skill and experience. In the following sections we examine designat the register and processor levels in detail, beginning with the better-understoodregister
level. We assume that the reader is familiar with binary numbers and withgate-level design concepts [Armstrong and Gray 1993; Hayes 1993; Hachtel andSomenzi 1996],
which we review in the next section.

73

CHAPTER 2

Design

Methodology

2.1.3 The Gate Level

Gate-level (logic) design is concerned with processing binary variables whose pos-sible values are restricted to the bits (binary digits) 0 and 1. The design componentsare
logic gates, which are simple, memoryless processing elements, and flip-flops,which are bit-storage devices.

Combinational logic. A combinational film rum, also referred to as a logic, or aBoolean function, is a mapping from the set of 2" input combinations of n binaryvariables
onto the output values 0 and 1. Such a function is denoted by r(.v,. v:

74

SECTION 2.1System Design

xn) or simply by z. The function z can be defined by a truth table, which specifiesfor every input combination (jc1, x2,..., xn) the corresponding value of z{xx, x2,...,xn).
Figure 2.9a shows the truth table for a pair of three-variable functions, sO(xq,v'o c_,) and c0(xq, Vq, c_,), which are the sum and carry outputs, respectively, of alogic
circuit called a full adder. This useful logic circuit computes the numericalsum of its three input bits using binary (base 2) arithmetic:

c&0 = xQphisyOplusc_]

(2.2)

For example, the last row of the truth table of Figure 2.9a expresses the fact thatthe sum of three Is is CqS0 = 112, that is, the base-2 representation of the numberthree.
When discussing logic circuits, we will normally reserve the plus symbol (+)for the logical OR operation, and write out plus for numerical addition. We willalso use a

subscript to identify the number base when it is not clear from the con-text; for example, twelve is denoted by 1210 in decimal and by 11002 in binary.

A combinational function z can be realized in many different ways by combi-national circuits built from the standard gate types, which include AND, OR,

Inputs Outputs

x0 >'o C-ico 50

00 0 00
00 1 01
01 0 01
01 110
10 0 01
10 110
0 0
1111
111

EXCLUSIVE-OR gate
>0

Half adder

I

Half,

B

o

Half adder

5

@]

R gate

i

Cco

NAND gate NAND gate
used as an inverter

(a)

(b)

x0

Vn

xi)

Figure 2.9
Full adder: (a) truth table; (b) realization using half adders: (c) realization using AND andOR gates; (d) realization using NAND, NOR. and NOT gates.

EXCLUSIVE-OR, NOT (inverter), NAND, and NOR. The functions performed byAND, OR, EXCLUSIVE-OR, and NOT gates are denoted by logic expressions ofthe form
x{x2, xx + x2, xx © x2, and xx, respectively, and are defined as follows:

AND: xxx2 = 1 if and only if Xjand~are both 1.0R: jcj + x2 = 1 if and only if xx or x2 or both are 1.EXCLUSIVE-OR: x{ © x2 = 1 if and only if xx ovx2 but not both are
1.NOT: xx = 1 if and only if xl = 0.

The function performed by a NOT gate is known as inversion. The NAND orNOR functions are obtained by inverting AND and OR, respectively. NAND isdenoted by xxx2
and NOR by xx + x2. The preceding definitions (except that ofNOT) can be extended to gates with any number of inputs k, but practical consid-erations limit k, which is
called the gate's fan-in, to a maximum value of 10 or so.Note that the NOT gate or inverter can be regarded as a one-input version ofNAND or NOR.

A set G of gate types is said to be (functionally) complete if any logic functioncan be realized by a circuit that contains gates from G only. Examples of completesets of
gates are {AND, OR, NOT}, {AND, NOT}, {NAND}, and {NOR}.NANDs and NORs are particularly important in logic design because they are eas-ily manufactured using
most IC technologies and are the only standard gate typesthat are functionally complete by themselves. With any complete set of logic oper-ations, the set of all logic
functions of up to n variables forms a Boolean algebra,named after George Boole (1815-1864), a contemporary of Babbage's [Brown1990]. Boolean algebra allows the
function realized by a combinational circuit tobe described in a form that resembles the circuit's structure. It is similar to ordinary(numerical) algebra in many respects,
and both numerical and Boolean algebra areembedded in the syntax of a typical HDL.

Figure 2.9b shows a possible gate-level realization of a full adder that employstwo copies of the half adder defined in Figures 2.4 and 2.5 along with a single ORgate. Here
we use standard, distinctively shaped symbols for the various gate typesinstead of the generic box symbols of Figure 2.5b. Observe that the two NANDs ineach half adder,
one of which is used as an inverter, can be replaced by a single,functionally equivalent AND gate. This equivalence is seen from the fact that theinversions associated with
the two NANDs cancel; in algebraic terms, ab = ab.

Two alternative gate-level designs for the full adder appear in Figures 2.9cand 2.9d. The AND-OR circuit of Figure 2.9c is defined by the logic (Boolean)equations

(2.3)

(24)

so = -*0>'oc-i + Vo™'-i + *0>'oc-i + *0?0C-ic0 = (*0 + c¢_{)(xQ + y0O)(\'() + c_i)

whose structure also corresponds closely to that of the circuit. By analogy withordinary algebra, (2.3) and (2.4) are referred to as sum-of-prochuts (SOP) andproduct-of-
sums (POS) expressions, respectively. The circuit of Figure 2.9c iscalled a two-level or depth-two logic circuit because there are only two gates, oneAND and one OR,
along each path from this adder's external or primary inputs v,,.y0, c_, to its primary outputs ,v0. c(), assuming each primary input variable is avail-able in both true and
inverted (complemented) form. The number of logic levels isdefined by the number of gates along the circuit's longest 10 path. Because each

75

CHAPTER 2

Design

Methodology

76 gate imposes some delay (typically 1 ns or so) on every signal that propagates

through it, the fewer the logic levels, the faster the circuit.

s D The half-adder-based circuit of Figure 2.9b has 10 paths containing up to four

gates and so is considered to have four levels of logic. If all gates have the samepropagation delay, then the two-level adder (Figure 2.9c) is twice as fast as thefour-level
design (Figure 2.9b). However, the two-level adder has more gates andso has a higher hardware cost. A basic task in logic design is to synthesize a gate-level circuit
realization of a given set of combinational functions that achieves asatisfactory balance between hardware cost as measured by the number of gates,and operating speed
as measured by the number of logic levels used. Often thetypes of gates that may be used are restricted by IC technology considerations, forexample, to NAND gates with
five or fewer inputs per gate. The design of Figure2.9d, which has essentially the same structure as that of Figure 2.9c, uses NANDand NOR gates instead of ANDs and

ORs. In this particular case the primaryinputs are provided in true (noninverted) form jc0, y0, c_, only; hence inverters areintroduced to generate the inverted inputs x0,
y0, c_x.

Computer-aided synthesis tools are available to design circuits like those ofFigure 2.9 automatically. The input to such a logic synthesizer is a specification ofthe desired

function, such as a truth table like Figure 2.9a, or a set of logic equa-tions like (2.3) or (2.4); these are often embedded in a behavioral HDL description.Also given to the
synthesizer are such design constraints as the gate types to useand restrictions on the circuit's interconnection structure. One such restriction is anupper bound on the
number of inputs (fan-in) of a gate G. Another is an upperbound on the number of inputs of other gates to which G's output line may con-nect; this is called the (maximum)
fan-out of G. The output of the synthesizer is astructural description of a logic circuit that implements the desired function andmeets the specified constraints as closely as
possible.

Exact methods for designing two-level circuits like that of Figure 2.9¢ (or Fig-ure 2.9<i with its inverters removed) using the minimum number of gates have longbeen
known. They are computationally complex, however—gate minimizationfalls into the class of intractable problems discussed in section 1.1.2—so they areonly practical for
designing small circuits. However, practical heuristic methodsfor synthesizing two-level and multilevel logic circuits that are often nearly opti-mal are known and
implemented in CAD programs (see Example 2.2). Once agood design of a useful function is known, it can be placed in a library for futureuse. A full adder, for instance,
can be used to build a multibit, multilevel adder, asshown in Figure 2.10a.2 This circuit adds two 4-bit numbers X = (x-1,x2,xx,xQ) andY = (>'3,>,2'>'i'>'0) and computes
their sum S = (s3,s2,S\,s0y, it also accepts an inputcarry signal c_, and produces an output carry c3. A multibit adder is treated as aprimitive component at the register
level, as shown Figure 2.10b, at which point itsinternal structure or logic design may no longer be of interest.

Flip-flops. By adding memory to a combinational circuit in the form of 1-bitstorage elements called flip-flops, we obtain a sequential logic circuit. Flip-flopsrely on an
external clock signal CK to synchronize the times at which they respond

2This design, which is known as a ripple-carry adder, and other types of binary adders are examined in detailin Chapter 4.
*3 >3

x2 >'2

77

xy cuFull adder

Cnnr S

xy cuFull adder

x y ¢, Full adder

cy c«Full adder

-' CHAPTER 2DesignMethodology

c0
@
x ¥
"i' ‘* ’7&:‘7
4-bit adder
T4
B Sum §
(b)
Figure 2.10

Four-bit ripple-carry: (a) logic structure; (b) high-level symbol.

to changes on their input data lines. They are also designed to be unaffected bytransient signal changes (noise) produced by the combinational logic that feedsthem. An
efficient way to meet these requirements is edge triggering, which con-fines the flip-flop's state changes to a narrow window of time around one edge (the0-to-1 or 1-to-0
transition point) of CK.

Figure 2.11 summarizes the behavior of the most common kind of flip-flop, anedge-triggered D {delay) flip-flop. (Another well-known flip-flop type, the JK flip-flop, is
discussed in problem 2.11.) The output signal y constitutes the stored dataor state of the flip-flop. The D flip-flop reads in the data value on its D line whenthe 0-to-1
triggering edge of clock signal CK arrives; this D value becomes the newvalue of y. The triangular symbol on the clock's input port in Figure 2.1 la specifiesedge
triggering; its omission indicates level triggering, in which case the flip-flop(then usually referred to as a latch) responds to all changes in signal value on D.Since there is
just one triggering edge in each clock cycle, there can be just onechange in y per clock cycle. Hence we can view the edge-triggered flip-flop as tra-versing a sequence of
discrete state values v(/), one for every clock cycle i.

The input data line D can be varied independently and so can go through sev-eral changes in any clock cycle i. However, only the data value D{i) present justbefore the
arrival of the triggering edge of CK determines the next state y{i + 1).To change the flip-flop's state, the D signal must be held steady for a minimumperiod known as the
setup time Tselup before the flip-flop is triggered. For exam-ple, in Figure 2.1 1c, which shows a sample of the D flip-flop's behavior, we haveD(l) = 1 and v(1) = 0 in clock
cycle 1. At the start of the next clock cycle, ychanges to 1 in response to D(1) = 1. making v(2) = 1. In clock cycle 3, y changes

78

SECTION 2.1System Design

Data

Clock

PRED
>CK —> Input Dii)0 1
CLR

State 0 0 10 1 Next statevO'+1)

1
(a)
(b)

T

Triggen ng edge Glitch/
'setup
1 \/

01 1 1 1 1/
0 11

0 Time »H

6
1 21 D30 0 40 1 511

Clock CKDataD

State y

Cycle iDataD(/)State >m(/)

(c)

Figure 2.11

D flip-flop: (a) graphic symbol; (b) state table; (c) timing diagram.

back to 0, making y(3) = 0. Even though D = 1 for most of clock cycle 3, D(3) = Oduring the critical setup phase of cycle 3, thus ensuring that y(4) = 0. Observe thatthe
spurious pulse or glitch affecting D in cycle 5 has no effect on y. Hence edge-triggered flip-flops have the very useful property of filtering out noise signalsappearing at
their inputs.

When a flip-flop is first switched on. its state y is uncertain unless it is explic-itly brought to a known initial state. It is therefore desirable to be able to initialize(reset) the
flip-flop asynchronously, that is, independently of the clock signal CK,at the start of operation. To this end, a flip-flop can have one or two asynchronouscontrol inputs, CLR
(clear) and PRE (preset), as shown in Figure 2.11a. Each isdesigned to respond to a brief input pulse that forces y to 0 in the case of CLR or tol in the case of PRE.

In normal synchronous operation with a clock that is matched to the timingcharacteristics of its flip-flops, we can be sure that one well-defined change of statetakes place
in a sequential circuit during each clock cycle. We do not have to worryabout the exact times at which signals change within the clock cycle. We can there-fore consider
the actions of a flip-flop, and hence of any sequential circuit employ-ing it, to occur at a discrete sequence of points of time /= 1, 2, 3, ... In effect, theclock quantizes time
into discrete, technology-independent time steps, each ofwhich represents a clock cycle. We can then describe a D flip-flop's next-statebehavior by the following
characteristic equation:

y(/+1) = D(/)

(2.5)

which simply says that y takes the value of D delayed by one clock cycle, hence theD flip-flop's name.

Figure 2.1 \b shows another convenient way to represent the flip-flop's next-state behavior. This state table tabulates the possible values of the next state y{i + 1)for every
possible combination of the present input D(i) and the present state y(i). Itis not customary (or necessary) to include clock-signal values explicitly in charac-teristic

equations or state tables. The clock is considered to be the implicit generatorof time steps and so is always present in the background. Asynchronous inputs arealso
omitted as they are associated only with initialization.

79

CHAPTER 2

Design

Methodology

Sequential circuits. A sequential circuit consists of a combinational circuitand a set of flip-flops. The combinational logic forms the computational or data-processing part
of the circuit. The flip-flops store information on the circuit's pastbehavior; this stored information defines the circuit's internal state Y. If the pri-mary inputs are X and the
primary outputs are Z, then Z is a function of both X andY, denoted Z(X,Y). It is usual to supply a sequential circuit with a precisely con-trolled clock signal that determines
the times at which the flip-flops change state;the resulting circuit is said to be clocked or synchronous. Each tick (cycle orperiod) of the clock permits a single change in
the circuit's state Y as discussedabove; it can also trigger changes in the primary output Z Reflecting the impor-tance of state behavior, the term finite-state machine
(FSM) is often applied to asequential circuit.

The behavior of a sequential circuit can be specified by a state table thatincludes the possible values of its primary outputs and its internal states. Figure2.12a shows the

state table of a small but useful sequential circuit, a serial adder,which is intended to add two unsigned binary numbers X, and X2 of arbitrarylength, producing their sum
Z = X{ plus X2. The numbers are supplied serially, thatis, bit by bit, and the result is also produced serially. In contrast, the combinational

Input x 1*¥2
00 01 10 11
Present SO(y = 0) 50.0 50.1 50.1s,.0
state S,(y=1) s0.i S,,0 5,.0 5,1

Next Presentstate output
(@)
Figure 2.12

(a) State table; (b) logic circuit for a serial adder.

Full

adder
a ol
o
oK
D cur
flip-Nop. |
Reset Choxe.
0}
D
nip-Hop
Clock

80 adder of Figure 2.10 is a "parallel" adder, which, ignoring its internal-signal propa-

gation delays, adds all bits of the input numbers simultaneously. In one clock cycle

System Design '"' ~ se"a”™ adder receives 2 input bits Xy(i) and x2(i) and computes 1 bit z(i) of Z It

also computes a carry signal c(i) that affects the addition in the next clock cycle.Thus the output computed in clock cycle i is

c(i)z(i) = x~Oplus x2(i)plus c(i - 1) (2.6)

where c(i - 1) must be determined from the adder's present state S(i). Observe that(2.6) is equivalent to the expression (2.2) for the full-adder function defined earlier.It

follows that two possible internal states exist: 50, meaning that the previous carrysignal c(i - 1) = 0, and Sx, meaning that c(i - 1) = 1. These considerations lead tothe two-
state state table of Figure 2.12a. An entry in row 5(0 and column x"~x"i)of the state table has the format S(i + 1), z(i), where S(i + 1) is the next internal statethat the

circuit must have when the present state is 5(0 and the present primaryinput combination is x1(i)x2(i); z(i) is the corresponding primary output signal thatmust be
generated.

Because the serial adder has only two internal states, its memory consists of asingle flip-flop storing a state variable y. There are only two possible ways toassign Os and Is
to y. We select the "natural" state assignment that has y = 0 for 50and y = 1 for Sx, since this equates >(/) with the stored carry signal c(i - 1). Assumethat we use an edge-
triggered D flip-flop (Figure 2.11) to store y. The combina-tional logic C then must generate two signals: the primary output z(i) and a second-ary output signal D(i) that is
applied to the D flip-flop's data input. The flip-flop'sbehavior is defined by its characteristic equation (2.5); that is, y(i + 1) = D(i).Hence we have

D() = c(0

It follows from the above discussion that C can be implemented directly by a full-adder circuit such as that of Figure 2.9b, whose sum output is z and whose carryoutput is
D; see Figure 2.12b. Before entering two new numbers to be added, it isnecessary to reset the serial adder to the 50 state. The easiest way to do so is toapply a reset pulse
to the flip-flop's asynchronous clear (CLR) input.

Example 2.2 involves a similar, but more complex sequential circuit and dem-onstrates the use of CAD tools in its design.

example 2.2 design of a 4-bit-stream serial adder. Consider another typeof serial adder that adds four number streams instead of the two handled by a conven-tional serial
adder (Figure 2.12). The new adder has four primary input lines jc,, x2, x3,x4 and a single primary output z. To determine the circuit's state behavior—often themost
difficult part of the design process—we first identify the information to be stored.As in the standard serial adder case, the circuit must remember carry information com-
puted in earlier clock cycles. The current 2-bit sum SUM(i) = c(i)z(i) is given by

SUM() = xx{i)plus x2(i)plus x3(/)/?/us x4(i)plus c(i-1)

where c(i -1) is the carry computed in the preceding clock cycle. If c(i -1) is 0 andeach xfi) = 1, then SUM(i) = 1 plus 1 plus 1 plus 1 plus 0 = 4 = 1002, so c(i) = 102.With
c(i-1) = 102, SUM{i) becomes 6 = 1102, making c{i) = 112. Finally, c(i - 1) =112 makes SUM(i) = 1112 and c(i) = 112, which is the maximum possible value of c.The
carry data to be stored is a binary number ranging from 002 to 112, which implies

that the adder needs four states and two flip-flops. We will denote the four states by50, 5,, S2, S3, where 5, represents a stored carry of (decimal) value i.

Figure 2.13a shows the adder's state table, which has four rows and 16 columns.For present state S(i) and input combination j, the next-state/output entry Sk,z isobtained
by adding i2 and the 4 input bits that determine 7 to form SUM(i) = (k2k]k0)2. Itfollows that k = (k2ki)2 and z = k0. For example, with present state S2 and present
input7, SUM() = 0 plus 1 plus 1 plus 1 plus 102 = 1012, so z = 1 and A: =102 = 2, making S-,the next-state. Following this pattern, it is straightforward to construct the
adder's statetable. With D flip-flops, the next-state values >',(/ + 1)y2(i + I) coincide with the flip-flops' data input values D{(i)D2(i). The adder thus has the general
structure shown inFigure 2.13£>.

A truth table for the combinational logic C appears in Figure 2.13c. It is deriveddirectly from Figure 2.13a with the states assigned the four bit patterns of >',y2 as fol-
lows: SO = 00, 5, = 01, S2 = 10, and 53= 11. Suppose we want to design Cas a two-level

il

CHAPTER 2
Design
Methodology
Present inputs xIx2xix4 (decimal)
012 3 45678910 11 1213 14 15
So S0,0S,.1S0,1s,.0 S0.1S,.0S,.0S,1S0.1S[,0S,,0 S,l S,,0S,1 S,152,0

Present 5is0,1s,,0s,.,0 S,1 S,0S,,15,,182,0S5,0S,1S,1 S2.0S,,15S2.0S2.0S2,1

state S-> S,,0S,.1S,,1 s2,0S,.1S52.0S52,0S2.15S,152.0S2,0S2.1 s2.0s2,1 s2,15s3,0

S3 S, 15:082,0 s2.1s2.0s2,15s2,15s3,0s2.0s2.1s2.1 S3.0s2.1s3,0 s3.0s3.1

(a)
Combinationallogic C
CK<

CK<

Dy

Reset Clock

Present Present Secondary- Primary

inputs state outputs output

A"jX2 Xy X4 >'1>'2 £», D2 z

00000 00 00 0
10000 01 00 1
20000 10 01 0
30000 11 01 1
40001 00 00 1
50001 01 01 0
60001 10 01 1
70001 11 10 0
80010 00 00 1

591110 11 11 0

601111 00 10 0

611111 01 10 1
621111 10 11 0
631111 11 11 1
(b)

(c)

Figure 2.13

Four-bit-stream serial adder: (a) state table; (b) overall structure; (c) truth table for
82 % espresso -Dexact Example 2.2

SECTION 2.1System Design

.16
.03. 261010-1 001
.p51 27 0110-1 001

1 -00010010281001-1 001

2 0-0010010290101-1 001

3 00-010010300011-1 001

4 000-1001031-11111 010

5 00001-010321-1111 010

6 1000-0 00133 11-111 010

7 0100-000134111-11 010

8 0010-00013511111-010

9 0001-0001361111-1 001

10 0000-1 001 37-111-1 100

1

[,

-11000 010 38 1-11-1 100

1

N

1-0100 01039 11-1-1 100

13 01-100 01040 111—1 100

14 101-00010411111—100

15 0-1001 01042 —111 100

16 10-001 01043 —1-11 100

17 -00101 01044 -1—11 100

18 010-01 010451—11 100

19 11000- 01046 —111- 100

2000110-01047-1-11- 100

21 1110-0 001 48 1—11- 100

22 1101-0 001 49 -11-1- 100

23 1011-0 001 50 1-1-1- 100

24 0111-0 00151 11—1- 100

25 1100-1 001 .e

Figure 2.14
///T\\AX Minimal two-level (SOP) design for C com-

X, X2 x3 x4 >>, y2 D, £>2 z puted by ESPRESSO.

circuit like that of Figure 2.9c, using the minimum number of gates. Manual minimiza-tion methods [Hayes 1993] are painfully slow in this case without computer aid.
‘Wehave therefore used a logic synthesis program called Espresso [Brayton et al. 1984;Hachtel and Somenzi 1996] to obtain a two-level SOP design. To instruct Espresso
tocompute the minimum-cost SOP design on a UNIX-based computer requires issuing acommand like

~espresso seradd4

where seradd4 is a file containing the truth table of Figure 2.13c or an equivalentdescription of C. Espresso responds with the table of Figure 2.14, which specifies anSOP
design containing the fewest product terms (these are in a minimal form calledprime implicants [Hayes 1993]), in this case, 51. For example, row 26, which has theformat

x]x2x3x4yiy2 DiD2z= 1010-1 001

states that output z (but not the outputs D, or D2) has xix2xix4y?2 as one of its chosenproduct terms. The dash in 1010-1 indicates a literal, in this case ylt that is not
includedin the term in question. Similarly, row 51 (11 - -1 - 100) states that xix2yi is a term ofDy We conclude from Figure 2.14 that an SOP realization of C for the four-
streamadder has 51 product terms, none of which happen to be shared among the output func-tions. This conclusion implies a two-level circuit containing the equivalent
of at least54 gates (51 ANDs and three ORs), some—especially the OR gates—with very highfan-in, which makes this type of two-level design expensive and impractical for
manyIC technologies. Example 2.6 in section 2.2.3 shows an alternative approach that leadsto a lower-cost, multilevel design for this adder.

Minimizing the number of gates in a sequential circuit is difficult because it isaffected by the flip-flop types, the state assignment, and, of course, the way inwhich the
combinational subcircuit C is designed. Other design techniques exist tosimplify the design process at the expense of using more logic elements. It isimpractical to deal
with complete binary descriptions like state tables if they con-tain more than, say, a dozen states. Consequently, large, sequential circuits aredesigned by heuristic
techniques whose implementations use reasonable but non-minimal amounts of hardware [Hayes 1993; Hachtel and Somenzi 1996]. Thesecircuits are often best designed
at the more abstract register level rather than thegate level.

83

CHAPTER 2

Design

Methodology

2.2

THE REGISTER LEVEL

At the register or register-transfer level, related information bits are grouped intoordered sets called words or vectors. The primitive components are small combina-tional
or sequential circuits intended to process or store words.

2.2.1 Register-Level Components

Register-level circuits are composed of word-oriented devices, the more importantof which are listed in Figure 2.15. The key sequential component, which gives thislevel
of abstraction its name, is a (parallel) register, a storage device for words.Other common sequential elements are shift registers and counters. A number ofstandard
combinational components exist, ranging from general-purpose devices,such as word gates, to more specialized circuits, such as decoders and adders.

Type

Component

Functions

Combinational

Sequential

Word gates.Multiplexers.Decoders and encoders.Adders.

Arithmetic-logic units.Programmable logic devices.

(Parallel) registers.Shift registers.

Logical (Boolean) operations.

Data routing: general combinational functions.

Code checking and conversion.

Addition and subtraction.

Numerical and logical operations.

General combinational functions.

Information storage.

Information storage; serial-parallel conver-

Counters.

Programmable logic devices.

Control/timing signal generation.General sequential functions.

Figure 2.15

The major component types at the register level.

84

SECTION 2.2The Register Level

Register-level components are linked to form circuits by means of word-carryinggroups of lines, referred to as buses.

Types. The component types of Figure 2.15 are generally useful in register-level design; they are available as MSI parts in various IC series and as standardcells in VLSI
design libraries. However, they cannot be identified a priori based onsome property analogous to the functional completeness of gate-level operations.For example, we will
show that multiplexers can realize any combinational func-tion. This completeness property is incidental to the main application of multiplex-ers, which is signal selection
or path switching.

There are no universally accepted graphic symbols for register-level compo-nents. They are usually represented in circuit diagrams by blocks containing anabbreviated
description of their behavior, as in Figure 2.16. A single signal line in adiagram can represent a bus transmitting m > 1 bits of information in parallel; m isindicated
explicitly by placing a slash (/) in the line and writing m next to it (seeFigure 2.16). A components's 10 lines are often separated into data and controllines. An m-bit bus
may be given a name that identifies the bus's role, for example,the type of data transmitted over a data bus. A control line's name indicates theoperation determined by
the line in its active, enabled, or asserted state. Unlessotherwise indicated, the active state of a bus occurs when its lines assume the logi-cal 1 value. A small circle
representing inversion is placed at an input or outputport of a block to indicate that the corresponding lines are active in the 0 state andinactive in the 1 state.

Alternatively, the name of a signal whose active value is Oincludes an overbar.

The input control lines associated with a multifunction block fall into twobroad categories: select lines, which specify one of several possible operations thatthe unit is to
perform, and enable lines, which specify the time or condition for aselected operation to be performed. Thus in Figure 2.16, to perform some operationFx, first set the
select line F to a bit pattern denoting F{ and then activate the edge-triggered enable line £by applying a O-to-1 edge signal. Enable lines are often con-nected to clock
sources. The output control signals, if any, indicate when or howthe unit completes its processing. Figure 2.16 indicates termination by 5 = 0. Thearrowheads are omitted
when we can infer signal direction from the circuit struc-ture or signal names.

Function kselect F

Enable E

Controlinput lines

Data input linesAi A-? A-i

i/fm/TmX
X
Muliifunction | Termination
unit status §
m‘: n.a‘; Control
Z,72

Data output lines

Control

output lines Figure 2.16

Generic block representation of aregister-level component.

Operations. Gate-level logic design is concerned with combinational func-tions whose signal values are from the two-valued set B = {0,1} and form a Bool-ean algebra. We
can extend these functions to functions whose values are takenfrom Bm, the set of 2m m-bit words, rather than from B. Let z(xx,x2,...,xn) be anytwo-valued combinational
function. Let Xx,X2,...,Xn denote m-bit binary wordshaving the form X, = (xiti,xi",...,.xi") for / = 1,2,...,«. We define the word opera-tion z as follows:

z(X1,X2,....Xn) = [z(x] {,x2 u....xn 1)~ (x]2,x22,...,xn2),...,zixljn,x2jn,...,xnjn)] (2.7)

This definition simply generalizes the usual Boolean operations, AND, NAND,and so forth, from 1-bit to m-bit words. If z is the OR function, for instance, wehave
X1+X2+- +Xn = (¥Ifl + x2A + EEE+ xnAsh2 + x22 + EEE+ xn2,

MW ' X\jn + xjm + 'e¢ + xn,m)

which applies OR bitwise to the corresponding bits of n m-bit words.2mnThe set of all 2 combinational functions defined on n m-bit words forms a

Boolean algebra with respect to the word operations for AND, OR, and NOT. Thisgeneralization of Boolean algebra to multibit words is analogous to the extensionof the
ordinary algebra from single numbers (scalars) to vectors. Pursuing thisanalogy, we can treat bits as scalars and words as vectors, and obtain more com-plex logical
operations, such as

yX=(yxLyx2, ...yxjy + X = (y + xLy + X2, ..,y + Xj

(2.8)

‘Word-based logical operations of this type are useful in some aspects of register-level design. However, they do not by themselves provide an adequate design the-ory for
several reasons.

* The operations performed by some basic register-level components are numeri-cal rather than logical; they are not easily incorporated into a Boolean frame-work.

* Many of the logical operations associated with register-level components arecomplex and do not have the properties of the gates—interchangeability ofinputs, for
example—that simplify gate-level design.

» Although a system often has a standard word length w based on the width ofsome important buses or registers, some buses carry signals with a differentnumber of bits.
For example, the outcome of a test on a set 5 of vv-bit words(does S have property PI) is 1 bit rather than w. The lack of a uniform word sizefor all signals makes it difficult
to define a useful algebra to describe operationson these signals.

Lacking an adequate general theory, register-level design is tackled mainly withheuristic and intuitive methods.

‘We next introduce the major combinational and sequential components used indesign at the register level. (Refer to Figure 2.15).

85

CHAPTER 2

Design

Methodology

86

SECTION 2.2The Register Level

Word gates. Let X = (xux2,...,.xm) and Y = (yi,y2,...,y,,,) be two m-bit binarywords. As noted already, it is useful to perform gate operations bitwise on X and Yto obtain
another m-bit word Z = (zi,z2,...,Zm). We coin the term word-gate opera-tions for logical functions of this type. In general, if/is any logic operator, wewrite Z=£(X,Y) if z,
=/(jc,.,y,) fori =1,2,...,m. For example, Z= XY denotes the m-bit NAND operation defined by

Z=(zl,z2,...,zm) = (xlyl,x2y2, ...,.xmym)

This generalized NAND is realized by the gate-level circuit in Figure 2.17a. It isrepresented in register-level diagrams by the two-input NAND symbol of Figure2.17b,
which is an example of a word gate. It is also useful to represent scalar-vector operations by a single gate symbol. For example, the operation y + Xdefined by (2.8) and

realized by the circuit of Figure 2.18a can be represented bythe register-level gate symbol of Figure 2.18b.

Word gates are universal in that they suffice to implement any logic circuit;moreover, word-gate circuits can be analyzed using Boolean algebra. In practice,however, the
usefulness of word gates is severely limited by the relative simplicityof the operations they perform and by the variability in word size found at the reg-ister level.

*y\ x2 >'2
(0=
I I I
XY

m, /m

(a)

\%

z

(b)

Figure 2.17

Two-input, m-bit NAND word gate: (a) logic diagram and (b) symbol.
(a)

Xy

m//1

z

(b)

Figure 2.18

OR word gate implementing y + X: (a) logic diagram; (b) symbol.

Multiplexers. A multiplexer is a device intended to route data from one ofseveral sources to a common destination; the source is specified by applyingappropriate control
(select) signals to the multiplexer. If the maximum number ofdata sources is k and each 10 data line carries m bits, the multiplexer is referred toas a k-input (or k-way), m-
bit multiplexer. It is convenient to make k = 2P, so thatdata source selection is determined by an encoded pattern or address of p bits.The 2P addresses then cover the
range 00...0, 00...1, ..., 11...1 = 2P - 1. A multi-plexer is easily denoted by a suitably labeled version of the generic block symbolof Figure 2.16; the tapered block symbol
shown in Figure 2.19, where the narrowend indicates the data output side, is also common.

Let a{ = 1 when we want to select the m-bit input data bus X, = (jc,-"*, (,...,.xi,m-\) °f me multiplexer of Figure 2.19. Then at = 1 when we apply the word cor-responding
to the binary number i to the select bus 5. The binary variable a,denotes the selection of input data bus X,—a, is not a physical signal. The dataword on X, is then
transferred to Z when e = 1. The operation of the 2" -input w-bitmultiplexer is therefore defined by m sum-of-product Boolean equations of theform

Zj= (x0ja0 + xljal+ *++ +x2p ija2p i)e for;' =0, 1, ...m- 1 (2.9)

or by the single word-based equation

Z= (X0a0 + Xlal +

{a2P-i)e

Figure 2.20 shows a typical gate-level realization of a two-input, 4-bit multiplexer.Several &-input multiplexers can be used to route more than k data paths byconnecting
them in the treelike fashion shown in Figure 2.21. A g-level tree cir-cuit of this type forms a ~-input multiplexer. A distinct select line is associatedwith every level of the
tree and is connected to all multiplexers in that level. Thuseach level performs a partial selection of the data line X, to be connected to theoutput Z.

Multiplexers as function generators. Multiplexers have the interesting prop-erty that they can compute any combinational function and so form a type of uni-versal logic
generator. Specifically, a 2"-input, 1-bit multiplexer MUX cangenerate any ~-variable function z(v0,v,,...,v,_,). This is accomplished by apply-ing the n input variables
v0,v,,...,vn_, to the n select Ymes s0,s],...,sn_Jof MUX, and2" function-specific constant values (0 or 1) to MUX's 2" input data lines .v0,.v,

87

CHAPTER 2

Design

Methodology

Data in X,

1 %2P-

i-mr..m)r

Select S

Enable e

P\O1

Multiplexer(MUX)

Data out Z

Figure 2.19

A 2/'-input, m-bit multiplexer.

Data in xn ft x

0.0 *i.0 *0. 1 xi, 1 ¥0,2 ~1.2 x0.3 x1.1

SECTION 2.2The Register Level

Select s

Enable e

1
LD_E\I i]

nmow zo o o zs
Data out z0

Figure 2.20

Realization of a two-input, 4-bit multiplexer.

Data in

An X<

X2 X3 X4 X5 X6 Xn

~'—To T7 I—To i7 |—To i7 I—To
1AMux/1AMux/1AMux/1AMux

Select *< ~i —»

Enable e

0114 Mux

Mux

1 A Mux/

Data out Z

Figure 2.21

An eight-input multiplexer constructed from two-input multiplexers.
jc2n_j. The output of MUX is then

Z= (x0a0 + xlal + ¢+ +x2" ,a2«_1)e

(2.10)

as defined by (2.9), where again a, denotes the selection of input data bus jc,.Clearly, a, corresponds to the z'th row in z's truth table with respect to the inputvariables vO0,

v”..., vn_,. With e= 1, setting xt = 1 (0) if row i of the truth table for zis 1 (0) makes (2.10) into a sum-of-products expression for z. Hence by connectingeach input data
line to the appropriate logic value 0 or 1, we can realize any of the2 possible logic functions of n variables.

EXAMPLE 2.3 USING A MULTIPLEXER TO IMPLEMENT A FULL ADDER. As we saw

in section 2.1, a full adder is a three-input, two-output circuit that adds 3 bits x0, y0, andc_] (the carry in) to obtain a 2-bit result consisting of sO (the sum bit) and c0 (the
carryout). It is the basic component of a serial adder (Figure 2.12) and has various gate-levelrealizations such as those of Figure 2.9. A multiplexer MUXX with m = 2 and
n = 2P = 8,that is, an eight-input, 2-bit multiplexer, can implement the full adder, as shown in Fig-ure 2.22b. The adder's input variables are applied to the three select
lines, not as mightbe expected, to the multiplexer's data input buses. Instead constant values 0 or 1 areapplied to the data inputs as indicated. Each pattern i of x~qC"
selects a specific inputdata bus X, and routes its 2-bit word to the output bus z = s0c0. Observe how this proce-dure effectively maps the truth table for .s0 and c0 (Figure
2.22a) directly onto M£/X,'sinput data lines.

If one input variable of the full adder, say c_,, is available in both true and comple-mented form, we can implement the adder with the smaller, four-input, 2-bit multi-plexer
MUX2 shown in Figure 2.22c. The two inputs x0, y0 are applied to M£/X2's selectlines as before, but we apply one of c_x, c_1? 0, or 1 to each line Xq of data bus X,.
NowXjj must realize two rows of the form x$>00 and x"qI in the adder's truth table. If, forexample, these rows have the same fixed value a for the output (sO or c0) of
interest,then we apply a tox”-. If the rows have different values, then either c_, or c_, is applied

89

CHAPTER 2

Design

Methodology

Inputs Outputs

*0 yo c-\so co

00 000

00 110

01 010

01 101
10 010
10 101
11 001
11 111
(f)

Four-way,
Zbit
multi- 7

X; plexer
MUx,

® Eighuway,
2-bit

muli- 2
plexer
MUX,

T Yo c

[}
Sum sQ— Carry cO
(c)
Figure 2.22
Multiplexer-based full adder: (a) truth table; (b) first version; (c) second version.
90
SECTION 2.2The Register Level
to Xn, as appropriate. We see from this example that a 2"-input, m-bit multiplexer canrealize any (n + Invariable, w-output logic function.
Decoders. A l-out-of-2" or 1/2" decoder is a'combinational circuit with ninput lines X and 2" output lines Z such that each of the 2" possible input combina-tions Aj applied
to X activates a corresponding output line z(. Figure 2.23 shows al/4 decoder. Several 1/2" decoders can be used to decode more than n lines byconnecting them in a tree
configuration analogous to the multiplexer tree of Figure2.21. The main application of decoders is address decoding, where A, is interpretedas an address that selects a
specific output line Z; or some circuit attached to z,. Forexample, decoders are used in RAMs to select storage cells to be read from orwritten into.
Another common application of decoders is that of routing data from a com-mon source to one of several destinations. A circuit of this kind is called a demulti-plexer, since
it is, in effect, the inverse of a multiplexer. In this application thecontrol input e (enable) of the decoder is viewed as a 1-bit data source to be routedto one of 2"
destinations, as determined by the address applied to the decoder. Thusa 1/2" decoder is also a 2"-output, 1-bit demultiplexer. A £:-output, m-bit demulti-plexer can be

readily constructed from a network of decoders. Figure 2.24 shows afour-output, 2-bit demultiplexer that employs two 1/4 decoders of the type in Fig-ure 2.23.

Encoders. An encoder is a circuit intended to generate the address or index ofan active input line; it is therefore the inverse of a decoder. Most encoders have 2input data
lines and k output data lines. For example, when k = 3, entering a data

Enable e

A

@
1/4decoder

Z0 Z\ z2 z3(b)

Figure 2.23

A 1/4 decoder: (a) logic diagram; (b) symbol.
Data in

Select(address)

1/4decoder

1/4decoder

SRR

Data out

Z:

Figure 2.24

A four-output, 2-bit demultiplexer.

91

CHAPTER 2

Design

Methodology

pattern such as x0xix2x3x4x5x6x1 = 00000010 into an eight-input encoder shouldproduce the response z2Z\Zq =110, denoting the number 6, and indicating that x6 =1.
Additional (control) outputs are necessary to distinguish the input jcO active andno input active states. Moreover, it is also necessary to assign priorities to the inputlines
and design the encoder so that the output address is always that of the activeinput line with the highest priority. A circuit of this type is called a priority-encoder; see
Figure 2.25. A fixed priority is assigned to each input line such that a,has higher priority than x if / >j. We leave the logic design of this priority encoderas an exercise
(problem 2.22).

Arithmetic elements. A few fairly simple arithmetic functions, notably addi-tion and subtraction of fixed-point numbers, can be implemented by combinationalregister-level
components. Most forms of fixed-point multiplication and divisionand essentially all floating-point operations are too complex to be realized by sin-gle components at this
design level. However, adders and subtracters for fixed-point binary numbers are basic register-level components from which we canderive a variety of other arithmetic
circuits, as we will see later. Figure 2.26ashows a component that adds two 4-bit data words and an input carry bit: it iscalled a 4-bit adder. (A full adder is sometimes
called a 1-bit adder.) The adder'scarry-in and carry-out lines allow several copies of this component to be chainedtogether to add numbers of arbitrary size; note, however,
that the addition timeincreases with the number size. (See Chapter 4 for coverage of the design of addersand more-complex arithmetic circuits). Another useful arithmetic
component is amagnitude comparator, whose function is to compare the magnitudes of* twobinary numbers. Figure 2.26b shows the overall structure of a 4-bit
comparator.

92

SECTION 2.2The Register Level

Input active
Inputs Outputs

ex0x\x2xlx4 *sx6*7 ~2Zlzo ia
0d dd dd ddd (00 0
10 00 00 00 O0O0 OO 0
1d rfrfdd dd 11 11

1d fd dd d1 01 I0
lddddd 1001 01

1d dd d1 0001 00
1rffdd 10 0000 11

1d d1 00 00 O0O0 10
1</10 00 00O0O0 O1

11 00 00 0000 OO

(a)
Figure 2.25

An 8-input priority encoder: (a) truth table; (b) symbol.

5 Sinput
priodity T |—
encoder

Enablc.

Carry
it =] gy, |

Carry

Sum Z

4/

4-bitmagnitudecomparator

X<Y X=Y X>Y

(b)

Figure 2.26

Symbols for (a) a 4-bit parallel adder; (b) a 4-bit magnitude comparator.

Magnitude comparators are relatively complex circuits requiring either many gatesor many logic levels.

EXAMPLE 2.4 DESIGN OF A 4-BIT MAGNITUDE COMPARATOR. Consider theinternal design of the magnitude comparator depicted in Figure 2.26b. It has eight
inputlines, implying that its truth table has 28 = 256 rows. The comparator is quite difficultto design at the gate level. Furthermore, a two-level (SOP or POS) realization
isimpractical because of the many gates involved, as well as their large fan-in.

‘We can design a magnitude comparator for two n-bit numbers X and Y efficientlyat the register level by noting that X > Y is equivalent to

X-K>0

(2.11)

Now Y can be computed by the subtraction step (2" - 1) - Y, where Y is the bitwisecomplement of Y and 2" - 1 is a sequence of n Is. For example, if n = 4 and Y = 1001(9),
thenY = 0110(6), 24-1 = 1111 (15), and Y= 1111 -0110= 1001. Hence inequal-ity (2.11) can be replaced by X - (2" - 1 - Y) > 0, implying

X+Y>2"1=11..1(2.12)

Now suppose we add X and Y using an adder such as that of Figure 2.26a. If the ine-quality of (2.12) is satisfied, then the adder's carry-out signal cout will be 1, because X
+Y will exceed the largest n-bit number 2" - 1. In the preceding example with X = 1100(12) and Y = 1001 (9), we have X+ Y= 1100 + 0110 = 10010 (18), for which the
outputcarry is 1. We can therefore perform the original magnitude test X > Y as follows:

1. Compute Y from Y using an n-bit word inverter.

2. Add X and Y via an n-bit adder and use the output-carry signal cout as the primaryoutput. If cout = 1, then X > Y; if cout = 0, then X < Y.

Figure 2.27 shows a direct realization of the above scheme to implement zz = {X>Y)for the 4-bit case. By switching X and Y, we can generate Z\ - (X <Y) in exactly
thesame manner. We do not need the sum outputs of the two adder modules; hence wecan discard them and their associated circuits, thereby reducing the adders to

carry-generation circuits.

‘We have yet to compute the "equals" output denoted z2 = (X =Y). This calculationrequires comparing each bit X, of X to the corresponding bit Y, of Y, which can be
doneby an EXCLUSIVE-NOR gate that produces X, © Y,. Now z2 = 1 when X, © Y, = 1for all i; that is,

22 = (x,_1OYIL 1)(xII 2eyl, 2)"-(x0©y0)
(2.13)

Figure 2.27 also gives a 4-bit implementation of (2.13) using EXCLUSIVE-NOR andAND word gates. Practical magnitude comparators such as the 74X85 [Texas Instru-
ments 1988] use a similar design that incorporates a fast carry-generation technique(carry lookahead).

93
CHAPTER 2
Design

Methodology

%
: T

r
4 4
it
bimary |[Bg 4
adder

1
Sum (ot wsed) Samn: (nof wsed
4-bit
binary — 0
adder
Sum (not used)
Z,(X<y) z2(X=Y) Zj(X>Y)
Figure 2.27
Register-level design of a 4-bit magnitude comparator.

94

SECTION 2.2The Register Level
‘We turn now to the main sequential components used at the register level.

Registers. An m-bit register is an ordered set of m flip-flops designed to storean /n-bit word (zq,Z\,...,z,,,_\). Each bit of the word is stored in a separate flip-flop,but the
flip-flops have common control lines (clock, clear, and so on). Registerscan be constructed from various flip-flop types. Figure 2.28a shows a 4-bit registerconstructed from
four D flip-flops, and Figure 2.286 shows a suitable graphic sym-bol for it. The register and its output signal (which denotes the register's state) arefrequently assigned the
same name.

The register Z of Figure 2.28 reads in the data word X each time it is clocked.Therefore, to maintain the contents or state of Z at a constant value, it is necessaryto apply
that value continuously to Z's input bus. Often we want to load a newvalue of X into Z in a particular clock cycle and subsequently change X withoutchanging Z. To this
end, we introduce a control line LOAD, which should cause theregister to read in (load) the current value of X when it is clocked and LOAD hasbeen set to 1. When LOAD
= 0, the state of Z should not change when the registeris clocked; it should retain the last value loaded into it. To add this load feature toregister Z of Figure 2.28, we
insert a two-input, 4-bit multiplexer MUX into itsinput data bus as shown in Figure 2.29a. The new control line LOAD is connected

CLOCKCLEAR

0 o a
| 1 |
HE e #RE
D D = D

=
g
| ™
8
Lf
E
[&
]

CLOCKCLEAR

X

4/

Register Z

4/

4

(b)

Figure 2.28

A 4-bit D register with parallel 10: (a) logic diagram; (b) symbol.

to MUX's select line s. MUX's data input lines are connected to X and to the regis-ter output Z so that the circuit behaves as follows in each clock cycle. If LOAD = 1,then
X is loaded into the register from the input bus: that is. Z := X. If LOAD = 0,then the old value of Z is loaded back into the register; that is, Z := Z.

Registers like those of Figures 2.28 and 2.29 are designed so that external datacan be transferred to or from all its flip-flops simultaneously; this mode of opera-tion is
called parallel input-output. In some computer-design situations it is usefulto transfer (shift) the contents of a register in and out 1 bit at a time. A registerdesigned for
such operations is a shift register. A right-shift operation changes theregister's state as described by the following register-transfer statement:
(X'Zm-\'Zm-2'---'Z0 'W- ("m-1'Zm-2'---'21'Zo)
A left shift performs the similar transformation:
(zm-2>zm-?>>--->z0x) := (zm-\'Zm-2>---'Z\'Z0)
In each case a bit of stored data is lost from one end of the shift register, while anew data bit x is brought in at the other end. In its simplest form, an m-bit shift reg-ister
consists of m flip-flops each of which is connected to its left or right neighbor.Data can be entered 1 bit at a time at one end of the register and can be removed(read) 1 bit
at a time from the other end; this process is called serial input-output.Figure 2.30 shows a 4-bit shift register built from D flip-flops. A right shift isaccomplished by
activating the SHIFT enable line connected to the clock input CKof each flip-flop. In addition to the serial data lines, m input or output lines areoften provided to permit
parallel data transfers to or from the shift register. Addi-tional control lines are required to select the serial or parallel input modes. A fur-ther refinement is to permit both
left- and right-shift operations.
95
CHAPTER 2
DesignMethodology
4,
LOAD
10
2-way,5 multiplexer

4

€LOCK
CLEAR

Register Z

@
X

4/

LOADCLOCKCLEAR

> Register Z

Z(*)

Figure 2.29

A 4-bit D register with parallel load: (a) logic diagram; (b) symbol.
96

SECTION 2.2The Register Level

SHIFTCLEAR

(a)

SHIFT

CLEAR

Shift register

(b)

Figure 2.30

A 4-bit, right-shift register: (a) logic diagram; (b) symbol.

Shift registers are useful design components in a number of applications,including storage of serial data and serial-to-parallel or parallel-to-serial data con-version. They
can also be used to perform certain arithmetic operations on binarynumbers, because left- (right-) shifting corresponds to multiplication (division) bytwo. The instruction
sets of most computers include shift operations.

Counters. A counter is a sequential circuit designed to cycle through a prede-termined sequence of k distinct states 50,5,,..., Sk_j in response to signals (1 -pulses)on an
input line. The k states represent k consecutive numbers, so the state transitionscan be described by the statement

SM := 5, plus 1 (modulo k)

Each 1-input increments the state by one; the circuit can therefore be viewed ascounting the input Is. Counters come in many different varieties depending on thenumber
codes used, the modulus k, and the timing mode (synchronous or asynchro-nous).

Figure 2.31 shows a counter designed to count 1-pulses applied to its COUNTENABLE input line. The counting is modulo-2"; that is, the counter's modulus k =
2", and it has 2" states Sn, S,

'2--1-

The output is an n-bit binary number

COUNT = Sj, and the count sequence is either up or down, as determined by thecontrol line DOWN. In the up-counting mode (DOWN= 0), the counter's behavior is
S,+1 := 5, plus 1 (modulo 2")

COUNT ENABLECLEARDOWN

Modulo-2"up-downcounter

COUNT

Figure 2.31

A modulo-2'1 up-down counter.

97

CHAPTER 2

Design

Methodology

whereas in the down-counting mode (DOWN = 1), the behavior becomes5,+1 := S minus 1 (modulo 2")

In some counters modulus-select control lines can alter the modulus; such countersare termed programmable.

Counters have several applications in computer design. They can store thestate of a control unit, as in a program counter. Incrementing a counter provides anefficient
means of generating a sequence of control states. Counters can also gener-ate timing signals and introduce precise delays into a system.

Buses. A bus is a set of lines (wires) designed to transfer all bits of a wordfrom a specified source to a specified destination on the same or a different IC; thesource and
destination are typically registers. A bus can be unidirectional, that is,capable of transmitting data in one direction only, or it can be bidirectional.Although buses perform
no logical function, a significant cost is associated withthem, since they require logic circuits to control access to them and, when usedover longer distances, signal
amplification circuits (drivers and receivers). The pinrequirements and gate density of an IC increase rapidly with the number of externalbuses connected to it. If these
buses are long, the cost of the wires or cables usedmust also be taken into account.

To reduce costs, buses are often shared, especially when they connect manydevices. A shared bus is one that can connect one of several sources to one of sev-eral
destinations. Bus sharing reduces the number of connecting lines but requiresmore complex bus-control mechanisms. Although shared buses are relativelycheap, they do
not permit simultaneous transfers between different pairs ofdevices, which is possible with unshared or dedicated buses. Bus structures areexplored further in Chapter 7.

2.2.2 Programmable Logic Devices

Next we examine a class of components called programmable logic devices orPLDs, a term applied to ICs containing many gates or other general-purpose cellswhose
interconnections can be configured or "programmed" to implement anydesired combinational or sequential function [Alford 1989]. PLDs are relativelyeasy to design and
inexpensive to manufacture. They constitute a key technologyfor building application-specific integrated circuits (ASICs). Two techniques, areused to program PLDs: mask
programming, which requires a few special steps in

98
SECTION 2.2The Register Level

the IC chip-manufacturing process, and field programming, which is done bydesigners or end users "in the field" via small, low-cost programming units. Somefield-
programmable PLDs are erasable, implying that the same IC can be repro-grammed many times. This technology is especially convenient when developingand debugging
a prototype design for a new product.

Programmable arrays. The connections leading to and from logic elements ina PLD contain transistor switches that can be programmed to be permanentlyswitched on or
switched off. These switches are laid out in two-dimensional arraysso that large gates can be implemented with minimum IC area. The programmablelogic gates of a PLD
array are represented abstractly in Figure 2.32b, with x denot-ing a programmable connection or crosspoint in a gate's input line. The absence ofan x means that the
corresponding connection has been programmed to the off (dis-connected) state.

The gate structures of Figure 232b can be combined in various ways to imple-ment logic functions. The programmable logic array (PLA) shown in Figure 2.33is intended
to realize a set of combinational logic functions in minimal SOP form.It consists of an array of AND gates (the AND plane), which realize a set of prod-uct terms (prime
implicants), and a set of OR gates (the OR plane), which formvarious logical sums of the product terms. The inputs to the AND gates are pro-grammable and include all
the input variables and their complements. Hence it ispossible to program any desired product term into any row of the PLA. For exam-ple, the top row of the PLA in
Figure 2.33 is programmed to generate the termx2x3x4y}y2, which is used in computing the output D2\ the last row is programmedto generate xxx2yx for output D,. The
inputs to the OR gates are also programma-ble, so each output column can include any subset of the product terms producedby the rows. The PLA in Figure 2.33 realizes
the combinational part C of the 4-bit-stream adder specified in Figure 2.13. The AND plane generates the 51 six-vari-able product terms according to the SOP design given
in Figure 2.14.

:L>-
(a)
XX

x\ X2
(b)
Figure 2.32

AND and OR gates: (a) normal notation; (b) PLD notation.

AND planevy w * ww w 1 Ai OR plane

>
>>\ f/ ~V AN1-Y 2 7
L
?
s < f 3 A
s
<
? s S' “my 4 X
t
Vv s / i—v 5
\
\ A% \ "y 6 A
t
k \ ee) f ~"n-"49 N e/
/) \? f I—v 50
\ /" \ _j—V51
/
N y yv vy y v Yn
*2
°*3
X4
Data in
D, D2
Data out
Figure 2.33

PL A implementing the combinational part C of the adder of Figure 2.13.

99

CHAPTER 2

Design

Methodology

Closely related to a PLA is a read-only memory (ROM) that generates all 2"possible rc-variable product terms (minterms) in its AND plane. This enables eachoutput
column of the OR plane to realize any desired function of n or fewer vari-ables in sum-of-minterms form. Unlike a PLA, the AND plane is fixed; the pro-gramming that
determines the functions generated by a ROM is confined to the ORplane. A small ROM with three input variables, 23 = 8 rows, and two output col-umns is shown in
Figure 2.34/?. It has been programmed to realize the full-adderfunction defined by Figure 2.34a—compare the multiplexer realizations of the fulladder appearing in Figure
2.22. Note the use of dots to denote the fixed connec-tions in the AND plane. This particular ROM can be programmed to realize anytwo of the 256 Boolean functions of
three or fewer variables. Field-programmableROMs are known as PROMs (programmable ROMs).

PLAs and ROMs are universal function generators capable of realizing a set oflogic functions that depend on some maximum number of variables. They are two-level logic
circuits in which the lines can have large fan-out and the gates (espe-cially the output gates) can have large fan-in. High fan-in and fan-out tends tomake these circuits'
propagation delays quite high, however. A ROM is a memorydevice only in the sense that its OR plane "stores" the 2" data words that have beenprogrammed into it. A
stored word is read out each time the ROM receives a newinput combination or address. The AND plane therefore serves as a l-ouf-ol-2'address decoder.

100

SECTION 2.2The Register Level

Inputs Outputs

x0 >'o0 C-1sOco

00 0 00

00 110

01 0 10

01 1 01

1 0 01
11
1 1 11
(a)
AND plane o | OR plane
L]
L2
Lt
=[5
L
L
5
=
T
sdodad -
] I I g

(b)
Figure 2.34
ROM implementation of a full adder: (a) truth table; (b) ROM array.

Comparing Figures 2.34a and 2.34b, we see that a ROM effectively stores theentire truth table of the functions it generates. Consequently, the effort needed todesign a
ROM is trivial. The process of reading the stored information from aROM is referred to as table lookup. Read-only memories are suitable for imple-menting circuits whose
10 functions are difficult to specify in logical terms; somecode conversion and arithmetic circuits are of this type. The usefulness of ROMs islimited by the fact that their
size doubles with each new primary input variable.Unlike a ROM, a PLA stores a condensed (minimized) form of the truth table andso generally occupies much less chip
area than an equivalent ROM.

Many variants of the preceding PLD types exist [Alford 1989]. RegisteredPLAs have flip-flops attached via programmable connections to the outputs of theOR plane,
allowing a single IC to implement medium-sized sequential circuits.Programmable array logic (PAL) circuits have an AND plane that is programma-ble, but an OR plane
with fixed connections designed to link each output line to afixed set of AND rows, typically about eight rows. Such a PAL output can realizeonly a two-level expression
containing at most eight terms. A PAL's advantagesare ease of use in some applications, as well as higher speed because output fan-outis restricted.

Field-programmable gate arrays. This important class of PLDs was introducedin the mid-1980s. A field-programmable gate array (FPGA) is a two-dimensionalarray of
general-purpose logic circuits, called cells or logic blocks, whose functionsare programmable; the cells are linked to one another by programmable buses. Thecell types
are not restricted to gates. They are small multifunction circuits capableof realizing all Boolean functions of a few variables; a cell may also contain one ortwo flip-flops.
Like all field-programmable devices, FPGAs are suitable for imple-menting prototype designs and for small-scale manufacture.

FPGAs can store the program that determines the circuit to be implemented ina RAM or PROM on the FPGA chip. The pattern of the data in this configuration

memory CM determines the cells' functions and their interconnection wiring. Eachbit of CM controls a transistor switch in the target circuit that can select some
cellfunction or make (break) some connection. By replacing the contents of CM,designers can make design changes or correct design errors. This type of FPGAcan be
reprogrammed repeatedly, which significantly reduces development andmanufacturing costs. Some FPGAs employ fuses or antifuses as switches, whichmeans that each
FPGA IC can be programmed only once. These one-time pro-grammable FPGAs have other advantages, however, such as higher density, andsmaller or more predictable
delays.

Two types of logic cells found in FPGAs are those based on multiplexers andthose based on PROM table-lookup memories. Figure 2.35a shows a cell type (theC-module)
employed by Actel Corp.'s ACT series of multiplexer-based FPGAs[Greene, Hamdy, and Beal 1993; Actel 1994]. This cell is a four-input, 1-bit multi-plexer with an AND and
OR gate added. A variant called the S-module has a Dflip-flop connected to the primary output; there are also special cells attached to theFPGA's 10 pins. An ACT FPGA
contains a large array (many thousands) of suchcells organized in rows separated by horizontal wiring channels as illustrated inFigure 2.356. Vertical wire segments are
attached to each cell's 10 terminals.These wires enable connections to be established between the cells and the wiringchannels by means of one-time-programmable
antifuses positioned where the hori-zontal and vertical wires cross. In addition, long vertical wires run across the entirearray to carry primary IO signals, power (logical
1), and ground (logical 0).

Our discussion of multiplexers as function generators implies that the FPGAcell of Figure 2.35a can generate any Boolean function of up to three variables ifthe inputs are
supplied in both true and complemented form. This cell can alsogenerate various useful functions of more than three variables due to the presence

101
CHAPTER 2
Design
Methodology
*2
Four-input,

1-bitmultiplexer

FEOC LT 10

T 1
L W 4
Cell inpat or oug
= {logic block)

Cell inpul or outputCell (logic block)

Vertical wire Horizontal wiring channel

)

Figure 2.35

Actel ACT-series FPGA: (a) basic cell (C-module); (b) chip architecture
102

SECTION 2.2The Register Level

of the two extra gates. Figures 2.36a, 2.36b. and 2.36c show how this cell imple-ments a functionally complete set of logic gates. Observe how the cell's AND andOR gates
help to realize four-input AND and OR functions. Figure 2.36al showshow the same, basically combinational cell implements an edge-triggered D flip-flop.

EXAMPLE 2.5 FPGA IMPLEMENTATION OF A SERIAL ADDER. We will use

the Actel C-module of Figure 2.35a to realize the serial adder of Figure 2.12. The tar-get circuit contains a combinational part C. which is a full adder defined by the equa-
tions

c =xxx2 + xly + Xy
(2.14)

0"X

Four-input, 1-bit
multiplexer

>f£-*

Four-input.
1-bitmultiplexer
d

a+b+c+d
0-X

Four-input.

1-bitmultiplexer

XXXX
(@)

(d)

Figure 2.36

FPGA cell of Figure 2.35a programmed to realize: (a) a four-input AND gate; (») a four-input OR gate; (c) aninverter; (d) a D flip-flop.

Here z is the sum bit and c is the carry bit. A single D flip-flop stores the value of ¢ pro-duced in each clock cycle and applies it to C as y in the next clock cycle. We
willassume that if the complements of any of the input variables jc,, x2, or y are needed,they must be generated explicitly in the FPGA. We will also try to use as few cells
aspossible in the target circuit.

Figure 2.36d shows that two cells are required for the D flip-flop, assuming thatwe don't need the complement of y. It's not immediately clear how many cells areneeded to
produce the sum and carry. A little experimentation shows that the carryfunction does indeed have a one-cell realization; see Figure 2.37. Observe that Equa-tion (2.14)
can be rewritten as

c = y(xx + x2) + xyx2

which suggests the way we use the Actel cell's AND and OR gates. No amount ofexperimentation yields a one-cell realization of the sum function. The
multiplexerrealization of the full adder we gave earlier (Figure 2.22c) requires the data inputs tobe supplied to the sum part in both true and complemented form. We will
thereforedevote a third cell to generating y so we can realize z in the manner of Figure 2.22c.

103

CHAPTER 2

Design

Methodology

Figure 2.37

FPGA implementation of a serial adder.
104 The resulting design given in Figure 2.37 for the serial adder employs a total of five

cells.SECTION 2.2

The Register Level

FPGAs are very well suited to computer-aided'design and manufacture; theprocess of mapping a new design into one or more FPGA chips can be almostentirely
automated. It requires first translating or "compiling" the design specifica-tion—a schematic diagram or an HDL description, for example—into a logic (gateand flip-flop)
model. Specialized place-and-route CAD software is then employedto assign the logic elements to cells, to determine the switch settings needed to seteach cell's function,
and to establish the intercell connections. Finally, the designis physically transferred to one or more copies of the FPGA chip via an appropri-ate programming unit, a
process that has been aptly described as "desktop manu-facturing."

2.2.3 Register-Level Design

A register-level system consists of a set of registers linked by combinational data-transfer and data-processing circuits. A block diagram can define its structure, andthe
set of operations it performs on data words can define its behavior. Each opera-tion is typically implemented by one or more elementary register-transfer steps ofthe form

cond:Z:=£(X],X2,...,.Xk); (2.15)

where/is a function to be performed or an instruction to be executed in one clockcycle. Here X,, X->, ..., Xk and Z denote data words or the registers that store them.The
prefix cond denotes a control condition that must be satisfied (cond = 1) forthe indicated operation to take place. Statement (2.15) is read as follows: whencond holds,
compute the (combinational) function/on Xx, X2, ..., Xk and assign theresulting value to Z.

Data and control. A simple register-level system like that of Figure 2.38a per-forms a single action, in this case, the add operation Z := A + B. Figure 2.386shows a more
complicated system that can perform several different operations.Such a multifunction system is generally partitioned into a data-processing part,called a datapath, and a
controlling part, the control unit, which is responsible forselecting and controlling the actions of the datapath. In the example in Figure2.386, control unit CU selects the
operation (add, shift, and so on) for the ALU toperform in each clock cycle. It also determines the input operands to apply to theALU and the destination of its results. It is
easy to see that this circuit has the con-nection paths necessary to perform the following data-processing operations, aswell as many others.

Z:=A+B;

B:=A-B;

Less obvious operations that can be performed are the simple data transfer Z := B,which is implemented as Z := 0 + B: the clear operation B := 0, which is imple-mented
as B := B - B; and the negation operation B := 0 - B. A few double opera-

Register A Register B

Register Z

Register™

—1°1

\ «¥"«- L.

\ plexer /

Register B

MultifunctionALU

Register Z

Controlunit CU

(a)

(b)

Figure 2.38

(a) Single-function circuit performing Z:= A + B; (b) a multifunction circuit.

105

CHAPTER 2

Design

Methodology

tions can also be performed in one clock cycle, for example,

B :=7Z+B,Z:=7Z+B;

Each of the foregoing operations requires CU to send specific control signals, indi-cated by dashed lines in Figure 2.38b, to various places in the datapath. Forinstance, to
execute the subtraction Z := A - B, the controller CU must send selectsignals to the ALU to select its subtract function; it must send select signals to themultiplexer that
connects register A to the ALU's left port; and it must send a "loaddata" control signal to the output register Z.

An example of a large multifunction system is a computer's CPU. Its controlunit, which is responsible for the interpretation of instructions, is called the pro-gram control
unit or [-unit. The CPU's datapath is also called the E-unit. Furtherdatapath/control subdivisions are possible in complex systems, yielding a hierar-chy of levels of control.
In relatively simple machines such as that of Figure 2.38/?,the control unit can be a special-purpose hard-wired sequential circuit designedusing standard gate-level
techniques. In more complex cases, both the datapath andcontrol units may have to be treated at the register level.

A description language. HDLs, which were introduced in section 2.1.1, pro-vide both behavioral and structural descriptions at the register level. A full-fledgedHDL like
VHDL is very complex, however, so we will use a much smaller HDLthat suffices for our purposes and is largely self-explanatory. An essential elementof all HDLs,
including ours, is a state assignment or register-transfer statement.which has the general form of (2.15), and specifies a conditional state transitionthat takes place in a
single clock cycle. An alternative notation for (2.15) is '

if cond = 1 then Z :=/(*,. X2 Xk);

106 There is often a close correspondence between the elements of an HDL

, ., description and hardware components and signals in the system being described.

The Register Level ~or examPle-tne statement Z := A + B describes the circuit of Figure 2.38a. In thisinterpretation, + represents the adder. The input connections to the
adder from reg-isters A and B are inferred from the fact that A and B are the arguments of +, whilethe output connection from the adder to register Z is inferred from Z :
=. An exactcorrespondence between hardware structures and HDL constructs can be hard tospecify without considerable verbosity. To keep our HDL concise, we use it
prima-rily for behavioral descriptions and supplement it with block diagrams to describestructure.

Figure 2.39 illustrates the use of our HDL to describe the behavior of a com-plete system at the register level. This 8-bit multiplication circuit, namedmultiplier8,
computes the product Z = Y x X. where the numbers are 8-bit binaryfractions in sign-magnitude form. (The actual design of this multiplier, whichimplements a binary
version of "long" multiplication based on repeated additionand shifting, is examined later in Example 2.7.) Two 8-bit buses INBUS and OUT-BUS form multiplier8's input
and output ports, respectively, and link it to the out-side world. The circuit contains three 8-bit data registers A, A/, and Q, as well as a3-bit control register COUNT that
counts the number of add-and-shift steps todecide when multiplication is complete. The A and Q registers can be merged intoa single 16-bit shift register denoted A.Q. The

operands X (the multiplier) and F(the multiplicand) are initially transferred from INBUS into the Q and M registers,respectively. The product is computed by multiplying
Fby 1 bit of X at a time andadding the result to A. After each addition step, the contents of A.Q are shifted 1 bitto the right so that the next multiplier bit required is always

in <2[7], the right-mostbit in the Q register. (Consequently, the multiplier F is eventually shifted out of Qand lost.) After seven iterations to multiply the magnitude parts of
X and F, the signof the product is computed and placed in the left-most position of A, that is, in A[0].

multiplier8 (in: INBUS: out: OUTBUS):

register A[0:1]. M[0:7], £[0:7]. COUNTI[0:2];

bus INBUS[0]], OUTBUS10]);

BEGIN: A :=0.COUNT := 0, M := INBUS:
Q := INBUS:

ADD: A[0:7] := A[L:7] + M[L:7] x Q[1];

SHIFT: A[0]:=0,A[1:7]. Q:=A.Q[0:6],

TEST: COUNT := COUNT + 1;

if COUNT* 1 then go to ADD.

FINISH: A[0] := M[0] xor Q[1], Q[1] := 0:
OUTPUT: OUTBUS := Q:
OUTBUS := A:

end multiplier8:

Figure 2.39
Formal language description of an 8-bit binary multiplier.
The final product ends up in A.Q, from which it is transferred 8 bits at a time toOUTBUS.

The description of the multiplier consists mostly of register-transfer opera-tions. The registers are defined by the initial register statement, which gives theirnames, their
sizes, and the order in which their bits are indexed. For example,

register M[0:7];
means that M is a register composed of eight flip-flops individually identified asM[i], where i runs from 0 to 7 from left to right. Equivalently, we could write
M = M[0].M[\].M[2].M[3].M[4].M[5].M[6].M[1];

Buses are used in much the same way as registers and are defined similarly. Regis-ter-transfer operations that take place simultaneously, that is, during the same
clockcycle, are separated by commas, while a semicolon separates sets of operations thatmust occur in successive clock cycles. Thus the statement

A := 0, COUNT := 0, M := INBUS;

appearing on the line labeled BEGIN in Figure 2.39, specifies three distinct actionsto take place in the same clock period: clear the A register (transfer the all-0 oper-and
to it), clear the COUNT register, and transfer the data on INBUS to register M.Note that a register can be read from and written into in the same clock cycle, ashappens to
Q in the statement

A[0] := M(0) xor Q[1], Q[1] := 0-

The order in which a list of statements terminating in semicolons are written isthe sequence in which the actions they define should occur. Deviations from thissequence
are specified by control statements and by the use of statement labels. Weuse the if ... then control statement to make an action sequence depend on somecircuit
condition. For example, the conditional branch statement

if COUNT * 7 then go to ADD,

(2.16)

in Figure 2.39 means the following: Test the state of the 3-bit COUNT register. IfCOUNT is not equal to 7, that is, 1112, then the next action to be taken is specifiedby the
statement labeled ADD. If COUNT = 7, then the next action is specified bythe statement FINISH.

107

CHAPTER 2

Design

Methodology

Design techniques. The design problem for register-level systems is as fol-lows. Given a set of operations to be executed, design a circuit using a specified setof register-
level components that implement the desired functions while satisfyingcertain cost and performance criteria. As noted already; it is difficult to impose use-ful
mathematical structures on register-level behavior or structure correspondingto, say, Boolean algebra and the two-level constraint in gate-level design. Lackingsuch
mathematical tools, register-level design methods tend to be heuristic anddepend heavily on the designer's expertise. We can, however, state the followinggeneral

approach to the design problem.

1. Define the desired behavior by a set of sequences of register-transfer operations,such that each operation can be implemented directly using the available
designcomponents. This constitutes an algorithm AL to be executed.

108 2. Analyze AL to determine the types of components and the number of each type
section 2 2 required for the datapath DP.

The Register Level ~- Construct a block diagram for DP using the components identified in step 2.Make the connections between the components so that all data paths
implied byAL are present and the given performance-cost constraints are met.

4. Analyze AL and DP to identify the control signals needed. Introduce into DP thelogic or control points necessary to apply these signals.
5. Design a control unit CU for DP that meets all the requirements of AL.
6. Verify, typically by computer simulation, that the final design operates correctlyand meets all performance-cost goals.

Algorithm design (step 1) involves a creative design process analogous to writ-ing a computer program and depends heavily on the skill and experience of thedesigner.
The identification of the data-processing components in step 2 is straight-forward, but complications arise when the possibility of sharing components exists.For example,

c: A:=A + B,C:=C + D;

defines two addition operations. Since these additions do not involve the sameoperands, they can be done in parallel if two independent adders are provided.However,

costs can be lowered by sharing a single adder and performing the twoadditions sequentially, thus:

c(t0): A:=A+ B;

c(tQ+ 1): C:=C + D;

This example illustrates a fundamental cost-performance trade-off. The identifica-tion of the parallelism inherent in a multistep algorithm can be exceedingly diffi-cult.

A typical datapath unit DP has a regular and relatively simple structuredesigned for processing data of some fixed word size w. Its main components areregisters, buses,
and combinational circuits, all oriented toward w-bit words. Thedesign of DP (step 3 above) requires defining an interconnection structure thatlinks the components
needed by the various parts of AL. The specification anddesign of the control unit CU (steps 4 and 5) is a relatively independent process.Unlike DP, the control unit often
has a small number of states that interact in anirregular fashion, making it suitable for gate-level, sequential circuit design (sec-tion 2.1.3). Specialized methods such as
microprogramming are used to designlarge control units, a topic we consider in Chapter 5.

Design verification (step 6) plays a crucial role in the development processbecause mistakes, often of a subtle kind, are unavoidable in the design of a com-plex system.
Simulation via CAD tools is used to identify and correct functionalerrors before the new design is committed to hardware. CAD tools are also used topredict or measure
the system's operating speed. If a particular design does notmeet some specification —an algorithm step is executed too slowly, or componentcosts are exceeded—it is
necessary to return, sometimes repeatedly, to steps 1through 5 and modify AL, DP, or CU.

‘We now present two examples of sequential circuits designed at the registerlevel. The first revisits the 4-bit-stream adder, whose behavior and gate-level design

are covered in Example 2.2. It illustrates some advantages of a high-level, func-tional approach to design, as well as the important design technique of pipelining.
EXAMPLE 2.6 DESIGN OF A PIPELINED 4-BIT-STREAM SERIAL ADDER. Con-sider again the design of a circuit to add four unsigned binary numbers presented seri-ally
(least significant bits first) to produce their arithmetic sum, also in serial form. Thisadder has four input lines x1,x2,x3,x4 and a single output line z. Our first, gate-
leveldesign (Example 2.2) started with the construction of a (4 x 16)-entry state table (Fig-ure 2.13a), and culminated in a circuit (Figure 2.13Z?) containing two D flip-
flops and alarge (eight-input, three-output) combinational circuit.

This time we will start with the observation that we can add the four bit streams inpairs using a basic register-level component, the serial adder (Figure 2.12). We can
addstreams xl and x2 using one serial adder SA] and, at the same time, add streams x3 and x4using a second serial adder SA2. The outputs of SAX and SA2 are then
combined by athird serial adder SA3 to obtain the desired output z. This process leads to the circuit4ADDX in Figure 2.40a, which contains three D flip-flops and three full
adders.Because the full adders are relatively simple—several representative logic realizationsappear in Figure 2.9—4ADDX contains far fewer gates than the design of
Figure 2.13.

SA3's combinational logic (a full adder) receives signals directly from the corre-sponding full adders in SAX and SA2. Hence 4ADDX has more levels of combinationallogic
than a simple serial adder. Consequently, for 4ADDX to operate properly, it mustbe clocked at a frequency /' < /. where / is the maximum permissible frequency of aserial
adder. We can, however, operate the 4-bit-stream adder at the higher frequencyy/,if we insert a pair of flip-flops as buffers between SAX:SA2 and 5A3, as illustrated
inFigure 2.40b. Now the inputs to SA3 in clock cycle / consist only of the signals com-puted by SAX and SA2 in cycle /' - 1 and stored in the buffer flip-flops of the new
design4ADD?2. This, however, means that each result bit produced by 4ADD?2 is delayed byone clock cycle. It might therefore be thought that 4ADD?2 is significantly slower
than4ADDX. This is not the case, however, because in both circuits a new final result bit z isgenerated in every clock cycle. Although it takes two clock cycles to calculate
eachsum bit, 4ADD2 overlaps the computation of two successive sum bits so that, once it isin full operation, it also produces one result bit per cycle. Breaking a
computation intoa sequence of simpler subcomputations that can be overlapped is called pipelining andis an important technique in computer design.

In the final circuit 4ADD3 (Figure 2.40c), we have introduced a flip-flop to storethe output z of SA3; we have also regrouped the internal (carry) flip-flops of the
serialadders to make them part of the buffer registers—recall that their role is to store carrybits generated in clock cycle /' - 1 and used in clock cycle i. 4ADDi has a
circuit struc-ture called a pipeline. It is composed of two stages, each of which consists of somecombinational logic followed by a buffer register. Suppose the first four
data bits enterstage 1 at time (clock cycle) 1. Their partial sum bits z, and z2 are computed andpassed on to stage 2. The first result bit z = zx plus z2 is then computed by
stage 2 dur-ing clock cycle 2. At the same time a second set of four data bits can be entered intoand processed by stage 1. In clock cycle 3, the result sum is computed by
stage 2 whilestage 1 handles a third set of input data, and so on. Clearly if a steady stream of dataenters the pipeline, then a new result bit emerges every clock cycle,
beginning withclock cycle 2.

Modern computers often employ pipelines of this sort for complex arithmeticoperations such as floating-point addition, as we will see in Chapter 4. They also pro-cess
instructions by means of a special multifunction pipeline composed of as many asa dozen stages (Chapter 5).

109

CHAPTER 2

Design

Methodology

110

SECTION 2.2The Register Level

Serialadder SA |

Serialadder SA3
1 1CLK CLR
Serialadder SA2

1 1CLK CLR

CLK CLR

(@)

Serialadder SA
Serialadder SA1
CLK CLR

DQ

bQ

Serial
adder SA;

bl
CLK CLR

CLK CLR CLK CLR
GO

Stage 1

Fulladder FA,
Fulladder FA -,

d o\—>

bQ

de-.

CLK CLR

Stage 2

Fulladder FA

da

de-i

()

Figure 2.40

Four-bit-stream serial adder: (a) basic design 4ADD]; (b) buffered design 4ADD2; (c) two-stage pipeline design 4ADDi.

Next we examine a bigger register-level design problem, a sequential circuitthat multiplies two binary numbers. This circuit is too complex to design at the gatelevel; it
also has well-defined data-processing and control parts.

EXAMPLE 2.7 DESIGN OF A FIXED-POINT BINARY MULTIPLIER. Fixed-point

multiplication is often implemented in computers by a binary version of the manualmultiplication algorithm for decimal numbers based on repeated addition and
shifting.Consider the task of multiplying two 8-bit binary fractions X = XgX~x"x"x" andY = y0Vj\sv;.y4.v5y6_VT to form the product P = XxY. Each number is assumed to
be insign-magnitude form, where the left-most bit (with subscript 0) of the number denotesits sign: 0 for positive and 1 for negative. The remaining seven bits represent
the num-ber's magnitude. Note that for fractions, it is convenient to index the numbers from leftto right, so that bit xt has weight 2"'. Hence when x0 = 0, X =
XgX"XjXjX~~x"j denotes

Q[7] iMultiplier register

n M[0]

Multiplicand register

Sign
ot Qmn Mio]
Am Accumulator ip i iplicand register
e W
b i 7]
i] {
. Paralle] L
adder
% 8} 8, 1om 8
[T |
OUTBUS
sabit | L d
data
INBUS
C |
S
T O internal
External unit conrral
control | END === : signals
signals
CLOCK ----- couNT oo

Externalcontrol 'signals
111

CHAPTER 2

Design

Methodology

Figure 2.41

Block diagram of an 8-bit binary multiplier multiplier™.

the positive number N given by

N = .v,2-' + x22~2 + jc32"3 + V"* 4+ x52'5 + V-6 + V7

When x0 - 1, X denotes -N.

The multiplication algorithm that we will implement first multiplies the magnitudeparts XM and YM of A" and Y thus:
Pm'~m”~m (217)

where PM - p~p2... pu is the magnitude of the product P. It computes the sign/?0 of Pvia the simple operation p0 := .v0 xor y,. The final result P - PoPiP? Wl P\A is '
b'tslong. The magnitude multiplication (2.17) is clearly the central design problem. Theunsigned product PM is computed in seven add-and-shift steps defined as follows:

P:=PI + .v7 ,x,M; (2.18)
Pl+]:=2-sP- (2.19)

112

SECTION 2.2The Register Level

Step Action Accumulator A Register Q
0 Initialize registers 00000000 10110011 = multiplier X
1 Add M to AShift A. Q 010101010101010100101010 = multiplicand M =Y1011001*111011001
2 Add M to AShift A. 2 010101010111111100111111 U01100111101100
11101100
3 Add 0 to AShift A. Q 000000000011111100011111
nnono
4 AddOtoAShiftA.Q 000000000001111100001111 11110110

union

Add A/ to AShift A. Q

5 010101010110010000110010 in nonomnoi

6 Add A/ to AShift A.Q 010101011000011101000011 0innoil01 n no
loin no

7 Add 0 to AShift A.Q 000000000100001100100001
11011111

8 Put sign of Pin A [0]and set Q[1] to 0 10100001 11011110 = product/'

Figure 2.42

Ilustration of the binary multiplication algorithm.

where PO = 0, P7 - PM, and / goes from 1 to 7. The quantities P0O,/>,,...,P7 are referredto as partial products. When the current multiplier bit x1 iis 1, (2.18) becomes P,
:=P, + YM\ when x7_, = 0, (2.18) becomes P, := P, + 0. Hence step (2.18) requires add-ing either the multiplicand YM or 0 to the current partial product />,. The factor 2~1
in(2.19) indicates that P, is right-shifted by 1 bit after each addition; this factor is equiv-alent to division by 2. Note that each add-and-shift step appends 1 bit to the
partialproduct, which therefore grows from 7 to 15 bits (including the sign bit p0) over thecourse of the multiplication.

With these preliminaries, we can now specify the main components needed formultiplier8. Two 8-bit registers, conventionally denoted Q (for multiplier-quotient) andM
(for multiplicand), are required to store X and Y, respectively. A double-length, 16-bit register A (for accumulator) stores the B's; this standard length is more
convenientthan the actual 15-bit maximum size of P. A 7-bit combinational adder is used for theaddition specified by (2.18) (The serial adder of Figure 2.12 could also be
used, but itwould be about seven times slower.) The adder must have its output and one input con-nected to A, while its other input must be switched between M and zero.
The 1-bitright-shift function (2.19) can be conveniently obtained by constructing A from a right-shift register with parallel IO.

As specified by (2.18), addition is controlled by bit x1_i, which is stored in the Qregister. The multipliers control unit must be able to scan the contents of Q from rightto
left in the course of the multiplication. If Q is a right-shift register, then x1_i canalways be obtained from Q's right-most flip-flop Q[1] by right-shifting Q before thenext x1 1
is needed. Consequently, XSi is gradually reduced from 7 to 0 bits while Pt isexpanding from 7 to 14 bits, also by right-shifting. Hence we can combine A and Q intoa
single 16-bit, right-shift register, the left half of which is A while the right half is Q.The multiplier is completed by the inclusion of external data buses INBUS and OUT-
BUS and a control unit, which contains a 3-bit iteration counter named COUNT. Theresulting circuit has the structure depicted in Figure 2.41. A complete HDL
descriptionof the multiplication algorithm developed above appears in Figure 2.39.

At the core of our design is the adder and the A.Q register that implement (2.18)and (2.19). respectively. The output-carry signal cOVT of the adder is the most signifi-cant
bit of an 8-bit sum and so is connected to the data input of A[0}. The counterCOUNT is incremented and tested at the end of each add-shift step to determine if theadd-
shift phase should terminate. When COUNT is found to contain 7, PSi occupiesbits 1:14 of the register-pair A.Q; that is, bits A[1:7].Q[0:6]. The sign bit p0 is thencomputed
from x0 and yO0, which are stored in Q[l] and M[0], respectively, and p0 isplaced inA[0]. At the same time O is written into Q[1] to expand the final product from15 to 16
bits. Figure 2.42 shows the complete step-by-step multiplication process fortwo sample fractions X = 10110011 and Y = 01010101. The sign bit x0 = 1 of X (indi-cating
that it is a negative number) is marked by an underline. The data in A.Q to theleft of .v0 is the current partial product P.

The control unit of Figure 2.41 is designed by first identifying from the formaldescription (Figure 2.39) all the control signals and control points needed to implementthe
specified register-transfer operations. Figure 2.43 lists a possible set of control

113

CHAPTER 2

Design

Methodology

Controlsignal

Operation controlled

Clear accumulator A (reset to 0).

Clear counter COUNT (reset to 0).
LoadA[0].

Load multiplicand register M from INBUS.
Load multiplier register Q from INBUS.
Load main adder outputs into A[1:7].
Select M or 0 to apply to right input of adder.
Right-shift A. Q.

Increment counter COUNT.

Select COUTot Af[0] xor Q[I\ to load into A[O].
Clear Q[I\.

Transfer contents of A to OUTBIS
Transfer contents of Q to OUTBUS.

Figure 2.43

Control signals for multipliers.

114

SECTION 2.3

The Processor Level

Two-input,
1-bit

+ OUTBUS

MI1L:7]

OLTBUS

Figure 2.44

Implementation of some control points of multiplier8.

signals for the multiplier. In some cases several control signals implement a particularoperation. For instance, the add operation employs c6 to select the adder's right
inputoperand, c9 to select cOUT for loading into A[0], and c2 and c¢5 to actually load the 8-bitsum into v4[0:7]. The number of distinguished control signals will vary with
the detailsof the logic used to implement the control unit. Figure 2.44 shows a straightforwardimplementation of the control logic associated with the accumulator and
adder subcir-cuits using the control signals defined in Figure 2.43.

2.3

THE PROCESSOR LEVEL

The processor or system level is the highest in the computer design hierarchy. It isconcerned with the storage and processing of blocks of information such as pro-grams
and data files. The components at this level are complex, usually sequential,circuits that are based on VLSI technology. Processor-level design is very much aheuristic
process, as there is little design theory at this level of abstraction.

2.3.1 Processor-Level Components

115

The component types recognized at the processor level fall into four main groups:processors, memories, IO devices, and interconnection networks; see Figure 2.45.1In this
section we give only a brief summary of the characteristics of processor-level components; they are examined individually and in much greater depth inlater chapters.

CHAPTER 2

Design

Methodology

Central processing unit. We define a CPU to be a general-purpose, instruc-tion-set processor that has overall responsibility for program interpretation andexecution in a
computer system. The qualifier general-purpose distinguishes CPUsfrom other, more specialized processors, such as IO processors (IOPs), whosefunctions are restricted.
An instruction-set processor is characterized by the factthat it operates on word-organized instructions and data, which the processorobtains from an external memory
that also stores results computed by the proces-sor. Most contemporary CPUs are microprocessors, implying that their physicalimplementation is a single VLSI chip.
Figure 2.46 shows the essential internal organization of a CPU at the registerlevel. The CPU contains the logic needed to execute its particular instruction setand is
divided into datapath and control units. The control part (the I-unit) gener-ates the addresses of instructions and data stored in external memory. In this par-ticular system
a cache memory is interposed between the main memory M and theCPU. The cache is a fast buffer memory designed to hold an active portion of thesystem's address
space; it is often placed, wholly or in part, on the same IC asthe CPU. Each memory request generated by the CPU is first directed to the cache.If the required information
is not currently assigned to the cache, the request is re-directed to M and the cache is automatically updated from M. The I-unit fetchesinstructions from the cache or M
and decodes them to derive the control signalsneeded for their execution. The CPU's datapath (E-unit) has the arithmetic-logiccircuits that execute most instructions; it
also has a set of registers for temporarydata storage. The CPU manages a system bus, which is the main communicationlink among the CPU-cache subsystem, main
memory, and the IO devices.

Micro-processor(CPU)

Mainmemory

Interconnection network(system bus)

Input/output devices(keyboard, video display,secondary memory, etc.)

Figure 2.45

Major components of a computer system.

116

Main memory M and IO system

SECTION 2.3

The Processor Level

System bus
Li
J_ i\
*|
* Cache
If
/i /i
IF — i
Programcounter PC Instructionregister IR i
Arithmetic-logic unit Registerfile
t i mml

Addressgeneration |#—T Instructiondecoding

>111
i s
Ji
Prun ogram ccit (I-unit >n) tro Control signal Datapath(E-unit)

Figure 2.46
Internal organization of a CPU and cache memory.

The CPU is a synchronous sequential circuit whose clock period is the com-puter's basic unit of time. In one clock cycle the CPU can perform a register-transferoperation,
such as fetching an instruction word from M via the system bus and load-ing it into the instruction register IR. This operation can be expressed formally by

IR := M(PC);

where PC is the program counter the CPU uses to hold the expected address of thenext instruction word. Once in the I-unit, an instruction is decoded to determine
theactions needed for its execution; for example, perform an arithmetic operation ondata words stored in CPU registers. The I-unit then issues the sequence of
controlsignals that enables execution of the instruction in question. The entire process offetching, decoding, and executing an instruction constitutes the CPU's
instructioncycle.

Memories. CPUs and other instruction-set processors operate in conjunctionwith external memories that store the programs and data required by the proces-sors.
Numerous memory technologies exist, and they vary greatly in cost and per-formance. The cost of a memory device generally increases rapidly with its speedof operation.
The memory part of a computer can be divided into several majorsubsystems:

1. Main memory M, consisting of relatively fast storage ICs connected directly to,and controlled by, the CPU.

2. Secondary memory, consisting of less expensive devices that have very highstorage capacity. These devices often involve mechanical motion and so aremuch slower
than M. They are generally connected indirectly (via M) to theCPU and form part of the computer's 10 system.

3. Many computers have a third type of memory called a cache, which is posi-tioned between the CPU and main memory. The cache is intended to furtherreduce the
average time taken by the CPU to access the memory system. Someor all of the cache may be integrated on the same IC chip as the CPU itself.

Main memory M is a word-organized addressable random-access memory(RAM). The term random access stems from the fact that the access time for everylocation in M
is the same. Random access is contrasted with serial access, wherememory access times vary with the location being accessed. Serial access memo-ries are slower and
less expensive than RAMs; most secondary-memory devicesuse some form of serial access. Because of their lower operating speeds and serial-access mode, the manner in
which the stored information is organized in secondarymemories is more complex than the simple word organization of main memory.Caches also use random access or an
even faster memory-accessing method calledassociative or content addressing. Memory technologies and the organization ofstored information are covered in Chapter 6.

10 devices. Input-output devices are the means by which a computer commu-nicates with the outside world. A primary function of 10 devices is to act as datatransducers,
that is, to convert information from one physical representation toanother. Unlike processors, 10 devices do not alter the information content ormeaning of the data on
which they act. Since data is transferred and processedwithin a computer system in the form of digital electrical signals, input (output)devices transform other forms of
information to (from) digital electrical signals.Figure 2.47 lists some widely used 10 devices and the information media theyinvolve. Many of these devices use
electromechanical technologies; hence theirspeed of operation is slow compared with processor and main-memory speeds.Although the CPU can take direct control of an
10 device it is often under theimmediate control of a special-purpose processor or control unit that directs theflow of information between the 10 device and main memory.
The design of 10systems is considered in Chapter 7.

Interconnection networks. Processor-level components communicate byword-oriented buses. In systems with many components, communication may becontrolled by a
subsystem called an interconnection network; terms such as switch-ing network, communications controller, and bus controller are also used in thiscontext. The function
of the interconnection network is to establish dynamic com-munication paths among the components via the buses under its control. For costreasons, these paths are
usually shared. Only two communicating devices canaccess and use a shared bus at any time, so contention results when several systemcomponents request use of the
bus. The interconnection network resolves suchcontention by selecting one of the requesting devices on some priority basis andconnecting it to the bus. The
interconnection network may place the other request-ing devices in a queue.

117

CHAPTER 2

Design

Methodology

118

SECTION 2.3

The Processor Level

Type Medium to/from which IO device

10 device Input Output transforms digital electrical signals
Analog-digital converter X Analog (continuous) electrical signals

CD-ROM drive X Characters ~nd coded images) on optical disk
Document scanner/reader X Images on paper

Dot-matrix display panel X Images on screen

Keyboard/keypad X Characters on keyboard

Laser printer X Images on paper

Loudspeaker X Spoken words and sounds

Magnetic-disk drive X X Characters (and coded images) on magnetic disk
Magnetic-tape drive X X Characters (and coded images) on magnetic tape
Microphone X Spoken words and sounds

Mouse/touchpad X Spatial position on pad

Figure 2.47

Some representative 10 devices.

Simultaneous requests for access to some unit or bus result from the fact thatcommunication between processor-level components is generally asynchronous inthat the
components cannot be synchronized directly by a common clock signal.This synchronization problem can be attributed to several causes.

« A high degree of independence exists among the components. For example,CPUs and IOPs execute different types of programs and interact relatively infre-quently and
at unpredictable times.

« Component operating speeds vary over a wide range. CPUs operate from 1 to 10times faster than main-memory devices, while main-memory speeds can bemany orders
of magnitude faster than 10-device speeds.

* The physical distance separating the components can be too large to permit syn-chronous transmission of information between them.

Bus control is one of the functions of a processor such as a CPU or an IOP. AnIOP controls a common IO bus to which many IO devices are connected. The IOPis
responsible for selecting a device to be connected to the IO bus and from there tomain memory. It also acts as a buffer between the relatively slow IO devices andthe
relatively fast main memory. Larger systems have special processors whosesole function is to supervise data transfers over shared buses.

2.3.2 Processor-Level Design

Processor-level design is less amenable to formal analysis than is design at the reg-ister level. This is due in part to the difficulty of giving a precise description of
thedesired system behavior. To say that the computer should execute efficiently allprograms supplied to it is of little help to the designer. The common approach to

design at this level is to take a prototype design of known performance and modifyit where necessary to accommodate new technologies or meet new
performancerequirements. The performance specifications usually take the following form:

* The computer should be capable of executing a instructions of type b per second.

* The computer should be able to support c memory or 10 devices of type d.

¢ The computer should be compatible with computers of type e.

 The total cost of the system should not exceed/

Even when a new computer is closely based on a known design, it may not be pos-sible to predict its performance accurately. This is due to our lack of understandingof the
relation between the structure of a computer and its performance. Perfor-mance evaluation must generally be done experimentally during the design pro-cess, either by
computer simulation or by measurement of the performance of acopy of the machine under working conditions. Reflecting its limited theoreticalbasis, only a small amount
of useful performance evaluation can be done via math-ematical analysis [Kant 1992].

Prototype structures. We view the design process as involving two majorsteps: First select a prototype design and adapt it to satisfy the given performanceconstraints.
Then determine the performance of the proposed system. If unsatisfac-tory, modify the design and repeat this step; continue until an acceptable design isobtained. This
conservative approach to computer design has been widely followedand accounts in part for the relatively slow evolution of computer architecture. It israre to find a
successful computer structure that deviates substantially from thenorm. The need to remain compatible with existing hardware and software stan-dards also influences
the adherence to proven designs. Computer owners areunderstandably reluctant to spend money retraining users and programmers, orreplacing well-tested software.
The systems of interest here are general-purpose computers, which differ fromone another primarily in the number of components used and their autonomy. Thevariety of
interconnection or communication structures used is fairly small. Wewill represent these structures by means of block diagrams that are basically graphs(section 2.1.1).
Figure 2.48 shows the structure that applies to first-generation com-puters and many small, modern microprocessor-based systems. The addition ofspecial-purpose 10
processors typical of the second and subsequent generations is

119

CHAPTER 2

Design

Methodology

Centralocessing unit CPU M Main memory

Systembus ICN
10 Figure 2.48
D, D2 D*
devices Basic computer structure
120
SECTION 2.3

The Processor Level

Centralprocessing unit

Cachememory

Systembus

10

processors

10

devices

CPU

CM

10P,

Mainmemory

ICN

10P,

Figure 2.49

Computer with cache and IOprocessors.

shown in Figure 2.49. Here ICN denotes an interconnection (switching) networkthat controls memory-processor communication. Figure 2.50 shows a prototypestructure
employing two CPUs; it is therefore a multiprocessor. The uniprocessorsystems of Figures 2.48 and 2.49 are special cases of this structure. Even morecomplex structures
such as computer networks can be obtained by linking severalcopies of the foregoing prototype structures.

Performance measurement. Many performance figures for computers arederived from the characteristics of its CPU. As observed in section 1.3.2, CPU
Centralprocessing units

Cachememories

Crossbarswitchingnetwork

CPU, —|

CM,

CPU, —i

CM,

Main memory

M, M2

ICN

IOdevices

IOprocessors IOP, 1I0P2 10P,

D, D2 D3 D*

Figure 2.50

Computer with multiple CPUs and main memory banks.

speed can be measured easily, but roughly, by its clock frequency/in megahertz.Other, and usually better, performance indicators are MIPS, which is the
averageinstruction execution speed in millions of instructions per second, and CPI, whichis the average number of CPU clock cycles required per instruction. As
discussedin section 1.3.2, these performance measures are related to the average time 7* inmicroseconds (us) required to execute N instructions by the formula
NxCPI

Hence the average time tE to execute an instruction is

tE=T/N= CPI/f us

While / depends mainly on the IC technology used to implement the CPU, CPIdepends primarily on the system architecture.

‘We can get another perspective on tE by considering the distribution of instruc-tions of different types and speeds in typical program workloads. Let /,, 12, ..., /,be a set of
representative instruction types. Let f, denote the average execution time(us) of an instruction of type /, and let pi denote the occurrence probability of type-/, instructions
in representative object code. Then the average instruction executiontime tE is given by

121

CHAPTER 2

Design

Methodology

mI

PA us

(2.20)

The /, figures can be obtained fairly easily from the CPU specifications, but accu-rate Pj data must usually be obtained by experiment.

The set of instruction types selected for (2.20) and their occurrence probabili-ties define an instruction mix. Numerous instruction mixes have been publishedthat
represent various computers and their workloads [Siewiorek, Bell, and Newell1982]. Figure 2.51 gives some recent data collected for two representative

Probability ol occurrence

Program A Program B

Instruction type (commercial) (scientific)
Memory load 0.24 0.29
Memory store 0.12 0.15
Fixed-point operations 0.27 0.15
Floating-point operations 0.00 0.19
Branch 0.17 0.10
Other 0.20 0.12
Figure 2.51

Representative instruction-mix data.Source: McGrory, Carlton, and Askins 1992.
SECTION 2.3

The Processor Level

122 programs running on computers employing the Hewlett-Packard PA-RISC archi-

tecture under the UNIX operating system [McGrory, Carlton, and Askins 1992].The execution probabilities are derived from counting the number of times aninstruction of
each type is executed while running each program; instructions fromboth the application program and the supporting system code are included in thiscount. Program A is
a program TPC-A designed to represent commercial on-linetransaction processing. Program B is a scientific program FEM that performsfinite-element modeling. In each
case, memory-access instructions (load andstore) account for more than a third of all the instructions executed. The computa-tion-intensive scientific program makes
heavy use of floating-point instructions,whereas the commercial program employs fixed-point instructions only. Condi-tional and unconditional branch instructions account
for 1 in 6 instructions in pro-gram A and for 1 in 10 instructions in program B. Other published instructionmixes suggest that as many as 1 in 4 instructions can be of the
branch type.

A few performance parameters are based on other system components, espe-cially memory. Main memory and cache size in megabytes (MB) can provide arough
indication of system capacity. A memory parameter related to computingspeed is bandwidth, defined as the maximum rate in millions of bits per second(Mb/s) at which
information can be transferred to or from a memory unit. Memorybandwidth affects CPU performance because the latter's processing speed is ulti-mately limited by the
rate at which it can fetch instructions and data from its cacheor main memory.

Perhaps the most satisfactory measure of computer performance is the cost ofexecuting a set of representative programs on the target system. This cost can bethe total
execution time T, including contributions from the CPU, caches, mainmemory, and other system components. A set of actual programs that are represen-tative of a
particular computing environment can be used for performance evalua-tion. Such programs are called benchmarks and are run by the user on a copy(actual or simulated)
of the computer being evaluated [Price 1989]. It is also usefulto devise artificial or synthetic benchmark programs, whose sole purpose is toobtain data for performance
evaluation. The program TPC-A providing the data forprogram A in Figure 2.51 is an example of a synthetic benchmark.

EXAMPLE 2.8 PERFORMANCE COMPARISON OF SEVERAL COMPUTERS

[MCLELLAN 1993]. Figure 2.52 presents some published data on the performanceof three machines manufactured by Digital Equipment Corp. in the early 1990s,based
on various versions of its 64-bit Alpha microprocessor. The SPEC (StandardPerformance Evaluation Cooperative) ratings are derived from a set of benchmarkprograms
that computer companies use to compare their products. The SPECint92and SPEC{p92 parameters indicate instruction execution speed relative to a standard-ized 1-MIPS
computer (a 1978-vintage Digital VAX 11/780 minicomputer) whenexecuting benchmark programs involving integer (fixed point) and floating-pointoperations,
respectively. Hence the SPEC figures approximate MIPS measurementsfor two major classes of application programs like those of Figure 2.51. The remain-ing data in
Figure 2.52 are relative performance figures for executing some otherwell-known benchmark programs, most aimed at scientific computing.

Data of this sort are better suited to measuring relative rather than absolute perfor-mance. For example, suppose we wish to compare the performance of the Digital
3000and 10000 machines listed in Figure 2.52. The ratio of their SPECint92 MIPS numbersis 104.3/63.8 = 1.65. The corresponding ratios for the other five benchmarks
range

DEC 3000 DEC 4000 DEC 10000

Performance measure Model 400 Model 610 Model 610
CPU clock frequency (MHz) 133 160 200
Cache size (MB) 0.5 1 4
SPECint92 63.8 81.2 104.3
SPECfp92 112.2 143.1 200.4
Linpack 1000 x 1000 90 114 155
Perfect BM suite 18.1 22.9 28.6
Cernlib 16.9 21.0 26.0
Livermore loops 18.7 22.9 28.1
Figure 2.52

Performance comparison of three computers based on the Digital Alpha

Processor.

Source: McLellan 1993.

from 1.50 to 1.79, suggesting that the Digital 10000 is about two-thirds faster than theDigital 3000. Note also that the ratio of their clock frequencies is 200/133 = 1.50.

Queueing models. In order to give a flavor of analytic performance modeling,we outline an approach based on queueing theory. The origins of this branch ofapplied
probability theory are usually traced to the analysis of congestion in tele-phone systems made by the Danish engineer A. K. Erlang (1878-1929) in 1909.Our treatment is
quite informal; the interested reader is referred to [Allen 1980;Robertazzi 1994] for further details.

The queueing model that we will consider is the single-queue, single-servercase depicted in Figure 2.53; this is known as the M/M/l model for historical rea-sons. It
represents a "server" such as a CPU or a computer with a set of tasks (pro-grams) to be executed. The tasks are activated or arrive at random times and arequeued in
memory until they can be processed or "serviced" by the CPU on a first-come first-served basis. The key parameters of the model are the rate at whichtasks requiring
service arrive and the rate at which the tasks are serviced, both mea-sured in tasks/s. The mean or average arrival and service rates are conventionallydenoted by A
(lambda) and p (mu), respectively. The actual arrival and servicerates vary randomly around these mean values and are represented by probability

123

CHAPTER 2

Design

Methodology

Sharedresource

Items 1r Serviced

Queue Server

items

Quel leing sy stem Figure 2.53 Simple queueingmodel of;. computer.

The Processor Level

124 distributions. The latter are chosen to approximate the actual behavior of the sys-
., _,tem being modeled; how well they do so must be determined by observation and
SECTION 1.5]]

measurement.

The symbol p (rho) denotes A/p and represents the mean utilization of theserver, that is, the fraction of time it is busy, on average. For example, if an averageof two tasks
arrive per second (X = 2) and the server can process them at an averagerate of eight tasks per second (p = 8), then p = 2/8 = 0.25.

The arrival of tasks at the system is a random process characterized by theinterarrival time distribution px{t) defined as the probability that at least one taskarrives
during a period of length t. The M/M/1 case assumes a Poisson arrival pro-cess—named after the French mathematician Simeon-Denis Poisson (1781-1840)—for which the
probability distribution is

PI(t) = l-e~h

This exponential distribution has px(t) = 0 when t = 0. As t increases, px(t) increasessteadily toward 1 at a rate determined by X. Exponential distributions characterizethe
randomness of many queueing models quite well. They are also mathematicallytractable and lead to simple formulas for various performance-related quantities ofinterest.
It is therefore usual to model the behavior of the server (the service pro-cess) by an exponential distribution also. Let ps(t) be the probability that the ser-vice required by
a task is completed by the CPU in time t or less after its removalfrom the queue. Then the service process is characterized by

ps(t)=\-e™'
Various performance parameters can characterize the steady-state performanceof the single-server queueing system under the foregoing assumptions.
« The utilization p = A/p of the server, that is, the average fraction of time it isbusy.

* The average number of tasks queued in the system, including tasks waiting forservice and those actually being served. The parameter is called the mean queuelength
and is denoted by /Q. It can be shown [Robertazzi 1994] that

/Q =p/(1-P) (2.21)

« The average time that arriving tasks spend in the system, both waiting for serviceand being served, which is called the mean waiting time tQ. The quantities rQ and/q
are related directly as follows. An average task X passing through the systemunder steady-state conditions should encounter the same number of waiting tasks/q when it
enters the system as it leaves behind when it departs from the systemafter being serviced. The number left behind is Xtq, which is the number of tasksthat enter the

system at rate X during the period tQ when X is present. Hence weconclude that /Q = Xtq, in other words,

tQ = Ig/X (2.22)

Equation (2.22) is called Little's equation. It is valid for all types of queueing sys-tems, not just the M/M/l model. Combining (2.21) and (2.22), we get
tQ = l/(p - X) (2.23)

The quantities /Q and tQ refer to tasks that are either waiting for access to theserver or are actually being served. The mean number of tasks waiting in thequeue
excluding those being served is denoted by /w, while rw denotes the meantime spent waiting in the queue, excluding service time. (The subscript W standsfor "waiting.")
The mean utilization of the server in an M/M/1 system, that is, themean number of tasks being serviced, is X/\i; hence subtracting this from /Qyields /w:

~2
'w='0-P=
\I(\L-X)
(2.24)
Similarly
125
CHAPTER 2
Design
Methodology
'w="'o0-1/M-=
H(H-k)
(2.25)

where 1/p is the mean time it takes to service a task. Comparing (2.24) and (2.25)we see that fw = lw/X; therefore, Little's equation holds for both the Q and the
Wsubscripts.

To illustrate the use of the foregoing formulas, consider a server computer thatis processing jobs in a way that can be approximated by the M/M/l model. Arrivingjobs are
queued in main memory until they are fully executed in one step by theCPU, which therefore is the server. New jobs arrive at an average rate of 10 perminute, and the
computer is, on the average, idle 25 percent of the time. We ask twoquestions: What is the average time T that each job spends in the computer? What isthe average
number of jobs N in main memory that are waiting to begin execution?To answer, we assume that steady-state conditions prevail, from which it followsthat T is tq, and N
is /w. Since the system is busy 75 percent of the time, p = X/]i =0.75. We are given that X = 10 jobs/min; hence the service rate p. is 40/3 jobs/min.Substituting into (2.23)
yields T= tQ= 1/(40/3 - 10) = 0.3 min. From Little's equa-tion, N=1Q = XtQ = 3; hence by (2.25), /w = 3 - 0.75 = 2.25 jobs.

EXAMPLE 2.9 ANALYSIS OF SHARED COMPUTER USAGE [ALLEN 1980]. A small

company has a computer system with a single terminal that is shared by its engineeringstaff. An average of 10 engineers use the terminal during an eight-hour work day,
andeach user occupies the terminal for an average of 30 minutes, mostly for simple androutine calculations. The company manager feels that the computer is
underutilized,since the system is idle an average of three hours a day. The users, however, complainthat it is overutilized, since they typically wait an hour or more to gain
access to the ter-minal; they want the manager to purchase new terminals and add them to the system.We will now attempt to analyze this apparent contradiction using
basic queueing the-ory.

Assume that the computer and its users are adequately represented by an M/M/lqueueing system. Since there are 10 users per eight hours on average, we set X =10/8
users/hour = 0.0208 users/min. The system is busy an average of five out ofeight hours; hence the utilization p = 5/8, implying that u = 1/30 = 0.0333. Substitut-ing these
values for X and u into (2.25) yields fw = 50 mm, which confirms theusers' estimate of their average waiting time for terminal access.

The manager is now convinced that the company needs additional terminals andagrees to buy enough to reduce rw from 50 to 10 min. The question then arises: Howmany
new terminals should he buy? We can approach this problem by representing

126 each terminal and its users by an independent M/M/I queueing system. Let m be the
minimum number of terminals needed to make tw < 10 or, equivalents, tn < 40. TheSECTION 2 4
arriving users are assumed to divide evenly into m queues, one for each terminal. The

arrival rate X* per terminal is taken to be X/m = 0.0208/m users/min. If, as indicatedabove, the computer's CPU is lightly utilized, then a few additional terminals
shouldnot affect the response time experienced at a terminal*, hence we assume that each ter-minal's mean service rate is u* = p. = 0.0333 users/min. To meet the
desired perfor-mance goal, we require

t?*Q = l/(u* - X*) = i/(n - X/m) < 40

from which it follows that m > 2.5. Hence three terminals are needed, so two new ter-minals should be acquired. This result is pessimistic, since the users are unlikely
toform three separate queues for three terminals or to maintain the independence of thequeues by not jumping from one queue to another whose terminal has become
avail-able. Nevertheless, this simple analysis gives the useful result that m should be 2 or 3.

2.4SUMMARY

The central problem facing the digital system designer is to a devise a structure (acircuit, network, or system) from given components that exhibits a specifiedbehavior or
performs a specified range of operations at minimum cost. Variousmethods exist for describing structure and behavior, including block diagrams (forstructure), truth and
state tables (for behavior), and HDLs (for behavior and struc-ture). Computer systems can be viewed at several levels of abstraction, where eachlevel is determined by its
primitive components and information units. Three levelshave been presented here: the gate, register, and processor levels, whose compo-nents process bits, words, and

blocks of words, respectively. Design at all levels isa complex process and depends heavily on CAD tools.

The gate level employs logic gates as components and has a well-developedtheory based on Boolean algebra. A combinational circuit implements logic orBoolean functions
of the form z{xx, x2, ..., xn), where z and the x,'s assume the val-ues 0 and 1. The circuit can be constructed from any functionally complete set ofgate types such as {AND,
OR, NOT?} or {NAND}. Every logic function can berealized by a two-level circuit that can be obtained using exact or heuristic minimi-zation techniques. Sequential
circuits implement logic functions that depend ontime; unlike combinational circuits, sequential circuits have memory. They arebuilt from gates and 1-bit storage elements
(flip-flops) that store the circuit's stateand are synchronized by means of clock signals.

Register-level components include combinational devices such as word gates,multiplexers, decoders, and adders, as well as sequential devices such as (parallel)registers,
shift registers, and counters. Various general-purpose programmable ele-ments also exist, including PLAs, ROMs, and FPGAs. Little formal theory existsfor the design and
analysis of register-level circuits. They are often described byHDLs whose fundamental construct is the register-transfer statement

cond: Z := F(X1,X2,...Xit);

denoting the conditional transfer of data from registers X1,X2,...,Xk to register Z viaa combinational processing circuit F{. Register-level circuits often consist of adatapath
unit and a control unit. The first step in register-level design is to con-struct a formal (HDL) description of the desired behavior from which the compo-nents and
connections for the datapath unit can be determined. The logic signalsneeded to control the datapath are then identified. Finally, a control unit is designedthat generates
these control signals.

The components recognized at the processor level are CPUs and other proces-sors, memories, 10 devices, and interconnection networks. The behavior of proces-sor-level
systems is complex and is often specified in approximate terms usingaverage or worst-case behavior. Processor-level design is heavily based on the useof prototype
structures. A prototype design is selected and modified to meet thegiven performance specifications. The actual performance of the system is thenevaluated, and the
design is further modified until a satisfactory result is achieved.Typical performance measures are millions of instructions executed per second(MIPS) and clock cycles per
instruction (CPI). A few analytical methods for perfor-mance evaluation exist—notably queueing theory—but their usefulness is limited.Instead, experimental approaches
using computer-based simulation or performancemeasurements on an actual system are used extensively.

127
CHAPTER 2
Design

Methodology

2.5PROBLEMS

2.1. Explain the difference between structure and behavior in the digital system context. Il-lustrate your answer by giving (a) a purely structural description and (b) a
purely be-havioral description of a half-subtracter circuit that computes the 1-bit difference d =x - v and also generates a borrow signal b whenever x <y.

2.2. (a) Following the example of Figure 2.4, construct a behavioral VHDL description ofthe full-adder circuit of Figure 2.9b. (b) Following Figure 2.5, construct a
structural VHDL description of the full adder.

2.3. Construct both structural and behavioral descriptions in VHDL of the EXCLUSIVE-OR circuit appearing in Figure 2.2.

2.4. Figure 2.54 describes a half adder in the widely used Verilog HDL. The Verilog sym-bols for the logic operations AND, OR, EXCLUSIVE-OR, and NOT are &, I. \ and
~.respectively, (a) Is this description behavioral or structural? (b) Construct a similar de-scription in Verilog for a full adder.

module half judder (xQ, v0, sO, co)'Input x0. yy; output s0, cO;
assign sO = x0 A y0;

assign c0 = x0 & y0;endmodule

Figure 2.54

Verilog description of a half adder.

128 Inputs Outnuts
SECTION 2.5 *{ y{ Kl 4 bi
Problems 0 00 00
0 01 11
0 10 11
0 11 01
1 00 10
1 01 00
0 00
11 11
1 11
Figure 2.55

Truth table of a full subtracter.

2.5. Assign each of the following components to one of the three major design levels—pro-cessor, register, or gate—and justify your answers, (a) A multiplier of two n-bit
num-bers jV, and N2. (b) An identity circuit that outputs a 1 if all its n inputs (which representa number AO are the same; it outputs a 0 otherwise, (c) A negation circuit
that convertsN to -N. (d) A first-in first-out (FIFO) memory, that stores a sequence of numbers inthe order received; it also outputs the numbers in the same order.

2.6. Certain very small-scale ICs contain a single two-input gate. The ICs are manufacturedin three varieties—NAND, OR, and EXCLUSIVE-OR—as indicated by a printed
labelon the ICs package. By mistake, a batch of all three varieties is manufactured withouttheir labels, (a) Devise an efficient test that a technician can apply to any IC
from thisbatch to determine which gate type it contains, (b) Suppose the batch of unlabeled ICscontains NOR gates, as well as NAND, OR, and EXCLUSIVE-OR. Devise an
efficienttesting procedure to determine each ICs gate type.

2.7. Construct a logic circuit implementing the 1-bit (full) subtracter defined in Figure 2.55using as few gates as you can.

2.8. {a) Obtain an efficient all-NAND realization for the following four-variable Booleanfunction:

fx(a,b,c,d) =a(b +c)d+ab +d)b +c)c+d+bcd

(b) Construct an efficient all-NOR design ioxfx{a,b,c,d).

2.9. Design a two-level combinational circuit in the sum-of-products style that computesthe 3-bit sum of two 2-bit binary numbers. The circuit is to be implemented using
ANDand OR gates.

2.10. Consider the D flip-flop of Figure 2.11. (a) Explain why the glitch does not affectthe flip-flop's state y. (b) This flip-flop is said to be positive edge-triggered becauseit
triggers on the positive (rising or 0 to 1) edge of the clock CK. A negative edge-triggered flip-flop triggers on the negative (falling or 1 to 0) edge of CK, which isindicated
by placing an inversion bubble at the CK input like that at the y output.Redraw the y part of Figure 2.11 for a negative edge-triggered flip-flop.

2.11. Figure 2.56 defines a 1-bit storage device called a JK flip-flop. It has the same edge-triggered clocking as the D flip-flop of Figure 2.11 but has two data inputs
insteadof one. The J input is activated to store a 1 in the flip-flop; that is, JK = 10 sets y =

SetClock -Reset —

J
yCKK

Inputs JK0O0 01 10 11

00 11 Next state
State 0>'(") 1
ioioy(' + D
129
CHAPTER 2
Design
Methodology
(a)
Figure 2.56
JK flip-flop: (a) graphic symbol; (b) state table.
(b)

1. Similarly, the K input is activated to store a 0 in the flip-flop; that is, JK = 01 re-sets >< to 0. The input combination JK = 00 leaves the state unchanged, while JK =11

always changes, or toggles, the state, (a) What is the characteristic equation for aJK flip-flop, analogous to (2.5)? (b) Show how to build a JK flip-flop from a D flip-flop and
a few NAND gates.

2.12. Derive a state table for a synchronous sequential circuit that acts as a serial incre-menter. An unsigned number N of arbitrary length is entered serially on input line
x,causing the circuit to output serially the number N + \ on its output line z. Give theintuitive meaning of each state and identify the reset state.

2.13. An alternative to a state table for representing the behavior of a sequential circuitSC is a state diagram or state transition graph, whose nodes denote
states{S"Sj,...”~ } and whose edges, which are indicated by arrows, denote transitionsbetween states. A transition arrow from 5, to & is labeled XJZV if, when SC is instate
5, and input Xu is applied, the (present) output Zv is produced and SC's nextstate is Sj. (a) Construct a state table equivalent to the state diagram for SC appear-ing in
Figure 2.57. (b) How many flip-flops are needed to implement 5C?

2.14. Design the sequential circuit SC whose behavior is defined in Figure 2.57 using Dflip-flops and NAND gates. SC has a single primary input line and a single
primaryoutput line. Your answer should include a complete logic diagram for SC. Use asfew gates and flip-flops as you can in your design.

2.15.
2.16,

Implement the sequential circuit SC specified in the preceding problem, this timeusing JK flip-flops (see problem 2.11) and NOR gates. Derive a logic diagram forSC and
use as few gates and flip-flops as you can.

Design a serial subtracter analogous to the serial adder. The subtracter's inputs aretwo unsigned binary numbers nx and n2; the output is the difference n, - n2. Construct

Reset

Figure 2.57

State diagram for a sequential circuit SC.

130 a state table, an excitation table, and a logic circuit that uses JK flip-flops and NOR

gates only.

SECTION 2.5

problems 2.YI. Design a sequential circuit that multiplies an unsigned binary number N of arbitrary

length by 3. N is entered serially via input line x with its least significant bit first.The result representing 3/V emerges serially from the circuit's output line z. Con-struct a
state table for your circuit and give a complete logic circuit that uses D flip-flops and NAND gates only.

2.18. An important property of gates is functional completeness, which ensures that acomplete gate set is adequate for all types of digital computation, (a) It has been as-
serted that functional completeness is irrelevant at the register level when dealingwith components such as multiplexers, decoders, and PLDs. Explain concisely whythis is
so. (b) Suggest a logical property of sets of such components that might besubstituted for completeness as an indication of the components' general usefulnessin digital
design. Give a brief argument supporting your position.

2.19. Redraw the gate-level multiplexer circuit of Figure 2.20 at the register level usingword gates. Use as few such gates as you can and mark all bus sizes. Observe that
asignal such as e that fans out to m lines can be considered to create an m-bit bus car-rying the w-bit wordf = (e,e,....e).

2.20. Figure 2.55 gives the truth table for a full subtracter, which computes the differenceXj - >', - bi_i, where bt_x denotes the borrow-in bit. The subtracter's outputs are
bt,d{, where b{ denotes the borrow-out bit. Show how to use (a) an eight-input multi-plexer and (b) a four-input multiplexer to realize the full subtracter.

2.21. Show how to design a 1/16 decoder using the 1/4 decoder of Figure 2.236 as yoursole building block.

2.22. Describe how to implement the priority encoder of Figure 2.25 by (a) a two-levelAND-OR circuit and (b) a multiplexer of suitable size. Demonstrate that one designis
much less costly than the other and derive a logic diagram for the less expensivedesign.

2.23. Design a 16-bit priority encoder using two copies of an 8-bit priority encoder. Youmay use a few additional gates of any standard types in your design, if needed.
2.24. A magnitude-comparator circuit compares two unsigned numbers X and Y and pro-duces three outputs z,, z2, and z3, which indicate X=Y,X>Y, and X <Y,
respectively.(a) Show how to implement a magnitude comparator for 2-bit numbers using a single16-input, 3-bit multiplexer of appropriate size, (b) Show how to
implement the samecomparator using an eight-input, 2-bit multiplexer and a few (not more than five)two-input NOR gates.

2.25. Commercial magnitude comparators such as the 74X85 have three control inputsconfusingly labeled X = Y, X > Y. and X <Y, like the comparator's output lines.These
inputs permit an array of k copies of a 4-bit magnitude comparator to be ex-panded to form a Ak-hil magnitude comparator as shown in Figure 2.58. Modify the4-bit
magnitude comparator of Figure 2.27 to add the three new control inputs andexplain briefly how they work. [Hint: The unused carry input lines denoted cin inFigure 2.27
play a central role in the modification.]

2.26. Show how to connect n half adders (Figure 2.5) to form an «-bit combinational in-crementer whose function is to add one (modulo 2") to an «-bit number X. For ex-
ample, if X = 10100111. the incrementer should output Z = 10101000; if X =11111111, it should output Z = 00000000.

2.27. Show how the register circuit of Figure 2.29 can be simplified by using theLOAD line to enable and disable the register's clock signal CLOCK. Explain clear-
2.28.

2.29.

ly why this gated-clocking technique is often considered a violation of good de-sign practice.

A useful operation related to shifting is called rotation. Left rotation of an ra-bitregister is defined by the register-transfer statement

131

(Zm-2>Zn

(2.26)

*'~0'Zm-l) :_ (Zm-1»Zin 2v.>Zi.Zo)

(a) Give an assignment statement similar to (2.26) that defines right rotation. Showhow the 4-bit right-shift register SR of Figure 2.30 can easily be made to
implementright rotation, (b) Using as few additional components and control lines as possible,show how to extend SR to implement both right shifting and right rotation.

Design an 8-bit counter using only the following component types: 4-bit D-type reg-isters, half adders, full adders, and two-input NAND gates. The counter's inputs area
CLEAR signal that resets it to the all-0 state and a COUNT signal whose 0-to-l(positive) edge causes the current count to be incremented by one. Use as few com-ponents
as you can, assuming for simplicity that each component type has the samecost.

2.30. Assuming that input variables are available in true form only, show how to makethe Actel FPGA cell of Figure 2.35a realize two-input versions of the NAND, NOR,and
EXLCLUSIVE-OR functions.

2.31. (a) Assuming that input variables are available in true form only, what is the fan-inof the largest NAND gate that can be implemented with a single Actel FPGA
cell(Figure 2.35a)? (b) What is the largest NAND if both true and complemented inputsare available and we allow some or all of the inputs to the NAND to be inverted?

2.32. Show how to implement the full subtracter defined in Figure 2.55 using as few cop-ies as you can of the Actel C-module. Again assume that the input variables are
sup-plied in true form only.

2.33. Figure 2.59 shows the Actel FPGA S-module, which adds a D flip-flop to the out-put of the C-module discussed in the text. Show how to use one copy of this cell
toimplement the edge-triggered JK flip-flop defined in problem 2.11, assuming onlythe true output y is needed and that either one of the flip-flop's J or K inputs can
becomplemented.

CHAPTER 2

Design
Methodology
Figure 2.58

Expansion of a 4-bit magnitude comparator to form a 16-bit comparator.

*15
X4 X\2
4 *3 Y, *7 Yi 4Y* Yn 1,5
4 4
>\
Y 4-bitmagnitudecomparator
Y 4-bitmagnitudecomparator X Y 4-bitmagnitudecomparator Y 4-bitmagnitudecomparator
X X>Y X>Y X X
X>Y X>YX=Y X=YX<Y X<Y x=yx=y X>Y X>YX=Y X=YX<Y X<Y X>Y X>YX=Y X=YX<Y X<Y

X<Y X<Y

X>YX=YX<Y

132

SECTION 2.5Problems
x] Four-input.

1-bitX2 multiplexer

> CK

CLR

Figure 2.59

S-module from the Actel FPGA series.

2.34. Reconsider the FPGA implementation of the serial adder given in Figure 2.37. Sup-pose that it can now be implemented using two cell types: the original Actel C-
module and the more recent sequential S-module defined in Figure 2.59. Construct anew version of the adder in the style of Figure 2.37 using as few modules as youcan.

2.35. The 4-bit-stream serial adder 4ADDX of Figure 2.40a contains three flip-flops, onein each serial adder, so it can have up to eight internal states. However, according
tothe analysis in Example 2.2, only four states are needed for 4-bit-stream serial addi-tion. Does this imply that one flip-flop can be removed from 4ADDX and, if so,which
one? Explain your reasoning clearly.

2.36. Consider the operation of the serial adder pipeline 4ADD3 shown in Figure 2.40c. Itis reset to the all-0 state in clock cycle 0. and the following data is entered into
thepipeline at the indicated times:

Clockcycle:01234567¢g

XV 010110000
x2: 011110000
x3: 000110000
x4: 011100000

Determine the value of z for each clock cycle in the above table.

2.37. Suppose that the pipelined serial adder of Figure 2.40c is reset in clock cycle 0. Theleast significant bits of four serial numbers (integers) Nx, N2, N3, N4 to be
added areapplied to the adder in clock cycle 1, and four new data bits are applied in each sub-sequent clock cycle. If each number consists of thirty-two 1-bits and
therefore repre-sents 232 - 1, in what clock cycle will the most significant bit of the sum N} + N2 +7V3 + N4 be loaded into the output z flip-flop?

2.38. Construct a pipelined adder in the style of Figure 2.40c that can add six instead offour separate bit streams.

2.39. Design at the register level a modulo-16 binary counter CAT/?. The counter has twofunction control input lines: LOAD, which loads the counter with an initial
valuefrom a 4-bit external bus BUS, and COUNT, which increments the counter by one.The available component types (use as many of each as you need) for buildingCNTR
are the 4-bit D register of Figure 2.28; the 4-bit adder of Figure 2.26a; thetwo-input, 4-bit multiplexer of Figure 2.20; and the two-input, m-bit NAND wordgate of Figure
2.17 withm = 1,2, and 4.

2.40. Consider the counter described in the preceding problem. Suppose that there is an-other control input DOWN which, when set to 1, causes the counter to count
down(decrement) instead of up. When DOWN = 0, CNTR behaves like an up-counter, asin the original design. In each case a suitable pulse applied to the COUNT line in-
crements or decrements the counter. Using the same set of register-level componenttypes, design this modulo-16 up-down counter.

2.41. Figure 2.60 is an HDL description of an algorithm for multiplication in low-speeddigital systems. It is implemented by three up-down counters CQ, CM, and CPwhich
store the multiplier, multiplicand, and product, respectively, and the product Pis formed by incrementing the counter CP a total of P times. Although this multipli-cation
method is slow, it requires a simple logic circuit and can easily accommodatecomplicated number codes. Suppose that the numbers to be multiplied are four-digitintegers
in sign-magnitude BCD code. For example, the number -1709 is represent-ed by the bit sequence 1 0001 0111 0000 1001. CQ, CM, and CP are to be con-structed from
modulo-10 up-down counters with parallel input-output capability.Carry out the logic design of this multiplier at the register level.

2.42. Devise a counting algorithm similar to that of Figure 2.60 to perform integer divi-sion on unsigned four-digit BCD integers. The inputs are a dividend Y and a
divisorX; the outputs are a quotient Q and a remainder R, which must satisfy the followingequation:

Y=0QxX + R, with0 < R <X

133

CHAPTER 2

Design

Methodology

multiplierbc(IOBUS| 16:0]);

register <2[15:0]. C015:0], CA/[15:0], CP[3\:0], QS, MS;BEGIN: Q := IOBUS[\5:0], QS := IOBUS[\6);

CM := IOBUS[15:0], MS := IOBUS[\6), CQ := Q, CP := 0;TEST!: if CM := 0 or CQ = 0 then go to DONE,

ADD: CQ:=CQ-1,CP:=CP+\

TEST2: \fCQ*0 then go to ADD,

SUB: CM =CM-\,CQ.= Q,

TEST3: if CM * 0 then go to ADD,

DONE: 10BUS|\6] := QSxorMS, IOBUS[15:0) := CP[31:16];

IOBUS[\5:0] := CP[\5:0];

Figure 2.60

A multiplication algorithm using counters.

134 Describe your algorithm formally by means of our HDL. Carry out the register-level

logic design of a machine that performs division on four-digit BCD integers using theSECTION 2.5 counting approach.

Problems

2.43. (a) Name the various types or levels of memory found in a typical computer. Whyis more than one memory type needed? (b) Identify all the places in a
computerwhere instructions are stored at various times, (c) Explain why secondary-memoryunits such as hard-disk drives are part of the 10 system, whereas main
memory isnot.

2.44. Let P be a processor that operates at a clock frequency of 100 MHz. Suppose, fur-ther, that advances in VLSI technology allow P to be replaced by a new CPU
Fwhose architecture and organization are identical to those of P, but whose clock rateis 125 MHz. How does replacing P by P1 in the execution of a set of
benchmarkprograms Q affect (a) the value of its CPI and (b) the total CPU time required to ex-ecute Ql

2.45. A possible measure of the performance of a CPU P that employs instruction-levelparallelism is the average number of instructions per cycle or IPC needed to
executea benchmark program set Q. Suppose that a total of N instructions are executed inthe processing of Q by P. Further suppose that P has a clock cycle time of
7"clock,and T is the total CPU time required for P to execute Q. Obtain an expression forIPC in terms of N, T, and Tdock.

2.46. Consider the instruction mixes appearing in Figure 2.51. Suppose that the system'sclock frequency is 100 MHz, and all instructions except floating-point
instructionshave an average execution time of 10 ns. (a) What is the average execution time offloating-point instructions, if the overall average execution time per
instruction forprogram B is 18.1 ns? (b) What is the CPI for program B?

2.47. Suppose that the instructions listed in Figure 2.51 have the following average exe-cution characteristics: load, store, and floating-point instructions require four
clockcycles each; fixed-point instructions require two clock cycles; all others require oneclock cycle. If both programs involve the execution of 2.5 million
instructions,which of the two completes execution sooner?

2.48. The MIPS performance measure is often considered useful only when used to com-pare members of the one processor family from the same manufacturer, as in
Figure2.52. Give some reasons why this is generally true. (Misuse of this measure has ledto the suggestion that MIPS really means "meaningless information from
pushysalesmen!")

2.49. What happens in a single-server queue like that of Figure 2.53 if X > [i?

2.50. Suppose that CPU behavior in a multiprogramming system can be analyzed usingthe M/M/] queueing model. Programs are sent to the CPU for execution at a
meanrate of eight programs per minute and are executed on a first-come first-served ba-sis. The average program requires six seconds of CPU execution time, (a) What
isthe mean time between program arrivals at the CPU? (b) What is the mean numberof programs waiting for CPU execution to be completed? (c) What is the mean timea
program must wait for its execution to be completed?

2.51. Suppose that people arrive at a public telephone booth at an average rate of 10 perhour. The lengths of the calls made from the booth are found to have a negative
ex-ponential distribution with a mean length of 2.5 minutes, (a) What is the probabilitythat someone arriving at the telephone booth will find it occupied? (b) The tele-

phone company will install a second booth if a customer must wait an average of

Queuelength 5

g
=

m

0

L

=1

] S B T [i S
5 10 15 20 5

Time t
Figure 2.61
Observed queue lengths in a single-server queueing system.

four minutes or more to gain access to the first telephone. By how much must theflow of customers to the first telephone increase in order for the telephone companyto
install the second phone?

2.52. A certain computer system executes a stream of tasks in a manner that can be accu-rately modeled by an M/M/l queueing system. The computer is busy 75 percent
ofthe time, and the average job spends four minutes in the computer, (a) How manyjobs are in the computer on average? (b) What is the maximum rate at which jobsmay
arrive at the system before it becomes overloaded? State clearly your definitionof overloaded.

2.53. Figure 2.61 shows the queue lengths observed in a single-server queueing systemover a "typical" operating period of 25 time units. Each value of /(?) represents
theobserved queue length, including the item being served, at time t. Stating your as-sumptions, answer the following questions about this system, (a) What is the
meanqueue length /Q? (b) What is the mean utilization of the server?

2.54. This problem involves manual simulation of a computer system that is executing astream of jobs. The jobs arrive randomly, are queued until selected for
execution,and depart immediately after execution is completed. The arrival and executiontimes for a particular job stream are given by the following table:

135
CHAPTER 2
Design
Methodology
Job number

1

S

101112

Arrival time:

Execution time (min):

Departure time:

System response time (min)

9:00 9:05 9:08 9:09 9:16 9:21 9:24 9:26 9:32 9:39 9:40 9:43 AM258165824137

Assuming that jobs are executed on a first-come first-served basis, find the meanresponse time fQ of the system by completing the above table. What is the
computer'sutilization factor p from 9:00 am until the last job departs?

2.55. Consider the computer job stream in the preceding problem. Suppose the FCFSqueueing discipline is replaced by shortest job first (SJF). in which the next job se-
lected for execution is the one in the queue with the shortest execution time. (Assume

136 that all execution times are known in advance.) Using the data given above, deter

mine the system utilization p and mean response time tQ with SJF replacing FCFS

References

Provide a brief intuitive explanation for the difference (or lack of difference) in thevalues of p and fQ obtained with the two methods.
2.6REFERENCES

1. Actel Corp. FPGA Data Book and Design Guide. Sunnyvale, CA, 1994.

2. Alford, R. C. Programmable Logic Designer's Guide. Indianapolis: Howard W. Sams,1989.

3. Allen, A. O. "Queueing Models of Computer Systems." IEEE Computer, vol. 13,(April 1980) pp. 13-24.

4. Armstrong, J. R. and F. G. Gray. Structured Logic Design with VHDL. EnglewoodCliffs, NJ: Prentice-Hall, 1993.
5. Brayton, R. K. et al. Logic Minimization Algorithms for VLSI Synthesis. Boston: Kluwer,1984.

6. Brown, F. M. Boolean Reasoning. Boston: Kluwer, 1990.

7. Greene, J., E. Hamdy, and S. Beal. "Antifuse Field Programmable Gate Arrays." Pro-ceedings of the IEEE, vol. 81 (July 1993) pp. 1042-56. [Reprinted in Ref. 1, pp. 4-29to
4-43].

8. Hachtel, G. D. and F. Somenzi. Logic Synthesis and Verification Algorithms. Boston:Kluwer, 1996.
9. Hayes, J. P. Introduction to Digital Logic Design. Reading, MA: Addison-Wesley,1993.
10. Kant, K. Introduction to Computer System Performance Evaluation. New York:McGraw-Hill, 1992.

11. McGrory, J. J., A. Carlton, and B. J. Askins. "Transaction Processing Performance onPA-RISC Commercial Unix Systems." Digest of Papers: COMPCON Spring 1992,San
Francisco, February 1992, pp. 199-206.

12. McLellan, E. "The Alpha AXP Architecture and 21064 Processor." IEEE Micro, vol.13 (June 1993) pp. 36-47.

13. Morrison, P. and E. Morrison, eds. Charles Babbage and His Calculating Engines.New York: Dover, 1961.

14. Navabi, Z. VHDL Modeling and Analysis of Digital Systems. New York: McGraw-Hill, 1993.

15. Price, W. J. "Benchmark Tutorial." IEEE Micro, vol. 9 (October 1989) pp. 287 3.

16. Robertazzi, T. G. Computer Networks and Systems: Queueing Theory and Perfor-mance Evaluation. 2nd ed. New York: Springer-Verlag, 1994.

17. Shannon, C. E.: "A Symbolic Analysis of Relay and Switching Circuits." Trans. AIEE,vol. 57 (1938) pp. 713-23. [Reprinted in N. J. A. Sloane and A. D. Wyner, eds.
ClaudeElwood Shannon Collected Papers. New York: IEEE Press, 1993, pp. 471-95.]

18. Siewiorek, D. P, C. G. Bell, and A. Newell. Computer Structures: Readings and Ex-amples. New York: McGraw-Hill, 1982.

19. Simon, H. A. "The Architecture of Complexity." Proc. Amer. Phil. Soc, vol. 106 (De-cember 1962) pp. 467-82. [Reprinted with revisions in H. A. Simon. The Sciences
ofthe Artificial. 3rd ed. Cambridge, MA: MIT Press, 1996, pp. 183-216.]

20. Smith, D. J. HDL Chip Design. Madison, AL: Doone Publications, 1996.

21. Texas Instruments. TTL Logic Data Book. Dallas, 1988.

22. Thomas, D. E. and P. R. Moorby. The Verilog Hardware Description Language. 3rd ed.Boston: Kluwer, 1996.

CHAPTER 3

Processor Basics

This chapter considers the overall design of instruction-set processors as exempli-fied by the central processing unit (CPU) of a computer. The fundamentals of
CPUorganization and operation are examined, along with the selection and formats ofinstruction and data types. Various representative microprocessors of both theRISC
and CISC types are presented and discussed.

3.1

CPU ORGANIZATION

‘We begin by considering the organization of the central processor (microproces-sor) of a computer and the methods used to represent the information it is intendedto
process.

3.1.1 Fundamentals

The primary function of the CPU and other instruction-set processors is to executesequences of instructions, that is, programs, which are stored in an external
mainmemory. Program execution is therefore carried out as follows:

1. The CPU transfers instructions and, when necessary, their input data (operands)from main memory to registers in the CPU.

2. The CPU executes the instructions in their stored sequence except when the exe-cution sequence is explicitly altered by a branch instruction.
3. When necessary, the CPU transfers output data (results) from the CPU registersto main memory.

137

138

SECTION 3.1CPU Organization

Main
CPU Instructions memory

M

Data

Cache Main
CPU Instructions memory Instructions memory

CM MM
Data Data

External memory M

(b)
Figure 3.1
Processor-memory communication: (a) without a cache and (b) with a cache.

Consequently, streams of instructions and data flow between the external memoryand the set of registers that forms the CPU's internal memory. The efficient man-
agement of these instruction and data streams is a basic function of the CPU.

External communication. If, as in Figure 3.1a, no cache memory is present,the CPU communicates directly with the main memory M, which is typically ahigh-capacity
multichip random-access memory (RAM). The CPU is significantlyfaster than M: that is. it can read from or write to the CPU's registers perhaps 5 to10 times faster than it
can read from or write to M. VLSI technology, especially thesingle-chip microprocessor, has tended to increase the processor/main-memoryspeed disparity.

To remedy this situation, many computers have a cache memory CM posi-tioned between the CPU and main memory. The cache CM is smaller and fasterthan main
memory and may reside, wholly or in part, on the same chip as the CPU.It typically permits the CPU to perform a memory load or store operation in a sin-gle clock cycle,
whereas a memory access that bypasses the cache and is handledby main memory takes many clock cycles. The cache is designed to be transparentto the CPU's
instructions, which "see" the cache and main memory as forming asingle, seamless memory space consisting of 2'" addressable storage locationsM(0), M(l), ..., M(2m-1).
In this chapter we will take this viewpoint and use M torefer to the external memory, whether or not a cache is present. A specific memorylocation in M with address adr
is referred to as M(adr) or simply as adr. Whennecessary, we will use MM to distinguish the main memory from the cache mem-ory CM, as in Figure 3.1fr. The structure of
caches and their interactions with mainmemory are further studied in Chapter 6.

The CPU communicates w ith IO devices in much the same way as it communi-cates with external memory. The 10 devices are associated with addressable regis-ters
called IO ports to which the CPU can store a word (an output operation) or fromwhich it can load a word (an input operation). In some computers there are no 10

instructions per se; all 10 data transfers are implemented by memory-referencing 139instructions, an approach called memory-mapped 10. This approach requires
thatmemory locations and 10 ports share the same set of addresses, so an address bitpattern that is assigned to memory cannot also be assigned to an 10 port, and
viceversa. Other computers employ 10 instructions that are distinct from memory-refer-encing instructions. These instructions produce control signals to which 10
ports,but not memory locations, respond. This second approach is sometimes called 10-mapped 10.

User and supervisor modes. The programs executed by a general-purpose com-puter fall into two broad groups: user programs and supervisor programs. A user
orapplication program handles a specific application, such as word processing, ofinterest to the computer's users. A supervisor program, on the other hand,
managesvarious routine aspects of the computer system on behalf of its users; it is typicallypart of the computer's operating system. Examples of supervisory functions
arecontrolling a graphics interface and transferring data between secondary and mainmemory. In normal operation the CPU continually switches back and forth
betweenuser and supervisor programs. For example, while executing a user program, theneed often arises for information that is available only on some hard disk unit in
thecomputer's 10 system. This condition causes the supervisor to temporarily suspendexecution of the user program, execute a routine that initiates the required 10 data-
transfer operation, and then resume execution of the user program.

It is generally useful to design a CPU so that it can receive requests for super-visor services directly from secondary memory units and other 10 devices. Such arequest is
called an interrupt. In the event of an interrupt, the CPU suspends execu-tion of the program that it is currently executing and transfers to an appropriateinterrupt-
handling program. As interrupts, particularly from IO devices, require arapid response from the CPU, it checks frequently for the presence of interruptrequests.

CPU operation. The flowchart in Figure 3.2 summarizes the main functions ofa CPU. The sequence of operations performed by the CPU in processing aninstruction
constitutes an instruction cycle. While the details of the instructioncycle vary with the type of instruction, all instructions require two major steps: afetch step during
which a new instruction is read from the external memory M andan execute step during which the operations specified by the instruction are exe-cuted. A check for
pending interrupt requests is also usually included in theinstruction cycle, as shown in Figure 3.2.

The actions of the CPU during an instruction cycle are defined by a sequenceof microoperations, each of which typically involves a register-transfer operation.The time
required for the shortest well-defined CPU microoperation is the CPUcycle time or clock period Tdock and is a basic unit of time for measuring CPUactions. Recall that/,
the CPU's clock frequency (in MHz) is related to Tdodt (infis) by rclock = 1//. As we will see, the number of CPU cycles required to process aninstruction varies with the
instruction type and the extent to which the processingof individual instructions can be overlapped. For the moment we will assume thateach instruction is fetched from M
in one CPU clock cycle (this is usually truewhen M is a cache) and can be executed in another CPU cycle.

CHAPTER 3Processor Basics

140

SECTION 3.1CPU Organization

(Begin J

~~2 Are”™” there instructions ~>-" waiting? ~
No No 4
1Yes

Fetch the next

instruction

1!

Execute theinstruction

Ag~ Are ARAA

~~ there interrupts ~>N. waiting? ~

Yes Transfer to interrupt-

handling program

Figure 3.2
Overview of CPU behavior.

Accumulator-based CPU. Despite the improvements in IC technology overthe years, CPU design continues to be based on the premise that the CPU shouldbe as fast as the
available technology and overall design requirements allow.Since cost generally increases with circuit complexity, the number of compo-nents in the CPU must be kept
relatively small. The CPU organization proposedby von Neumann and his colleagues for the IAS computer (section 1.2.2) is thebasis for most subsequent designs. It
comprises a small set of registers and thecircuits needed to execute a functionally complete set of instructions. In manyearly designs, one of the CPU registers, the
accumulator,] played a central role,being used to store an input or output operand (result) in the execution of manyinstructions.

Figure 3.3 shows at the register level the essential structure of a small accu-mulator-oriented CPU. This organization is typical of first-generation computers(compare
Figure 1.12) and low-cost microcontrollers. Assume for simplicity thatinstructions and data have some fixed word size n bits and that instructions can beadequately
expressed by means of register-transfer operations in our HDL. Instruc-tions are fetched by the program control unit PCU, whose main register is the pro-

'The term accumulator originally meant a device that combined the functions of number storage and addi-tion. Any quantity transferred to an accumulator was
automatically added to its previous contents. Accumula-tor is still often used in this restricted sense.

ToM and10 devices

». Control
Instructiondecoder
«++” signals
Xr-~
IR||AR||PC |
1Program ii L Ui

controlunitPCU / *e

[System bus
1 i
ir
DR AC
t r ii

Arithmetic-logic unit

Dat. i processing unit DPU

Legend

Program control unit PCUAR: Address registerIR: Instruction registerPC: Program counter
Data processing unit DPUAC: Accumulator registerDR: Data register

141

CHAPTER 3Processor Basics

Figure 33

A small accumulator-based CPU.

gram counter PC. They are executed in the data processing unit DPU. whichcontains an n-bit arithmetic-logic unit (ALU) and two data registers AC and DR.Most
instructions perform operations of the form

xi:=y;.(xi,x2)

where XI and X2 denote a CPU register (AC, DR, or PC) or an external memorylocation M(adr). The operations fl performed by the ALU are limited to fixed-point (integer)
addition and subtraction, shifting, and logical (word-gate) opera-tions.

Some insti actions have an operand in an external memory location M(adr).and must therefore include the address part adr. Memory addresses are stored intwo address
registers in the PCU: the program counter PC, which stores instructionaddresses only, and the general-purpose (data) address register AR. An instruction/ that refers to a

data word in M contains two parts, an opcode op and a memoryaddress adr, and may be written as / = op.adr. Each instruction cycle begins withthe instruction fetch
operation

IR.AR := M(PC);
3.1)

which transfers the instruction word / from M to the CPU. The opcode op is loadedinto the PCU's instruction register IR, and the address adr is loaded into addressregister
AR. Hence (3.1) is equivalent to

IR :=op, AR := adr,
142
SECTION 3.1CPU Organization

Instructions that do not reference M do not use AR; their opcode part specifies theCPU registers to use, as well as the operation/; to be carried out. Once it has placedthe
opcode of / in IR, the CPU proceeds to decode and execute it. Note that, at thispoint, the CPU can increment PC in order to obtain the address of the next instruc-tion.

The two essential memory-addressing instructions are called load and store.The load instruction for our sample CPU is
AC := M(adr);

which transfers a word from the memory location with address adr to the accumu-lator. It is often written in assembly-language programs as LD adr. The corre-sponding
store instruction is

M(adr) := AC;

which transfers a word from AC to M and may be written as ST adr. Note how theaccumulator AC serves as an implicit source or destination register for data words.
Programming considerations. Data-processing operations normally require upto three operands. For example, the addition

Z:=X+Y

(3.2)

has three distinct operands X, Y, and Z. The accumulator-based CPU of Figure 3.3supports only single-address instructions, that is, instructions with one explicitmemory

address. However, AC and DR can serve as implicit operand locations sothat multioperand operations can be implemented by executing several instructionsin sequence.
For example, a program to implement (3.2), assuming that X, Y, and Zall refer to data words in M, can take the following form:

HDL Assemblv- Narrative

format language format format (comment)

AC :=M(X); LDX Load X from M into accumulator AC.
DR := AC; MOV DR, AC Move contents of AC to DR.
AC:=M(10; ILDY Load Y into accumulator AC.
AC:=AC + DR; ADD Add DR to AC.

M(Z):=AC; STZ Store contents of AC in M.

The preceding program fragment uses only the load and store instructions toaccess memory, a feature called load/store architecture. It is common (but as wewill see, not
always desirable) to allow other instructions to specify operands inmemory. A CPU like that of Figure 3.3 can be designed to implement memory-referencing instructions
of the form

AC :=y;(AC, M(adr))

whose execution requires two steps: one to move M{adr) to or from DR and one toperform the designated operation fr With an add instruction of this form, we canreduce
the foregoing program from five to three instructions.

143

CHAPTER 3Processor Basics

HDL

Format

Assembly-language format

Narrativeformat (comment)

AC := M(X); LD X

AC:=AC + M(K); ADD YM(Z) := AC; ST Z

Load X from M into accumulator AC.Load Y into DR and add to AC.Store contents of AC in M.

The memory-referencing ADD Y instruction can be expected to take longer to exe-cute than the original ADD instruction that references only CPU registers.
Memoryreferences also complicate the instruction-decoding logic in the PCU. However,overall execution time should be reduced because we have eliminated an LD and
aMOV instruction completely. As we will see later, the cost-performance impact ofreplacing a simple instruction with a more complex one has subtle implications thatlie at
the heart of the RISC-CISC debate.

Instruction set. Figure 3.4 gives a possible instruction set for our simpleaccumulator-based CPU, assuming a load/store architecture. These 10 instruc-tions have the flavor
of the instruction sets of some recent RISC machines, whichdemonstrate that small instruction sets can be both complete and efficient. We are, however, ignoring some
important practical implementation issues in the interestof simplicity. We have not, for instance, specified the precise instruction or dataformats to be used, and we do not
consider such problems as numerical over-flow—this condition occurs when an arithmetic instruction produces a result thatis too big to fit in its destination register.

Type Instruction =~ HDL Assembly- Narrative
format language format format (comment)
Data transfer Load AC := M(X) LDX Load X from M into AC.

Store contents of AC in M

Store M(X) := AC STX
asX.Copy contents of AC to DR.

Move register DR := AC MOV DR. AC

Move register AC := DR MOV AC, DR Copy contents of DR to AC.
Data Add AC:=AC + DR ADD Add DR to AC.
processing Subtract AC:=AC-DR SUB Suhtract DR from AC.

And AC := AC and DRAND And hitwise DR to AC.

Not AC :=not AC NOT Complement contents of U
Program Branch PC := M(adr) BRA adr Jump to instruction «ith
control address adr.

Branch zero IFAC = 0 then BZadr Jump to instruction adr itAC = 0.

PC :=M(adr)

Figure 3.4

Instruction set for the CPU of Figure 3.3. -

144
SECTION 3.1CPU Organization

The load and store instructions obviously suffice for transferring data betweenthe CPU and main memory. We know from Boolean algebra that the AND andNOT
operations are functionally complete, implying that the instruction setenables any logical operation to be programmed. We also know that addition andsubtraction suffice
for implementing most arithmetic operations. Consider, forexample, the arithmetic operation negation, for which many CPUs have a singleinstruction of the type AC := -
AC. We can easily implement negation by a three-instruction sequence as follows:

HDL Assembly- Narrative

format language format format (comment)

DR := AC; MOV DR, AC Copy contents X of AC to DR.

AC := AC - DR; SUB Compute AC =X -X = 0.

AC := AC - DR; SUB Compute AC=0-X=-X.

Figure 3.4 also gives a small set of program control instructions: an unconditionalbranch instruction BRA and a conditional branch-on-zero instruction BZ that teststhe
contents of AC. Observe that these instructions load a new address into the pro-gram counter PC, thus altering the instruction execution sequence. The BZ instruc-tion
allows more powerful program control operations such as procedure call andreturn to be implemented; it also facilitates complex operations such as multiplica-tion, as we
demonstrate in Example 3.1.

example 3.1 a multiplication program. Suppose we want to use thetiny instruction set of Figure 3.4 to program the multiplication operation
AC:=ACxN

where the multiplicand is the initial contents of the accumulator AC and the multiplierN is a variable stored in memory. We will assume that the multiplier and
multiplicandare both unsigned numbers and that they are sufficiently small that the product will fitin a single word. We can construct the desired program along the
following lines. Wewill execute the basic ADD instruction N times to implement AC x N in the form AC +AC + ... + AC. We will treat the memory location storing N as a
count register and,after each addition step, decrement it by one until it reaches zero. We will test for N = Oby means of the BZ instruction, and so we will have to transfer
N to AC in order to per-form this test. We will also have to use some memory locations as temporary registersfor storing intermediate results and some other quantities,
such as the initial value Y of AC. In particular, we will use memory locations one, mult, ac, and prod to store theconstant 1, N, Y, and the partial product P, respectively.
Here one, mult, ac, and prodare symbolic names for certain memory addresses that we have arbitrarily assigned.They are translated into numerical memory addresses by
an assembler program prior toexecution.

An assembly-language program implementing this plan appears in Figure 3.5. Itsmain body (lines 5 to 17) is traversed N times in the course of a multiplication. At theend
the result P is in memory location prod. The first two instructions (lines 5 and 6) ofthe program check the value of N by reading it into AC and testing it with the
BZinstruction. If the initial value of N is zero, the program exits immediately with the cor-rect result P = 0. If N is nonzero, the instructions in lines 7 to 11 load it from
mult intoAC, subtract one from it, and then return the new, decremented value of N to mult. The

Line Location Instruction or data Comment 145

0 one 00... 001 The constant one. CHAPTER 3
1 mult N The multiplier. Processor Basics
2 ac 00... 000 Location for initial value Y of AC.

3 prod 00..000 Location for (partial) product P.

4 ST ac Save initial value yof AC.

5 loop LD mult Load N into AC to test for termination.

6 BZ exit Exit if N = 0: otherwise continue.

7 LD one Load 1 into AC.

8 MOV DR. AC Move 1 from AC to DR.

9 LD mult Load N into AC to decrement it.

10 SUB Subtract 1 from N.

11 ST mult Store decremented N.

12 LD ac Load initial value yof AC.

13 MOV DR. AC Move Kfrom AC to DR.

14 LD prod Load current partial product P.

15 ADD AddYtoP

16 ST prod Store the new partial product P.

17 BRA loop Branch to loop.

18 exit

Figure 3.5
A program for the multiplication operation AC := AC x N.

main step of adding Y to the accumulating partial product, that is, P :- P + Y. is imple-mented in straightforward fashion by lines 12 to 16 of the program. Finally, a return
ismade to loop via the unconditional branch BRA (line 17).

This program uses most of the available instruction types and illustrates severalweaknesses of an accumulator-based CPU. Because there are only a few data registersin
the CPU, a considerable amount of time is spent shuttling the same information backand forth between the CPU and memory. Indeed, most of the instructions in this pro-
gram are of the data-transfer type (ST, LD. and MOV), which do bookkeeping for thefew instructions that actually compute the product P. It would both shorten the pro-
gram and speed up its execution if we could store the quantities 1. /V, Y. and P in theirown CPU registers, as they are repeatedly required by the CPU.

Program execution. We now examine the execution process for the multipli-cation program of Figure 3.5. Of course, the program must be translated into exe-cutable
object code prior to execution, but we can treat the assembly-languageprogram as a symbolic representation of the object code. Recall that we areassuming that every
instruction is one word long and can be fetched from M in asingle CPU clock cycle. We further assume that every instruction is also exe-cuted in a single clock cycle.
Hence each instruction requires two CPU clockcycles—one to fetch the instruction from M and one to execute it. At the entl of

146 -———"———"————"—_~__ Clock Instruction

SECTION 3.1 cycle cycle PC AR PCU actions DPU actions

CPU Organization i ST ac 1004 IR.AR := M(PC), PC :=PC + 1

21002 M(AR) := AC

3 LD mult 1005 IR.AR := M(PC), PC :=PC + 1

41001 AC := M(AR)

5 BZ exit 1006 IR.AR := M(PC). PC := PC + 1

6 1001 Test A; no further action if A * 0 None

7 LD one 1007 IR.AR := M(PC). PC:= PC + 1

81000 AC := M(AR)

9 MOV DR, AC 1008 IR.AR := M(PC). PC := PC + 1

10 dddd DR := AC

11 LD mult 1009 IR.AR := M(PC), PC :=PC + 1

12 1001 AC:=M(AR)

13 SUB 1010 IR.AR := M(PC), PC :=PC + 1

14 dddd AC:=AC-DR

15 ST mult 1011 IR.AR := M(PC), PC := PC + 1

16 1001 M(AR):=AC

17 LD ac 1012 IR.AR := M(PC), PC :=PC + 1

18 1002 AC:=M(AR)

19 MOVDR, AC 1013 IR.AR := M(PC). PC:=PC + 1

20 dddd DR := AC

21 LD prod 1014 IR.AR := M(PC), PC :=PC + 1

22 1003 AC := M(AR)

23 ADD 1015 IR.AR := M(PC), PC:=PC + 1

24 dddd AC := AC + DR

25 ST prod 1016 IR.AR := M(PC). PC :=PC + 1

26 1003 M(AR) := AC

27 BRA loop 1017 IR.AR := M(PC), PC:=PC + 1

28 1005 PC:=AR None

29 LD mult 1005 IR.AR := M(PC), PC:=PC + 1

30 1001 AC:=M(AR)

31 BZ exit 1006 IR.AR := M(PC). PC :=PC + 1

321018 Test A: PC := AR if A = 0 None

331018

Figure 3.6

Cycle-by-cycle execution trace of the multiplication program of Figure 3.5.

the fetch step, the PCU decodes the instruction's opcode to determine what oper- 147ation to perform during the execution stage. It can also increment PC in prepara-tion
for the next instruction fetch. Recall that an edge-triggered register can beboth read from and written into in the same clock cycle so that the new data isready for use at
the beginning of the next clock cycle. Hence every fetch cycleincludes the following pair of register-transfer operations:

IR.AR := M(PC), PC := PC + 1 (3.3)

The subsequent execution cycle depends on the instruction opcode placed in IR.

Figure 3.6 depicts all the main actions taken by the CPU, including the mem-ory addresses it generates, during execution of the program of Figure 3.5. Data ofthis type is
referred to as an execution trace and is often obtained by simulation ofthe target CPU. (In effect, Figure 3.6 is a hand simulation of the multiplication pro-gram.) Execution
traces are useful for analyzing program behavior and executionspeed. In this example the program's data and instructions have been assigned to aconsecutive sequence of
memory locations 1000, 1001, 1002, . . ., where 1001 isthe location named one in Figure 3.5. The first executable instruction is ST ac,which is in location 1004, so
execution begins when PC is set to 1004. Observehow the contents of the program counter PC are incremented steadily until a branchinstruction is encountered, at which
point the branch address contained in thebranch instruction may replace the incremented contents of PC.

3.1.2 Additional Features

Next we examine some more advanced features of CPUs and look at representativecommercial microprocessors of the RISC and CISC types.

Architecture extensions. There are many ways in which the basic design ofFigure 3.3 can be improved. Most recent CPUs contain the following extensions,which
significantly improve their performance and ease of programming.

« Multipurpose register set for storing data and addresses: These replace the accumu-lator AC and the auxiliary registers DR and AR of our basic CPU. The resulting
CPUis sometimes said to have the general register organization exemplified by the third-generation IBM System/360-370 (Figure 1.17), which has 32 such registers. The
setof general registers is now usually referred to as a register file.

 Additional data, instruction, and address types: Most CPUs have instructions to han-dle data and addresses with several different word sizes and formats. Although

somemicroprocessors have only add and subtract instructions in the arithmetic category,relatively little extra circuitry is required for (fixed-point) multiply and
divideinstructions, which simplify many programming tasks. Call and return instructionsalso simplify program design.

« Register to indicate computation status: A status register (also called a conditioncode or flag register) indicates infrequent or exceptional conditions resulting fromthe
instruction execution. Examples are the appearance of an all-zero result or aninvalid instruction like divide by zero. A status register can also indicate the user
andsupervisor states. Conditional branch instructions can test the status register, whichsimplifies the programming of conditional actions.

CHAPTER 3Processor Basics

148

SECTION 3.1CPU Organization

« Program control stack: Various special registers and instructions facilitate the trans-fer of control among programs due to procedure calling or external interrupts.
ManyCPUs use a flexible scheme for program-control transfer, which employs part of theexternal memory M as a push-down stack (see also Example 1.5). The stack
memoryis intended for saving key information about an interrupted program via push opera-tions so that the saved information can be retrieved later via pop operations.
A CPUaddress register called a stack pointer automatically keeps track of the stack's entrypoint.

Figure 3.7 shows the organization of a processor with the foregoing features. Ithas a register file in the DPU for data and/or address storage. The ALU obtainsmost of its
operands from the register file and also stores most of its results there. Astatus register monitors the output of the ALU and other key points. The principalspecial-purpose
address registers are the program counter and the stack pointer.Special circuits are included for address computation, although the main ALU canalso be used for this
purpose. The control circuits in the PCU derive their inputsfrom the instruction register, which stores the opcode of the current instruction, and

Data processing unit DHL*

To M andIO system

Registerfile

Arithmetic-logic unit

Dataregister

Statusregister

System bus

Programcontrolunit PCU

Addressregister

Programcounter

Stackpointer

Instructionregister

Address-generationlogic

Controlcircuits

Vinternal control signals

Figure 3.7

A typical CPU with the general register organization.

the status register. Communication with the outside world is via a system bus thattransmits address, data, and control information among the CPU, M, and the 10system.
Various nonprogrammable "buffer" registers serve as temporary storagepoints between the system bus and the CPU.

Pipelining. As discussed in Chapter 1, modern CPUs employ a variety ofspeedup techniques, including cache memories, and several forms of instruction-level parallelism.
Such parallelism may be present in the internal organization ofthe DPU or in the overlapping of the operations carried out by the DPU and PCU.These features add to the
CPU's complexity and will be explored in depth later inthis book.

The considerable potential for parallel processing at the instruction level is evi-dent even in the simple CPU of Figure 3.3. We see from the execution trace of Fig-ure 3.6
that the main PCU and DPU activities take place in different clock cycles.If these activities do not share a resource such as the system bus, they can be car-ried out at the
same time. In other words, while the current instruction is being exe-cuted in the DPU, the next instruction can be fetched by the PCU. For example, thethree-instruction
negation routine we gave earlier to change AC to -AC would beexecuted as follows in the style of Figure 3.6:

149

CHAPTER 3Processor Basics

Clockcycle

Instructioncycle

PC

PCU actions

DPU actions

1 MOV DR, AC 2000 IR.AR := M(PC), PC :=PC + 1

2 2001 DR:=AC

3 SUB 2001 IR.AR := M(PC), PC:=PC + 1

42002 AC := AC - DR

5 SUB 2002 IR.AR := M(PC), PC :=PC + 1

6 2003 AC := AC - DR

By merging the execution part of each instruction cycle with the fetch part of thefollowing instruction cycle, we can reduce the overall execution time from sixclock cycles
to four, as shown below. (We use subscripts to distinguish the first andsecond SUB instructions.)

Clock Instruction

cycle cycle PC PCU actions DPU actions

1 MOV 2000 IR.AR := M(PC), PC = PC+ 1

2 MOV/SUB, 2001 IR.AR := M(PC), PC = PC+ 1 DR := AC

3 SUB,/SUB2 2002 IR.AR := M(PC), PC = PC+ 1 AC := AC - DR

4 SUB2 2003 AC :=AC-DR

This overlapping of instruction fetching and execution is an example ofinstruction pipelining, which is an important speedup feature of RISC processors.Figure 3.8
illustrates graphically the type of two-stage pipelining discussed abpve.Each instruction can be thought of as passing through two consecutive stages of

150

SECTION 3.1CPU Organization

Fetch

Execute

Fetch

Execute

Fetch

Execute

Instruction /,Instruction 72Instruction 73 (branch)Instruction 74
Clock cycle 12 3 4

Figure 3.8

Overlapping instructions in a two-stage instruction pipeline.
Fetch

Execute

processing: a fetch stage implemented mainly by the PCU and an execution stageimplemented mainly by the DPU. Hence two instructions can be processed simul-
taneously in every CPU clock cycle, with one completing its fetch phase and theother completing its execute phase. A two-stage pipeline can therefore double theCPU's
performance from one instruction every two clock cycles to one instructionevery clock cycle.

A problem arises when a branch instruction is encountered, such as the BRAloop instruction stored in address (line) 17 of the multiplication program (Figure3.5).
Immediately before this instruction is fetched in some clock cycle i the pro-gram counter PC stores the address 17. PC is then incremented to 18 in preparationfor clock
cycle i + 1. Clearly in clock cycle i +1, the CPU should not fetch theinstruction stored at address 18—that instruction is not even in the multiplicationprogram. In clock
cyclei + 1, BRA is executed, which causes loop = 5 to be loadedinto PC, implying that the next instruction should be taken from location 5. Thefetching of this instruction
can't begin until cycle i + 2, however, as illustrated inFigure 3.8 with i = 4. It follows that we cannot overlap the branch instruction andthe instruction that follows it (73
and 74 in the case of Figure 3.8).

Thus we see that branch instructions reduce the efficiency of instruction pipe-lining, although we will see later that steps can be taken to reduce this problem. Wewill also
see that instruction processing is usually broken into more than two stagesto increase the level of the parallelism attainable.

EXAMPLE 3.2 THE ARM6 MICROPROCESSOR [VAN SOMEREN AND ATACK

1994]. We now examine in some detail the architecture of a microprocessor familythat embodies the RISC design philosophy in a relatively direct and elegant form.
TheARM has its origins in the Acorn RISC Machine, a microprocessor developed in theUnited Kingdom in the 1980s to serve as the CPU of a personal computer. Subse-
quently, the family name was changed—without changing its acronym, however—toAdvanced RISC Machine. The ARM family is primarily aimed at low-cost, low-
powerapplications such as portable computers and games. For example, the Newton, a hand-held "personal digital assistant" introduced by Apple Corp. in 1993 employs
theARM6 microprocessor, whose main features are described below.

The ARMEG is a 32-bit processor in that both its data words and its address wordsare 32 bits (4 bytes) long. It has a load/store architecture, so only its load and
storeinstructions can address external memory M. As in most computers since the IBM Sys-tem/360, main memory is organized as an array of individually addressable
bytes. Thus

Processor Basics
the maximum memory size of an ARM6 computer is 232 bytes, also referred to as 4 151
gigabytes (4G bytes). The ARM6 employs an instruction pipeline to meet the goal of

one instruction executed per CPU clock cycle. Note that it shares all these features with CHAPTa more powerful (and more expensive) RISC microprocessor, the PowerPC
(Examplel.7). The ARM6's instruction set is much smaller than the PowerPC's, however—ithas no floating-point instructions, for example.

The internal organization of the ARM's CPU is shown in Figure 3.9. It has a 32-bitALU and a file of 32-bit general-purpose registers. To permit direct interaction
betweendata and control registers, the ARM has the unusual feature of placing its PC and statusregisters in the register file; conceptually, we will continue to view these
registers aspart of the PCU. There are several modes of operation, including the normal user andsupervisor modes, and four special modes associated with interrupt
handling. In usermode the register file appears to contain sixteen 32-bit registers designated R0:R15.where R15 is also the program counter PC, as well as a current
program status registerdesignated CPSR. (Additional registers, which we will not discuss here, are used whenthe CPU is in other operating modes; they are "invisible" in
user mode.) The ALU isdesigned to perform basic arithmetic operations on 32-bit integers. It employs combina-tional logic for addition and subtraction and a sequential
shift-and-add method similarto that described in Example 2.7 for multiplication. A combinational shift circuit isattached to the ALU to support multiplication and other
operations. A separate address-incrementer circuit implements address-manipulation operations such as PC := PC + lindependently of the ALU. Access to external
memory M (a cache or main memory) isstraightforward. The address of the desired location in M is placed in the PCU's addressregister. In the case of a store instruction,
the data to be stored is also placed in theDPU's write data register. A load instruction causes a data word to be fetched frommemory and placed in the read data register.
Several internal buses transfer data effi-ciently among the DPU's registers and data processing circuits.

All ARMSG instructions are 32 bits long, and they have a variety of formats andaddressing modes. There are about 25 main instruction types, which are listed in Fig-ure
3.10. (We have omitted block move and coprocessor instructions.) This number isdeceptively small, however, as instructions have options that substantially increase
thenumber of operations they can perform. Most instructions can be applied either to 32-bit operands (words) or to 8-bit operands (bytes). Operands and addresses are
usuallystored in registers that can be referred to by short. 4-bit names, allowing a singleARMS6 instruction to specify as many as four operands. The available address
spaceis shared between memory and 10 devices (memory-mapped I0). Consequently, theload/store instructions used for CPU-memory transfers are also used for 10 opera-
tions.

Any instruction can be conditionally executed, meaning that execution may ormay not occur depending on the value of designated status bits (flags) in the CPSR.The
status flags are set by a previous instruction and include a negative flag N (the pre-vious result R computed by the ALU was a negative number), a zero flag Z (/? waszero),
a carry flag C (R generated an output carry), and an overflow flag V (/? generateda sign overflow). Hence every ARM6 instruction is effectively combined with a condi-
tional branch instruction. The basic unconditional move instruction MOV RO. Rl canhave any of 15 conditions attached to it to determine if it is to be executed (see
problem3.8). Some examples:

MOVCC RO, Rl ;IfflagC = 0, then RO :=R 1

MOVCS RO. Rl ;IfflagC= l.thenRO:=Rl

MOVHI RO. R1 ; If nag C = 1 and flag Z = 0. then RO := R1

152

SECTION 3.1CPU Organization

Data

processingunitDPU

ToM

and I/O

Register file

Status registers

Program counter PC

A bus H~1

Bbus

Shifter

Arithmetic-logic unit

ALU bus

Write data register

Read data register 1

System bus

Address register

Instruction register

Address incrementer

Program control unit PCU

Controlcircuits

Figure 3.9

Overall organization of the AJIM6.

An ARMS instruction can also include a shift or rotation operation that is appliedto one of its operands. For instance:
MOV RO, R1,LSL#2

RO:=R1 x4

(3.4)

means logically left shift (LSL) the contents of Rl by 2 bits and move the result to RO.This shift is tantamount to multiplying R1 by four before the move.

The opcode suffix S specifies whether or not an instruction affects the status flags.If S is present, appropriate flags are changed; otherwise, the flags are not affected.
Forexample, the ARM6's move instructions affect the N, Z, and C flags, so appending S

153

CHAPTER 3Processor Basics

Type

Instruction

HDL

format

Assembly-language format
Narrativeformat (comment)

Data Move register

transfer Move register

Move invertedLoad

Store

Data Add

processing Add with carry
SubtractSubtract with

carryReverse subtractReverse subtract
with carryMultiply

R3 := R9R0:=12

R7:= RORS5 := M(adr)

M(adr) := R8
R3:=R5 + 25R3:=R5+R6 + C
R3:=R5-9R3:=R5-9-C
R3:=9-R5R3:=9-R5-C

Rl :=R3xR2

MOVMOV

R3.RIRO,#12

Multiply and add R1 := (R3 x R2) + R4
AndOr

Exclusive-orBit clear

Program Branchcontrol Branch and link
R4:=Rlla/i</2516R4:=R11 or2516R4:=Rllxor25,6R4:=R11 a 2516
PC := PC + adrR14:=PC.PC := PC + adr
Flags :=R1 - 14

Software interrupt

Compare

Compare inverted Flags := Rl + 14
Logical compare Flags := Rl xor 14
Compare inverted Flags := Rl or 14

MVN R7.ROLDR R5, adr

STR R8,adr

ADD R3,R5,#25ADC R3,R5,R6
SUB R3,R5,#9SBC R3,R5,#9
RSB R3.R5,#9RSC R3,R5,#9
MUL R1,R2,R3MLA R1,R2,R3,R4
AND R4.R 11.0x25

ORR R4,R 11.0x25

EOR R4.R 11,0x25

BIC R4,R11,#25

BadrBL adr

SWI

CMP rl.#14CMN rl.#14TEQ rl.#14TST rl.#14

Copy contents of register R9 to register R3Copy operand (decimal number 12) to reg-ister RO.Copy bitwise inverted contents of RO to R7Load R5 with contents of memory
location

adr.Store contents of R8 in memory locationadr.

Add 25 to R5; place sum in R3.

Add R6 and carry bit C to R5: place sum in

R3.Subtract 9 from R5; place difference in R3.Subtract 9 and borrow bit from R5; place

difference in R3.Subtract R5 from 9; place difference in R3.Subtract R5 and borrow bit from 9; place

difference in R3.Multiply R3 by R2; place result in R1.Multiply R3 by R2: add R4; place result in

Rl.Bitwise AND Rl 1 and 25,6; place result in

R4.Bitwise OR Rl 1 and 2516; place result in

R4.Bitwise XOR Rl 1 and 2516; place result in

R4.Bitwise invert 25; AND it to R11. place

result in R4.

Jump to designated instruction.

Save old PC in "link" register R14; then

jump to designated instruction.Enter supervisor mode.Subtract 14 from R1 and set (lags.Add 14 to Rl and set flagsXOR 14 to Rl and set flags.AND 14 to R1 and set flags.
Figure 3.10

Core instruction set of the ARM6.

154 to, say, MOVCS, yields MOVCSS. which checks the moved data item D. It sets N = 1

(0)if D,, = 1 (0), it sets Z = 1 (0) if D is zero (nonzero), and it sets C to the shifter's

SECTION 3.1 output value.

CPU Organization Like Qther rjsCs, the arm6 has an instruction pipeline that permits the various

stages of instruction processing to be overlapped. The pipeline has three stages: fetch,decode, and execute; in effect, the ARM6 breaks the first stage of the two-stage
pipe-line of Figure 3.8 in two. This structure permits the CPU to check every instruction'scondition code in stage 2 to determine whether the instruction should be
executed instage 3. Some instructions such as multiply require more than one cycle for execution,but most require only one. Note that inclusion of an operand shift in an
instruction as in(3.4) does not require an additional cycle, thanks to the fast (combinational) shifter.

A CISC machine. We turn next to a widely used CPU family, the Motorola680X0 family, which was introduced in 1979 with the 68000 microprocessor. Thisexample of an
older CISC architecture is more streamlined and "RISC-like" thanother CISCs. Later members of the family such as the 68060 [Circello et al. 1995]have speedup features
such as instruction pipelining, floating-point executionunits, and superscalar instruction issue. We examine an intermediate member ofthe series, the 68020, a 32-bit
machine whose design broadly resembles that of athird-generation mainframe computer [Motorola 1989].

The 68020 is a one-chip microprocessor introduced in 1985 to serve as theCPU of a general-purpose computer such as a personal computer or workstation.Figure 3.11
outlines the organization of the 68020. It is designed to handle 32-bitwords (termed long words in 680X0 literature) efficiently, but instructions are alsoprovided to handle
operands of 1, 8, 16, and 64 bits. As in the ARM6, memoryaddresses are 32 bits long, permitting a total of 232 different memory locations,each storing 1 byte. Memory-
mapped IO is also used in the 680X0 series. The data-processing unit has a register file containing sixteen 32-bit registers, half of whichare data registers designated
DO0:D7 and half are address registers designatedA0:A7. The ALU can execute a large set of fixed-point (but not floating-point)instructions. Instruction interpretation and
other control functions of the CPU areimplemented by a microprogrammed control unit.

The 68020 has about 70 distinct instruction types (or around 200 if all opcodevariants are distinguished), which are summarized in Figure 3.12. A given instruc-tion such
as MOVE can be defined with several different types of operands, andthe operands can be addressed in various ways. For example, the following move-register instruction
written in 680X0 assembly-language format

MOVE.L DLAG (3.5)

causes the entire contents (a long word as indicated by the opcode suffix .L) of dataregister DI to be copied to address register A6. In other words, (3.5) implementsthe
register transfer A6 := DI. If .L is replaced by .B, then the resulting instruction

MOVE.B D1,A6

causes only the byte stored in the low-order position (bits 0:7) of DI to be copiedto the corresponding part of A6.
Besides the direct addressing mode illustrated by the preceding example, the68020 has several other addressing modes that give the programmer considerable
Program control unit PCU

Control memory(microrom)

Control memory 2(nanorom)

Addresssequencer

Instructionqueue

Instructioncache

155

CHAPTER 3Processor Basics

Main control signals

Data

processingunitDPU

Arithmetic-logic

Data registers

Address registers

DODID2

D3D4D5DbD7

AOAIA2A3A4A5A6

User-programmableregisters

A7 | User stack pointer |

PC [Program counterUser status register(condition code) | CC |
A7' System stack pointer

System status registerSupervisor registers

Buscontrol

circuits

ToMand 10

r=C

System bus

Figure 3.11

Organization of the 68020.

flexibility in accessing data. Most instructions can address memory as well as CPUregisters. For example, if (3.5) is replaced by
MOVE.L D1.(A6) (3.6)

the resulting operation is M(A6) := D1, that is, a store operation with A6 serving asthe memory-address register. This is an instance of indirect addressing. Note thatwhile
(3.5) takes 4 clock cycles to execute, (3.6) takes 12 cycles because of thetime required to access external memory. The 68020's data-processing instructionscan also access
M directly, so the 68020 does not have the load/store architecture
156

Type

Opcode Description

SECTION 3.1CPU Organization

Data transfer EXGMOVEMOVEAMOVECMOVEMMOVEPMOVEQMOVES
Dataprocessing

SWAP

ABCD

ADD

ADDA

ADDI

ADDQ

ADDX

AND*

AS*

CLR

DIVx

EORjc

EXT

LSjc

MULx

NBCD

NEG

NEGX

NOT

OR*

PACK*

ROx

ROXx

SBCD

SUB

SUBA

SUBI

SUBQ

SUBX

UNPK*

Exchange (swap) contents of two registers.

Move (copy) data unchanged from source to destination in CPU or M.Copy data to address register.
Copy data to or from control register (privileged instruction).Copy multiple data items to or from specified list of registers.Copy data between register and alternate bytes
of memory.Copy "quick" (8-bit) immediate data to register.Copy data using address space specified by a control register (privi-leged instruction).Swap left and right halves
of register.

Add decimal (BCD) numbers with carry (extend) flag.

Add binary (twos-complement) numbers.

Add to address register (unsigned binary addition).

Add immediate binary operand.

Add "quick" (3-bit) immediate binary operand.

Add binary with carry (extension) flag.

Bitwise logical AND (x = I denotes immediate operand).

Arithmetic left (x = L) or right (x = R) shift with extension.

Clear operand by resetting all bits to 0.

Divide signed (x = S) or unsigned (x = U) binary numbers.

Bitwise logical EXCLUSIVE OR (x = I denotes immediate operand).

Extend the sign bit of subword to fill register.

Logical (simple) left (x = L) or right (x = R) shift.

Multiply signed (x = S) or unsigned (x = U) binary numbers.

Negate decimal number (subtract with carry from zero).

Negate binary number (subtract from zero).

Negate binary number (subtract with carry from zero).

Bitwise logical complement.

Bitwise logical OR (x = I denotes immediate operand).

Convert number from unpacked to packed BCD format.

Rotate (circular shift) left (x = L) or right (x = R).

Rotate left (x = L) or right (x = R) including the X (extend) flag.

Subtract decimal (BCD) numbers.

Subtract binary (twos-complement) numbers.

Subtract from address register (unsigned binary subtraction).

Subtract immediate binary operand.

Subtract "quick" (3-bit) immediate binary operand.

Subtract binary with borrow (extend) flag.

Convert number from packed to unpacked BCD format.

Figure 3.12

Instruction set of the 68020.

characteristic of a RISC. For example:

ADD (A0), DOspecifies the memory-to-register add operation DO := M(A0) + DO.
EXAMPLE 3.3 680X0 PROGRAM FOR VECTOR ADDITION. Figure 3.13 gives

an example of 680X0 assembly-language code that illustrates several of its basicinstruction types and addressing methods. This program adds two 1000-element vec-tors
A and B to produce a third vector C. Each vector is assumed to be a decimal

Type Opcode Description

Program Bcc Branch relative to PC if specified condition code cc is set.

control Bxcx Test, modify, and/or transfer (depending on xxx) a specified bit; set Z flag to

indicate old bit value.BExxt* Test, modify, and/or transfer (depending on xxx) a specified bit field; set flags

to indicate old bit-field value.BKPT* Execute a breakpoint trap (used for debugging).BRA Branch unconditionally relative to PC.
BSR Call (branch to) subroutine at address relative to PC; save old PC in stack.

CALLM* Call subroutine (program module) saving specified control information in stack.CASx* Compare specified operands and update register. CHKx Check register
against specified values (address bounds); trap if bounds are

exceeded.CMP* Compare two operand values; set flags based on result; x indicates operand
type.DBcc Loop instruction: Test condition cc and perform no operation if condition is

met; otherwise, decrement specified register and branch to specified address.ILLEGAL* Perform trap operation corresponding to an illegal opcode.JMP Branch
unconditionally to specified (nonrelative) address.

JSR Call (jump to) subroutine at specified (nonrelative) address; save old PC in

stack.LEA Compute effective address and load into address register.

LINK Allocate local data and parameter region in the stack.

NOP No operation (except increment PC); instruction execution continues.

PEA Compute effective address and push into stack.

RTD Return from subroutine and deallocate stack parameter region.

RTE Return from exception (privileged instruction).

RTM* Return and restore control (module state) information.RTR Return and restore condition codes.
RTS Return from subroutine.

Sec Set operand to Is (Os) if condition code cc is true (false).

STOP Load status register and halt (privileged instruction).

TRAP Begin exception processing at specified address.

TRAPcc If condition cc is true, then begin exception processing.TST Test an operand by comparing it to zero and setting flags.
UNLK Deallocate local data and parameter area in the stack.

External cpxwr* If condition holds, then branch with external coprocessor as specified by xxx.synchro- RESET Reset or restart external device (privileged
instruction),nization TAS Test operand and set one of its bits to 1 using an indivisible memory-access

cycle.

#Instruction not in the original 68000 instruction set.
Figure 3.12

(continued).

157

CHAPTER 3Processor Basics

number composed of 1000 two-digit bytes. Each vector is stored in a fixed block ofmain memory whose location is known. For example, vector A is stored in
memorylocations 1001,1002,1003, ...,1999,2000.

The desired addition is accomplished by executing the ABCD (add using the BCDnumber format) instruction 1000 times. The address registers A0, Al, and A2 are usedas
pointers to the current 1-byte operands, and they are initialized to the required start-ing values using the first three MOVE instructions. These instructions use
immediateaddressing denoted by the prefix # to specify instruction fields that contain 'actualaddress values, while a register name such as A0 indicates that the desired
operand is

158

SECTION 3.1CPU Organization

Location Instruction

Comment

MOVE.L #2001, A0

MOVE.L #3001, Al

MOVE.L #4001. A2

START ABCD -<A0),-(A1)

MOVE.B (Al),-(A2)

TEST CMPA #1001, A0

BNE

START

Load address 2001 into register A0 (pointer to vector A).

Load address 3001 into register Al (pointer to vector B).

Load address 4001 into Kgister A2 (pointer to vector C).

Decrement contents of A0 and Al by 1, then add M(A0) toM(A1) using 1-byte decimal addition.

Decrement A2 and then store the 1-byte sum M(A1) inlocation M(A2) of vector C.

Compare 1001 to address in AO. If equal, set the Z flag(condition code) to 1; otherwise, reset Z to 0.

Branch to START if Z is not equal to 1.

Figure 3.13

680X0 assembly-language program for vector addition.

the contents of the named register—this is direct addressing. The ABCD and MOVE.B(move byte) instructions use indirect addressing, indicated by parentheses. In this
casethe data specified by (A0) is the content of the memory location whose address isstored in A0. that is, the data in M(A0). Finally the minus prefix in the operand -
(AO0)means that A0 is decremented by one before it is used to access main memory, a modeof addressing called autoindexing.

The program of Figure 3.13 loads three starting addresses into the selected addressregisters. Since the ABCD and MOVE.B instructions begin by automatically decre-
menting these registers, their initial values are made one bigger than the biggestaddress assigned to the corresponding vector. The ABCD instruction performs the fol-
lowing set of operations:

A0:=A0- 1,A1 :=A1-1;M(A1):=M(A1) + M(AO); set flags

which are relatively slow because of the memory access required. The MOVE.Binstruction implements the memory-to-memory move operation with autoindexing
A2:=A2- 1; M(A2):=M(A1); set flags

The compare-address instruction CMPA checks for program termination by comparingthe current address in AO to 1001, the lowest address assigned to vector A. It
actuallysubtracts its first operand (1001 in this case) from its second and sets the status flags(condition code) based on the result. Hence if AO > 1001, then A0 - 1001 > 0
andCMPA sets the zero flag Z to 0, indicating a nonzero result. (It also sets various otherflags not used by this program). When A0 finally reaches 1001, A0 - 1001 = 0,
soCMPA sets Z to 1. Now the last instruction BNE, which stands for branch if not equalto zero, is a conditional branch instruction whose operation is described by

ifZ*] then PC: = START

It therefore transfers execution back to the ABCD instruction in location START aslong as A0 > 1001. When A0 finally reaches 1001, Z becomes 1, and PC is
incrementednormally to exit from the program.

It is interesting to compare this 680X0 program with the similar programs givenearlier for the IAS (Figure 1.15) and PowerPC (Figure 1.27) computers.

Coprocessors. The built-in instruction repertoire of the 68020 includes fixed-point multiplication and division and stack-based instructions for transferring con-trol
between programs. Hardware-implemented floating-point instructions are notavailable directly; however, they are provided indirectly by means of an auxiliaryIC, the
68881 floating-point coprocessor. (The ARM6 also has provisions forexternal coprocessors.) In general, a coprocessor P is a specialized instruction exe-cution unit that can
be coupled to a microprocessor so that instructions to be exe-cuted by P can be included in programs fetched by the microprocessor. Thus thecoprocessor serves as an
extension to the microprocessor and forms part of theCPU as indicated in Figure 3.14.

The 68881 (and the similar but faster 68882) contains a set of eight 80-bitregisters for storing floating-point numbers of various formats, including 32- and64-bit numbers
conforming to the standard IEEE 754 format (presented later).Additional control registers in the 68881 allow it to communicate with the68020. A set of coprocessor
instructions are defined for the 68020; they containcommand fields specifying floating-point operations that the 68881 can execute.When the 68020 fetches and decodes
such an instruction, it transfers the com-mand portion to the coprocessor, which then executes it. Further exchanges takeplace between the main processor and the
coprocessor until the coprocessor com-pletes execution of its current operation, at which point the 68020 proceeds toits next instruction. The commands executed by the
68881 include the basic

159
CHAPTER 3Processor Basics
CPU

68020micro-processor

Systembus

floating-pointcoprocessor

TTT

32-bit address bus

Main memory

Read-onlymemory(ROM)

Input-output

interface circuit

(IO port)

32-bit data bus

Control lines

Input-output

interface circuit

(IOport)

Read-writememory(RAM)

"1

10 device

Figure 3.14

68020-based microcomputer with floating-point coprocessor.
10 device

160 arithmetic operations (add. subtract, multiply, and divide), square root, loga-
rithms, and trigonometric functions. Other types of coprocessors may be

Data Representation attached to the 68020 in similar fashion. Later members of the 680X0 familytake advantage of advances in VLSI to integrate a floating-point
(co)processorinto the CPU chip.

Other design features. Like the IBM System/360-370 and the ARM6, the CPUhas a supervisor state intended for operating system use and a user state for appli-cation
programs. As Figures 3.11 and 3.12 indicate, certain "privileged" controlregisters and instructions can be used only in the supervisor state. User and super-visory
programs are thus clearly separated—for example, they employ differentstack pointers—thereby improving system security. 680X0-based computers arealso designed to
allow easy implementation of virtual memory, whereby the oper-ating system makes the main memory appear larger to user programs than it reallyis. Hardware support
for virtual memory is provided by the 68851 memory man-agement unit (MMU), another 680X0 coprocessor.

Provided they meet certain independence conditions, up to three 68020 instruc-tions can be processed simultaneously in pipeline fashion. This pipelining is com-plicated
by the fact that instruction lengths and execution times vary, a problem thatRISCs try to eliminate. Another speedup feature found in the 68020 is a smallinstruction-only
cache (I-cache). The 68020 prefetches instructions from mainmemory while the system bus is idle; the instructions can subsequently be readmuch more quickly from the
on-chip cache than from the off-chip main memory.An unusual feature of the 68020 noted in Figure 3.11 is its use of two levels ofmicroprogramming to implement the
CPU's control logic. For the manufacturer,this feature increases design flexibility while reducing IC area compared with con-ventional (one-level) microprogrammed
control.

3.2

DATA REPRESENTATION

The basic items of information handled by a computer are instructions and data.We now examine the methods used to represent such information, focusing on theformats
for numerical data.

3.2.1 Basic Formats

Figure 3.15 shows the fundamental division of information into instructions (oper-ation or control words) and data (operands). Data can be further subdivided
intonumerical and nonnumerical. In view of the importance of numerical computation,computer designs have paid a great deal of attention to the representation of num-
bers. Two main number formats have evolved: fixed-point and floating-point. Thebinary fixed-point format takes the form bAb”~)c.. .bK, where each bx is 0 or 1 and abinary

point is present in some fixed but implicit position. A floating-point num-ber, on the other hand, consists of a pair of fixed-point numbers M,E, whichdenote the number M
x BE, where B is a predetermined base. The many formatsused to encode fixed-point and floating-point numbers will be examined later in

<

Binary 161

Instructions ~ Fixed-point

-]

CHAPTER 3

Information <~ ~-""~ " Decimal Processor Basics
Numbers -

~\. / Binary

Floating-point <

Nonnumerical data \ Decimal

Figure 3.15

The basic information types.

the chapter. Nonnumerical data usually take the form of variable-length characterstrings encoded in one of several standard codes, such as ASCII (American Stan-dards
Committee on Information Exchange) code.

‘Word length. Information is represented in a digital computer by means ofbinary words, where a word is a unit of information of some fixed length n. An n-bit word allows
up to 2" different items to be represented. For example, with n =4, we can encode the 10 decimal digits as follows:

0 = 0000 1=0001 2 = 0010 3 = 0011 4 = 0100
5=01016 =01107 = 0111 8=1000 9=1001 (3'7)
To encode alphanumeric symbols or characters, 8-bit words called bytes are com-monly used. As well as being able to encode all the standard keyboard symbols, abyte

allows efficient representation of decimal numbers that are encoded in binaryaccording to (3.7). A byte can store two decimal digits with no wasted space. Mostcomputers
have the 8-bit byte as the smallest addressable unit of information intheir main memories. The CPU also has a standard word size for the data it pro-cesses. Word size is

typically a multiple of 8, common CPU word sizes being 8,16, 32, and 64 bits.

No single word length is suitable for representing every kind of informationencountered in a typical computer. Even within a single domain such as a com-puter's
instruction set, we often find several different word sizes. For example,instructions such as load and store that reference memory need long address fields.Instructions
whose operands are all in the CPU need not contain memory addressesand so can be shorter. The precision of a number word is determined by its length;it is common
therefore to have numbers of various sizes. Figure 3.16 gives a sam-pling of data sizes used by the Motorola 680X0. As here, the term word is oftenrestricted to mean a
32-bit (4 byte) word. (680X0 literature refers to 32-bit wordswith the nonstandard term long word.) Fixed-point numbers come in lengths of 1,2, 4, or more bytes. Floating-
point numbers also come in several lengths, the short-est (single precision) number being one word (32 bits) long.

The circuits of a CPU must be carefully designed to permit various informa-tion formats to coexist smoothly. For example, if instruction length varies, as is thecase in many
CISC microprocessors, the program control unit must be designed todetermine an instruction's length from its opcode and to fetch a variable number ofinstruction bytes
from memory. It must also increment the program countenby a

162

Bits Name

Mlustration

Typical uses

SECTION 3.2Data Representation

1 Bit

8 Byte

16 Halfword

32 Word

D

64 Double word I 1

Status flag. Logic variable.

Smallest addressable memory item.

Binary-coded decimal digit pair.

<

Short fixed-point number. Short address (offset).Short instruction.

Fixed- or floating-point number. Memoryaddress. Instruction.

111 1 Long instruction. Double-precision

"' Liimiljmmiil n . . *

floating-point number.

Figure 3.16

Some information formats of the Motorola 680X0 microprocessor series.

variable amount to obtain the address of the next consecutive instruction. Thuswhile the ARM6 has instructions of length 4 bytes only, the 68020's instructionsrange in
length from 2 to 10 bytes.

Instruction sets commonly have features to make it easy to apply instructionsto nonstandard-length operands. An example is the add-with-carry (ADC) instruc-tion and its
counterpart subtract with carry, which enable add and subtract instruc-tions to apply to long fixed-point numbers by adding them in short segments andpropagating
carries from segment to segment. Suppose, for example, that we wantto add two unsigned 64-bit (double word) binary integers A and B using theARMG6 instruction set
(Figure 3.10), which is designed to add 32-bit words. Let Abe placed in registers RO and R1, with the right (least significant) half of A in R0.Similarly, let B be placed in
registers R2 and R3, with its right half in R2. Wefirst apply the ADD instruction with inputs RO and R2 and place the resulting sumin R4. We also instruct ADD to activate
the status flags, which requires an 5 suf-fix to the ARM6 opcode, changing it to ADDS. (In most other computers theflags are set automatically by all data-processing
instructions.) ADDS results inthe carry flag C assuming the value of the carry-out bit produced by the additionRO + R2. Then we apply the ADC (add with carry)
instruction with inputs Rland R3 to compute the sum Rl + R3. In the following ARM6 code, the final sumA + B is placed in R4 and R5.

HDL format

ARM6

assembly-languageformat

Narrative format (comment)

C.R4 := RO + R2 ADDS R4.R0.R2

R5: = R1+R3+C ADC R5,R1,R3

Add right words and store carry signal C.Add left words plus C.

Storage order. A small but important aspect of data representation is the wayin which the bits of a word are indexed. We will usually follow the conventionillustrated in
Figure 3.17, where the right-most bit is assigned the index 0 and thebits are labeled in increasing order from right to left. The advantage of this conven-tion is that when
the word is interpreted as an unsigned binary integer, the low-order indexes correspond to the numerically less significant bits and the high-orderindexes correspond to
the numerically more significant bits. Similarly, we label the

Byte 3 Byte 2

111111

ByteO

163

CHAPTER 3

H 23 15 ? Figure 3.17 Processor Basics

Most Least b

significant significant Indexing convention for the bits
bit bit and bytes of a word.

bytes of a word from right to left, with index 0 assigned to the numerically leastsignificant byte. Figure 3.17 therefore shows the format used to store a 4-byte wordin a
one-word register.

Since words are stored as individually addressable bytes in memory M, a ques-tion arises as to the storage order in M of the bytes within each word. Suppose thata

sequence WO, W1,..., Wmof m 4-byte number words is to be stored. Suppose fur-ther that we write W(as B13,Bj2,BiA,BlQ, where as in Figure 3.17, we place the
leastsignificant byte BiQ on the right and assign it the lowest index 0. Now the entiresequence can be rewritten as

WO0,Wx,...,Wm = BQ3,B02,B01,B00,B13,B12,BluBI0,...,

Bm,3>Bm,2>Bm,|>Bm,0 (3-8)

Suppose we store these 4(m + 1) bytes in M using the "natural" order defined by(3.8); that is, we assign a sequence of increasing memory addresses

adr0, adrx, adr2, adr3, ..., adrdm+2, adrdm+3

to the bytes as listed in (3.8). This storage sequence, which is illustrated in Figure3.18a, is a byte-storage convention called big-endian.2 It is so named because themost
significant (biggest) byte Bj3 of word Wt is assigned the lowest address and theleast significant byte BiQ is assigned the highest address. In other words, the big-endian
scheme assigns the highest address to byte 0. The alternative byte-storagescheme called little-endian assigns the lowest address to byte 0. This corresponds to
~0,7,...,!1" = #0.0'1i0,1'fi0,2'£i0,3'51,0'51,1'f11.2'#1.3 BmfrBm,\iBm2'Bm3

and is illustrated by Figure 3.18&.

Interestingly, computer manufacturers have never agreed on this issue, so boththe big-endian and little-endian conventions are in widespread use. For example,the
Motorola 680X0 uses the big-endian method, whereas the Intel 80X86 series islittle-endian. Some computers including the ARM family can switch between thetwo endian
conventions.

Tags. In the von Neumann computer, instruction and data words are storedtogether in main memory and are indistinguishable from one another—this is theclassic "stored
program" concept. An item plucked at random from memory cannotbe identified as an instruction or data. Different data types such as fixed-point andfloating-point
numbers also cannot be distinguished by inspection. A word's typeis determined by the way a processor interprets it. In principle, the same word canbe treated as an
instruction and data at different times, for example, the word X in

2The allusion is to an argument appearing in Gulliver's Travels on whether an egg should be opened at it> bigor little end [Cohen 1981].

164

SECTION 3.2Data Representation
...ooc Byte 3.3
...00B Byte 2,0
...O0A Byte 2,1
...009 Byte 2,2
...008 Byte 2,3
...007 Byte 1,0
...006 Byte 1,1
...005 Byte 1,2
...004 Byte 1.3
...003 Byte 0,0
...002 Byte 0,1
...001 Byte 0.2
...000 Byte 0.3

Higheraddresses
Byteaddress

02

01

00
Loweraddresses
Wordaddress
.00C Byte 3,0
.OOB £yte 2,3
OOA Byte 2,2
.009 Byte 2.1
.008 Byte 2,0
.007 Byte 1.3

.006 Byte 1,2

005 Byte 1,1

004 Byte 1,0

.003 Byte 0,3

.002 Byte 0,2

.001 Byte 0,1

.000 Byte 0,0

Byte

address

Figure 3.18

Basic byte storage methods: (a) big-endian and (b) little-endian.

02

01

00

Wordaddress

the instruction sequence

X:=X+Y;

go to X;

It is the programmer's (and compiler's) responsibility to ensure that data are notinterpreted as instructions, and vice versa. A reason for this deliberate indistin-
guishability of data and instructions can be seen in the design of the IAS computer(section 1.2.2). The LAS's address-modify instructions alter stored instructions inmain
memory. The ability to modify instructions in this way—in effect, treatingthem as data—is useful when processing indexed variables, as illustrated in Exam-ple 1.4.
However, this type of instruction modification in memory became obsoletewith the introduction of address-indexing hardware.

A few computer designers have argued that the major information types shouldbe assigned formats that identify them [Feustel 1973; Myers 1982], This can bedone by
associating with each information word a group of bits, called a tag, thatidentifies the word's type. The tag may be considered as a physical implementationof the type
declaration found in some high-level programming languages. One ofthe earliest machines to use tags was the 1960s-vintage Burroughs B6500/7500series, which
employed a 3-bit tag field in every word so that eight word typescould be distinguished. The 52-bit word format of the B6500/7500 and the inter-pretation of its tag appear
in Figure 3.19.

Tagging simplifies instruction specification. In conventional, nontagged com-puters, an instruction's opcode must explicitly or implicitly specify the type of dataon which it
operates. The PCU must know the operand types in order to route them

47
Parity- Tagcheck bit

VInformation bits

Tag Interpretation

000 Single-precision number.

001 Indirect reference word.

010 Double-precision number

on Segment descriptor.

100 Step-index control word.

101 Data descriptor.

110 Uninitialized operand.

111 Instruction.

Figure 3.19
Tagged-word format of the Burroughs B6500/7500 series.

to the proper arithmetic circuits and registers. It is therefore necessary to providedistinct instructions for each data type; for example, add binary word, add binaryhalf-
word, add BCD word, add floating-point word, and add floating-point doubleword. If, on the other hand, tags distinguish the operand types, then a single ADDopcode
suffices for all cases. The processor merely has to inspect an operand's tagto determine its type. Furthermore, tag inspection permits the hardware to checkfor software
errors, such as an attempt to add operands whose types are incompati-ble. Tags have a serious cost disadvantage, however. They increase memory sizeand add to the
system hardware costs without increasing computing performance.This fact has severely restricted the use of tagged architectures.

Error detection and correction. Various factors like manufacturing defects andenvironmental effects cause errors in computation. Such errors frequently appearwhen
information is being transmitted between two relatively distant points withina computer or is being stored in a memory unit. "Noise" in the communication linkcan corrupt
a bit x that is being sent from A to B so that B receives x instead of x.To guard against errors of this type, the information can be encoded so that speciallogic circuits can
detect, and possibly even correct, the errors.

A general way to detect or correct errors is to append special check bits toevery word. One popular technique employs a single check bit c0 called a parity-bit. The parity
bit is appended to an n-bit word X = (x0, xu . .., ¥, ,) to form the(n + 1)-bit word X* = (x0, *,, . . ., *, ,,%); see Figure 3.19. Bit c0 is assigned thevalue 0 or 1 that makes the
number of ones in X* even, in the case of even-paritycodes, or odd, in the case of odd-parity codes. In the even-parity case, c0 isdefined by the logic equation

Chn=Xn©X 0..0X

n—1

(3.9)

where © denotes EXCLUSIVE-OR, while in the odd-parity case

Cr\ — Xft

Suppose that the information X is to be transmitted from A to B. The value of c0 isgenerated at the source point A using, say, (3.9), and X* is sent to B. Let B receivethe
word X' = (x'Q, x\, . . ., xn_vc'Q). B then determines the parity of the receivedword by recomputing the parity bit according to (3.9) thus:

165

CHAPTER 3Processor Basics
Cfn=xn0©X,

© -*'"_!

166

SECTION 3.2Data Representation

Error source
(memory unit.

Inpudata —*- Output—»- data(corrected ifnecessary)
comunication link,

etc.)

Errorcorrector

. a i\

Check-bitgenerator Errordetector

Check-bitgenerator

Figi ire 3.20

Erro r detection and correction logic.

The received parity bit ¢'0 and the reconstituted parity bit c*0 are then compared. Ifc'0 * c*0, the received information contains an error. In particular, if exactly 1 bit ofX*
has been inverted during the transmission process (a single-bit error), then c'0 *c*0. If ¢'0 = c*0, it can be concluded that no single-bit error occurred, but the possi-bility
of multiple-bit errors is not ruled out. For example, if a 0 changes to 1 and a 1changes to 0 (a double error), then the parity of X is the same as that of X* and theerror will
go undetected. The parity bit cO therefore provides single-errordetection. It does not detect all multiple errors, much less provide any informationabout the location of the
erroneous bits.

The parity-checking concept can be extended to the detection of multipleerrors or to the location of single or multiple errors. These goals are achieved byproviding
additional parity bits, each of which checks the parity of some subset ofthe bits in the word X*. By appropriately overlapping these subsets, the correctnessof every bit can
be determined. Suppose, for instance, that we can deduce from theparity checks the identity of the bit x, responsible for a single-bit error. It is then asimple matter to
introduce logic circuits to replace xi by Jc,, thus providing single-error correction. Let ¢ be the number of check bits required to achieve single-errorcorrection with n-b\t
data words. Clearly the check bits have 2C patterns that mustdistinguish between n + ¢ possible error locations and the single error-free case.Hence c must satisfy the
inequality

2C>n+c+1

(3.10)

Forn = 16, (3.10) implies that ¢ > 5, while for n = 32 we have c > 6. A variety ofpractical single-error-correcting parity-check codes meet the lower bound on cimplied by
(3.10) [Siewiorek and Swarz 1992]. Some of these codes can also detectdouble errors and so are called single-error-correcting double-error-detecting(SECDED) codes. As
the main memories of computers have increased in storagecapacity and decreased in physical size, they have become more prone to transientfailures that are often
correctable via SECDED codes. Figure 3.20 shows the struc-ture of a typical error detection and correction scheme used with a computer's mainmemory.

3.2.2 Fixed-Point Numbers 167

In selecting a number representation to be used in a computer, the following factorsshould be taken into account:

* The number types to be represented; for example, integers or real numbers.

« The range of values (number magnitudes) likely to be encountered.

* The precision of the numbers, which refers to the maximum accuracy of the repre-sentation.

« The cost of the hardware required to store and process the numbers.

The two principal number formats are fixed-point and floating-point. Fixed-pointformats allow a limited range of values and have relatively simple hardwarerequirements.
Floating-point numbers, on the other hand, allow a much larger rangeof values but require either costly processing hardware or lengthy software imple-mentations.

Binary numbers. The fixed-point format is derived directly from the ordinary(decimal) representation of a number as a sequence of digits separated by a decimalpoint. The
digits to the left of the decimal point represent an integer; the digits tothe right represent a fraction. This is positional notation in which each digit has afixed weight

according to its position relative to the decimal point. If i > 1, the /thdigit to the left (right) of the decimal point has weight 10, I (10"')- Thus the five-digit decimal number
192.73 is equivalent to

1x102+9x101 +2x10°+ 7x10"1 + 3x 1(T2

More generally, we can assign weights of the form r\ where r is the base or radixof the number system, to each digit.

The most fundamental number representation used in computers employs abase-two positional notation. A binary word of the form

bN...b-ib2bxbQ. b xb 2b ib~...bM (3.11)

represents the number

2V

When unclear from the context, the base r being used will be indicated by append-ing r as a subscript to the number. Thus 10102 denotes the binary equivalent of
thedecimal number 1010, whereas 102 denotes 210. The format of (3.11) is an exampleof a fixed-point binary number and is used to denote unsigned numbers.
Severaldistinct methods used for representing signed (positive and negative) numbers arediscussed below.

Suppose that an n-bit word is to contain a signed binary number. One bit isreserved to represent the sign of the number, while the remaining bits indicate itsmagnitude. To
permit uniform processing of all n bits, the sign is placed in the left-most position, and 0 and 1 are used to denote plus and minus, respectively. This

CHAPTER 3Processor Basics
168 leads to the format

SECTION 3.2 xn-\xn-2xn-2 ll W W *2*1*0 (3-12)

Data Representation | *® Y
Sign Magnitude
<

The precision allowed by this format is n - 1 bits, which is equivalent to (n - 1)log 210 decimal digits. The binary point is not explicitly represented; instead, it isimplicitly
assigned to some fixed location in the word. The binary point's positionis not very important from the point of view of design. In many situations the num-bers being
processed are integers, so the binary point is assumed to lie immediatelyto the right of the least significant bit jc0. Monetary quantities are often expressed asintegers; for
instance, S54.30 might be expressed as 5430 cents. Using an /i-bitinteger format, we can represent all integers N with magnitude \N\ in the range 0 <\N\ < 2" - 1. The
other most widely used fixed-point format treats (3.12) as a frac-tion with the binary point lying between xn_x and xn_2. The fraction format denotesnumbers with
magnitudes in the range 0 < IM < 1 - 2~n.

Signed numbers. Suppose that both positive and negative binary numbers areto be represented by an n-bit word X = x"~x~yX".. .x2xIx0. The standard formatfor positive
numbers is given by (3.12) with a sign bit of 0 on the left and the mag-nitude to the right in the usual positional notation. This means that each magnitudebitxh 0 </ <n -
2, has a fixed weight of the form 2k+1, where k depends on theposition of the binary point. A natural way to represent negative numbers is toemploy the same positional
notation for the magnitude and simply change the signbit xn_\ to 1 to indicate minus. Thus with n = 8, +75 = 01001011, while -75 =11001011. This number code is called
sign magnitude. Note that humans normallyuse decimal versions of sign-magnitude code. Nevertheless, operations like sub-traction are costly to implement by logic
circuits when sign-magnitude codes areused. However, multiplication and division of sign-magnitude numbers is almostas easy as the corresponding operation for
unsigned numbers, as Example 2.7 (sec-tion 2.3.3) shows.

Several number codes have been devised that use the same representation forpositive numbers as the sign-magnitude code but represent negative numbers indifferent
ways. For example, in the ones-complement code, X is denoted by X, thebitwise logical complement of X. In this code we again have +75 = 01001011, butnow -75 =
10110100. In the twos-complement code, X is formed by adding 1 tothe least significant bit of X and ignoring any carry bit generated from the mostsignificant (sign)
position. If X = xn_xxn_ 2. W .x0 is an n-bit binary fraction, -X can beexpressed as follows:

-X=xn_x .xn_2xn_i...xIxQ+0.00 ...0\ (modulo2) (3.13)

I-1

Implicit binary point Implicit binary point

where the use of modulo-2 addition corresponds to ignoring carries from the signposition. If X is an integer, then (3.13) becomes

-X=xn_xxn_2xn_3...xxx0.+000...0\. (modulo2") (3.14)

I1

Implicit binary point Implicit binary point

For example, in twos-complement code +75 = 01001011 and -75 = 10110101.Note that in both complement codes x,,_, retains its role as the sign bit, but theremaining
bits no longer form a simple positional code when the number is nega-tive.

The primary advantage of the complement codes is that subtraction can be per-formed by logical complementation and addition only. Consider the twos-complement code.
To subtract X from Y, just add X to Y, where -X is obtained bylogical complementation and addition of a 1 bit, as in (3.13) and (3.14). As we willsee later, the sign bits do
not require special treatment; consequently, twos-complement addition and subtraction can be implemented by a simple adderdesigned for unsigned numbers.
Multiplication and division are more difficult toimplement if twos-complement code is used instead of sign magnitude. The addi-tion of ones-complement numbers is
complicated by the fact that a carry bit fromthe most significant magnitude bit xn_2 must be added to the least significant bitposition x0. Otherwise ones-complement
codes are quite similar to twos-comple-ment codes and so will not be considered further.

Figure 3.21 illustrates how integers are represented using all three codeswhen n = 4. These codes are all referred to as binary codes to distinguish themfrom the so-called
decimal codes discussed below. Observe that in all cases, 0000represents zero. Only in the case of twos-complement code, however, is the nega-

169
CHAPTER 3Processor Basics

Binary code

Decimal Sign Ones Twos

representation magnitude complement complement

+7 0111 0111 0111
+6 0110 0110 0110
+5 0101 0101 0101
+4 0100 0100 0100
+3 0011 0011 0011
+2 0010 0010 0010
+1 0001 0001 0001
+0 0000 0000 0000
-0 1000 mi 0000
-1 1001 1110 nn

-2 1010 1101 1110
-3 1011 1100 1101
-4 1100 1011 1100
-5 1101 1010 1011
-6 1110 1001 1010

-7 mi 1000 1001

Figure 3.21

Comparison of three 4-bit codes for signed binary numbers.

170 tive (numerical complement) of 0000 also 0000. This unique representation of
,, zero is a significant advantage, for example, in implementing instructions like

Data Representation BNE in Figure 3.13 that test for zero. Consequently, twos-complement code is byfar the most popular code for representing signed binary numbers in
computers.

i

Exceptional conditions. If the result of an arithmetic operation involving n-bitnumbers is too large (small) to be represented by n bits, overflow (underflow) issaid to occur.
It is generally necessary to detect overflow and underflow, since theymay indicate bad data or a programming error. Consider, for example, the additionoperation

Zn-\Zn-2- AA@"q'-= Xn-\Xn-2- @ X0 + Vn-1>'/i-2" @ -~O

using «-bit twos-complement operands. Assume that bitwise addition is performedwith a carry bit c, generated by the addition of xt, y,, and c,_,. The output bits z, andCj
can be computed according to the full-adder logic equations

c, = xft + x,-cM + yf*

Let v be a binary variable indicating overflow when v = 1. Figure 3.22 shows howthe sign bit z, , and v are determined as functions of the sign bits xn_x, yn_i and thecarry
bit c,_2. The overflow indicator v is therefore defined by the logic equation

v = *X/i-1>'/i-1C/i-2 + xn-1>n-1 Cn-2

If the combinations {.xn_x,yn_x,cn_i) = (0,0,1) and (1,1,0), which make v = 1, areremoved from the truth table of Figure 3.22, then zn_x is defined correctly for all
theremaining combinations by the equation

z, i=%,i0y,i0c, 2
Consequently, during twos-complement addition the sign bits of the operands canbe treated in the same way as the remaining (magnitude) bits.

A related issue in computer arithmetic is round-off error, which results fromthe fact that every number must be represented by a limited number of bits. An

Inputs Outputs

Xn-\ >ViCn-1 Zn-1V

0 0o 0 00
0 0 1 01
0 1 0 10
0 1 1 00
1 0o 0 10

0o 1 00
111 1 0 11

1 1 10
Figure 3.22

Computation of the sign bit ;,,_, and the overflow
indicator v in twos-complement addition.

operation involving n-bit numbers frequently produces a result of more than n bits. 171For example, the product of two Ai-bit numbers contains up to In bits, all but n
ofwhich must normally be discarded. Retaining the n most significant bits of theresult without modification is called truncation. Clearly the resulting number is inerror by
the amount of the discarded digits. This error can be reduced by a processcalled rounding. One way of rounding is to add r;/2 to the number before trunca-tion, where r7
is the weight of the least significant retained digit. For instance, toround 0.346712 to three decimal places, add 0.0005 to obtain 0.347212 and thentake the three most
significant digits 0.347. Simple truncation yields the less accu-rate value 0.346. Successive computations can cause round-off errors to build upunless countermeasures
are taken. The number formats provided in a computershould have sufficient precision that round-off errors are of no consequence tomost users. It is also desirable to
provide facilities for performing arithmetic to ahigher degree of precision if required. Such high precision is usually achieved byusing several words to represent a single
number and writing special subroutines toperform multiword, or multiple-precision, arithmetic.

Decimal numbers. Since humans use decimal arithmetic, numbers beingentered into a computer must first be converted from decimal to some binary rep-resentation.
Similarly, binary-to-decimal conversion is a normal part of the com-puter's output processes. In certain applications the number of decimal-binaryconversions forms a
large fraction of the total number of elementary operationsperformed by the computer. In such cases, number conversion should be carriedout rapidly. The various binary
number codes discussed above do not lend them-selves to rapid conversion. For example, converting an unsigned binary numberxn-ixn-2---xot0 decimal requires a
polynomial of the form

fi-i

Jfc+i

L*2'

to be evaluated.

Several number codes exist that facilitate rapid binary-decimal conversion byencoding each decimal digit separately by a sequence of bits. Codes of this kind arecalled
decimal codes. The most widely used decimal code is the BCD {binary-coded decimal) code. In BCD format each digit di of a decimal number is denotedby its 4-bit
equivalent bi3bi2biAbj0 in standard binary form, as in (3.7). Thus theBCD number representing 971 is 100101110001. BCD is a weighted (positional)number code, since
bLj has the weight 10'27. Signed BCD numbers employ decimalversions of the sign-magnitude or complement formats. The 8-bit ASCII code rep-resents the 10 decimal
digits by a 4-bit BCD field; the remaining 4 bits of theASCII code word have no numerical significance.

Two other decimal codes of moderate importance are shown in Figure 3.23.The excess-three code can be formed by adding 00112 to the corresponding BCDnumber—
hence its name. The advantage of the excess-three code is that it ma\ beprocessed using the same logic used for binary codes. If two excess-three num-bers are added like
binary numbers, the required decimal carry is automaticallygenerated from the high-order bits. The sum must be corrected by adding +3. For

CHAPTER 3Processor Basics

1/2 Decimaldigit Decimal code

SECTION 3.2Data Representation BCD ASCII Excess-three Two-out-of-five

0 0000 0011 0000 0011 11000

1 0001 0011 0001 0100 000 it

2 0010 0011 0010 0101 00101
3 0011 00110011 0110 00110
4 0100 0011 0100 0111 01001
5 0101 0011 0101 1000 01010
6 0110 00110110 1001 01100
7 0111 00110111 1010 10001
8 1000 0011 1000 1011 10010
9 1001 0011 1001 1100 10100

Figure 3.23

Some important decimal number codes.

example, consider the addition 5 + 9 = 14 using excess-three code.
1000 = 5+ 1100 = 9Carry 1 <— 0100 Binary sum

+ 0011 Correction

0111 =4 Excess-three sum

Binary addition of the BCD representations of 5 and 9 results in 1110 and no carrygeneration. (The binary sum of two BCD numbers can also be corrected to give
theproper BCD sum as described later.) Some arithmetic operations are difficult toimplement using excess-three code, mainly because it is a nonweighted code; thatis,
each bit position in an excess-three number does not have a fixed weight.

The final decimal code illustrated by Figure 3.23 is the two-out-of-five code.Each decimal digit is represented by a 5-bit sequence containing two Is and threeOs; there are
exactly 10 distinct sequences of this type. The particular merit of thetwo-out-of-five code is that it is single-error detecting, since changing any one bitresults in a sequence
that does not correspond to a valid code word. Its drawbacksare that it is a nonweighted code and uses 5 rather than 4 bits per decimal digit.

The main advantage of the decimal codes is ease of conversion between theinternal computer representation that allows only the symbols 0, 1 and externalrepresentations
using the 10 decimal symbols 0, 1, 2,..., 9. Decimal codes havetwo disadvantages.

1. They use more bits to represent a number than the binary codes. Decimal codestherefore require more memory space. An n-bit word can represent 2" numbersusing
binary codes; approximately 10"/4 = 20830" numbers can be represented ifa 4-bit decimal code such as BCD or excess-three is used.

2. The circuitry required to perform arithmetic using decimal operands is morecomplex than that needed for binary arithmetic. For example, in adding BCD

numbers bit by bit, a uniform method of propagating carries between adjacent 173positions is not possible, since the weights of adjacent bits do not differ by aconstant
factor.

CHAPTER 3Processor Basics

Hexadecimal numbers. One or two other numerical codes are encountered inthe design or use of computers. Of particular importance is hexadecimal (hex)code, which is
characterized by a base r = 16 and the use of 16 digits, consisting ofthe decimal digits 0,1,...,9 augmented by the six digits A,B,C,D,E, and F, whichhave the numerical
values 10, 11, 12, 13, 14, and 15, respectively. The unsignedhexadecimal integer 2FAOC has the interpretation

2x164+Fx163 +Ax162 +0x161 + Cx16°
=2x65,536+15x4,096 + 10x 256 + 0x 16 + 12 x 1= 195,084
Hence 2FA0C16 = 195,08410.

Hexadecimal code is useful for representing long binary numbers, a conse-quence of the fact that the base 16 is a power of two. A hexadecimal number isconverted to
binary simply by replacing each hex digit by the equivalent 4-bitbinary form. For example, we can convert 2FA0C16 to binary by replacing the firstdigit 2 by 0010, the
second digit F by 1111, the third digit A by 1010, and so on,yielding

2FA0C16 = 001011111010000011002

Conversely, we can convert a binary number to hex form by replacing each four-digit group by the corresponding hex digit. Clearly hexadecimal-binary numberconversion
is very similar to BCD-binary conversion. By treating any binary wordas an unsigned integer, we can easily convert the word to hex form as indicatedabove. Hex code
provides a very convenient shorthand for binary information.

3.2.3 Floating-Point Numbers

The range of numbers that can be represented by a fixed-point number code isinsufficient for many applications, particularly scientific computations where verylarge and
very small numbers are encountered. Scientific notation permits us torepresent such numbers using relatively few digits. For example, it is easier towrite a quintillion as

1.0 x1018 (3.15)
than as the 19-bit, fixed-point integer 1 000 000 000 000 000 000. The floating-point codes used in computers are binary (or binary-coded) versions of (3.15).

Basic formats. Three numbers are associated with a floating-point number: amantissa M, an exponent E, and a base B. The mantissa M is also referred to as thesignificand
or fraction in the literature. These three components together representthe real number M x BE. For example, in (3.15) 1.0 is the mantissa, 18 is the expo-nent, and 10 is
the base. For machine implementation the mantissa and exponentare encoded as fixed-point numbers with a base r that is usually 1 or 10. The base B

174
SECTION 3.2Data Representation

is also 1, or some power of 1, for reasons that will become obvious. Since B is aconstant, it need not be included in the number code; it is simply built into the cir-cuits that
process the numbers. A floating-point number is therefore stored as aword (M,E) consisting of a pair of signed fixed-point numbers: a mantissa M,which is usually a
fraction or an integer, and an exponent E, which is an integer.The number of digits in M determines the precision o'f (M,£); B and E determine itsrange. With a word size
of n bits, 2" is the most real numbers that (M,E) can repre-sent. Increasing B increases the range of the representable real numbers but resultsin a sparser distribution of
numbers over that range.

As a small example, suppose that M and E are both 3-bit, sign-magnitude inte-gers and B = 2. Then M and E can each assume the values +0, +1, +2, and +3. Allbinary
words of the form (M,E) = (.x00, xxx) represent zero, where x denotes either0 or 1. The smallest nonzero positive number is (001,111), denoting 1 x 2~3 =0.125;
(101,111) denotes -0.125. The largest representable positive number is(011,011), which denotes 3 x 23 = 24, while (111,011) denotes the largest negativenumber -24.
Observe that the left-most bit, which is the sign of the mantissa, isalso the sign of the floating-point number. Figure 3.24 illustrates the real numbersrepresentable by this
6-bit, floating-point format. As the figure shows, they aresparsely and nonuniformly distributed over the range +24.

The floating-point representation of most real numbers is only approximate.For instance, the 6-bit format of Figure 3.24 cannot represent the number 1.25; it
isapproximated by (011,101), representing 1.5, or by either (001,000) or (001,100),representing 1.0. Moreover, the results of most calculations with floating-
pointarithmetic only approximate the correct result. For example, in the system of Fig-ure 3.24, the exact result (18) of the addition (011,001) + (011,010), which imple-
ments 6 + 12, is not representable. The closest representable number, that is, thebest approximation to 18, is (010,011) = 16. Overflow occurs in this small systemwhen a
result's magnitude exceeds 24, and underflow occurs when a nonzero resulthas a magnitude less than 0.125. In practice, floating-point numbers must havelong mantissas

(at least 20 bits), and the results of floating-point operations mustbe carefully rounded off to minimize the errors inherent in floating-point represen-tation. It is common
practice for floating-point processing circuits to include a fewextra mantissa digits termed guard digits to reduce approximation errors; the guarddigits are removed
automatically from the final results.

-24

" 46 R B 6-4-1 -0 s A H2 S 3

125 |+0.125
028
375
| |-n.s 75 41 418 2

s e e

o3
R I

e

424

Figure 3.24

The real numbers representable by a hypothetical 6-bit, floating-point format.

Normalization and biasing. Floating-point representation is redundant in the 175sense that the same number can be represented in more than one way. For example,1.0 x
1018, 0.1 x 1019, 1000000 x 1012, and 0.000001 x 1024 are possible represen-tations of a quintillion. It is generally desirable to have a unique or normal form foreach
representable number in a floating-point system. Consider the common casewhere the mantissa is a sign-magnitude fraction and a base of r is used. The man-tissa is said
to be normalized if the digit to the right of the radix point is not zero,that is, no leading zeros appear in the magnitude part of the number. Thus, forexample, 0.1 x 1019 is
the unique normal form of a quintillion using base 10, a dec-imal mantissa, and a decimal exponent. A binary fraction in twos-complementcode is normalized when the
sign bit differs from the bit to its right. This impliesthat no leading Is appear in the magnitude part of negative numbers. Normaliza-tion restricts the magnitude \M\ of a
fractional binary mantissa to the range

12<IMI<1

Normal forms can be defined similarly for other floating-point codes. An unnor-malized number is normalized by shifting the mantissa to the right or left andappropriately
incrementing or decrementing the exponent to compensate for themantissa shift.

The representation of zero poses some special problems. The mantissa must, ofcourse, be zero, but the exponent can have any value, since 0 x BE = 0 for all valuesof E.
Often in attempting to compute zero, round-off errors result in a mantissa thatis nearly, but not exactly, zero. For the entire floating-point number to be close tozero, its
exponent must be a very large negative number -K. This requirement sug-gests that the exponent used for representing zero should be the negative numberwith the
largest magnitude that can be contained in the exponent field of the num-ber format. If k bits are allowed for the exponent including its sign, then 2k expo-nent bit
patterns are available to represent signed integers, which can range eitherfrom -2*"1 to 2k~x - 1 or from -2k~x + 1 to 2k~x, so that K is 2k~x or 2k~x - 1.

A second complication arises from the desirability of representing zero by asequence of 0-bits only. This convention gives zero the same representation in bothfixed- and
floating-point formats, which facilitates the implementation of instruc-tions that test for zero. These considerations suggest that floating-point exponentsshould be
encoded in excess-/” code similar to the excess-three code of Figure3.23, where the exponent field E contains an integer that is the desired exponentvalue plus K. The
quantity K is called the bias, and an exponent encoded in thisway is called a biased exponent or characteristic. Figure 3.25 shows the possiblevalues of an 8-bit exponent
with bias 127 and 128.

Standards. Until the 1980s floating-point number formats varied from onecomputer family to the next, making it difficult to transport programs between dif-ferent
computers without encountering small but significant differences in suchareas as round-off errors. To deal with this problem, the Institute of Electrical andElectronics
Engineers (IEEE) sponsored a standard format for 32-bit and largerfloating-point numbers, known as the IEEE 754 standard [IEEE 1985]. which hasbeen widely adopted
by computer manufacturers. Besides specifying the permissi-ble formats for M, £, and B, the IEEE standard prescribes methods for handlinground-off errors, overflow,
underflow, and other exceptional conditions

CHAPTER 3Processor Basics

176

SECTION 3.2Data Representation

Exponent bitpattern E

111111

000000

11

10

100... 01100. . .000il ... 110il ... 10

0100

Unsignedvalue

Number represented

255254

129128127126

1

0

Bias = 127 Bias = 128

+ 128 + 127

+ 127 +126

+2 +1
+1 0

0 -1

-1 -2
-126 -127
-127 -128
Figure 3.25

Eight-bit biased exponents with bias = 127 (excess-127

code) and bias = 128 (excess-128 code).

EXAMPLE 3.4 THE IEEE 754 FLOATING-POINT NUMBER FORMAT [IEEE

1985; Goldberg 1991]. This standard format for 32-bit numbers is illustrated inFigure 3.26. It comprises a 23-bit mantissa field M, an 8-bit exponent field E, and asign bit
5. The base B is two. As in all signed binary number formats, both fixed-pointand floating-point, S occupies the left-most bit position. M is a fraction that with 5forms a
sign-magnitude binary number. For the reasons discussed earlier, floating-point numbers are usually normalized, meaning that the magnitude field should con-tain no
insignificant leading bits. Hence the magnitude part of a normalized sign-mag-nitude number always has 1 as its most significant digit. There is no need to actuallystore
this leading 1 in floating-point numbers, since it can always be inserted by thearithmetic circuits that process the numbers. Consequently, in the IEEE 754 format
thecomplete mantissa (called the significand in the standard) is actually 1.Af, where the 1to the left of the binary point is an implicit or hidden leading bit that is not stored
withthe number. Use of the hidden 1 means that the precision of a normalized number iseffectively increased by 1 bit. The exponent representation is the 8-bit excess-127
codeof Figure 3.25; hence the actual exponent value is computed as E- 127. The base B ofthe floating-point number is 2, so that a 1-bit left (right) shift of M corresponds
toincrementing (decrementing) E by one.

Consequently, a 32-bit floating-point number conforming to the IEEE 754 stan-dard represents the real number N given by the formula
N=(-1)s2E'n\l.M)

(3.16)

Sign 5

iiiiii

8-bit exponent

(excess-127binary integer)

23-bit mantissa

(fraction part of sign-magnitude

binary significand with hidden bit)

Figure 3.26

IEEE 754 standard 32-bit floating-pointnumber format.

provided 0 <E < 255. For example, the number N = -1.5 is represented by 177
101111111 10000000000000000000000 CHAPTER 3

where S =1, E =127, and M = 0.5, since from (3.16) we have W = (-1)'2127-127(1.5) = Processor Basics-1.5. Nonzero floating-point numbers in this format have
magnitudes ranging from2"126(1.0) to 2+127(2 - 2~23), that is, from 1.18 x 10~38 to 3.40 x 1038 approximately.In contrast, 32-bit, fixed-point binary formats for integers
can only represent nonzeronumbers with magnitudes from 1 to 231 - 1 (approximately 2.15 x 109). The 64-bitversion of the IEEE 754 standard is a straightforward
extension of the 32-bit case. Itemploys an 11-bit exponent E and a 52-bit mantissa M and defines the number

7V=(-1)52£-1023(1.M) (3.17)
where 0 < E < 2047.

The IEEE floating-point standard addresses a number of subtle problems encoun-tered in floating-point arithmetic. Well-defined formats are specified for the results
ofoverflow, underflow, and other exceptional conditions, which often yield unpredictableand unusable numbers in computers employing other floating-point formats. The
IEEEstandard's exception formats are intended to set flags in the host processor, which sub-sequent instructions can use for error control, in many cases with little or no
loss ofaccuracy. If the result of a floating-point operation is not a valid floating-point number,then a special code referred to as not a number (NaN) is used. Examples of
operationsthat result in NaNs are dividing zero by zero and taking the square root of a negativenumber. NaN formats are identified in the standard by M ~ 0, and E = 255
(32-bit for-mat) or E = 2047 (64-bit format).

When overflow occurs, meaning that a number has been produced whose magni-tude is too big to represent by the usual format, the result is referred to as infinity, oroo,
and is identified by M = 0, and E = 255 (32-bit format) or E = 2047 (64-bit format).The 754 standard stipulates that operations using the floating-point infinities *°°should
follow certain properties of infinity in real-number theory, such as -<» + N = <»and -oo < N < +°° for any finite N. If underflow occurs, implying that a result is non-zero,
but too small to represent as a normalized number, it is encoded in a denonnal-izecP form characterized by E = 0 and a significand 0.M having a leading 0 instead ofthe
usual leading 1. Denormalization reduces the effect of underflow to a systematicloss of precision equivalent to a small round-off error. Finally, floating-point zero
isidentified by an all-0 exponent and significand, but the sign 5 may be 0 or 1. Note thatas the tiny denormalized numbers are diminished, they eventually reach zero.

In summary, the number N represented by a 32-bit IEEE-standard, floating-pointnumber has the following set of interpretations.

If E = 255 and M * 0, then N = NaN.If E = 255 and M = 0, then N = (-1)VIf 0 <E < 255, then N = {-\)S2E-X2\\.M).IfE = 0 and M * 0, then N = (-1)S2£"126(0.M).IfE = 0
and M = 0, then N = (-1)s0.

The interpretation of 64-bit and larger floating-point numbers is similar.

3The term unnormalized applies to numbers with any value of E and a leading 0 instead of a leading 1 associ-ated with their mantissas. Such numbers are encountered
only as intermediate results during floating-pointcomputations and are not relevant to the standard.

SECTION 3.3Instruction Sets

178 Typical of other floating-point number formats still in use is that of the IBM Sys-

tem/360-370. It consists of a sign bit S, a 7-bit exponent field E, and a mantissa fieldM containing 24,56, or 112 bits. M is treated as a fraction, which with S forms a sign-
magnitude number; there is no hidden leading 1. E is an integer in excess-64 code,corresponding to an exponent bias of 64. Unlike the IEEE 754 format where the baseB
of the representation is two, the System/360-370 Has B = 16. Consequently, M isinterpreted as a hexadecimal (base 16) number with every hexadecimal digit corre-
sponding to 4 bits, and the exponent is treated as a power of 16. The value of a float-ing-point number in the normalized System/360-370 format is therefore given by
N=(-1)516£-64(0.M)

where M is a 6-, 14-, or 28-digit hexadecimal number. For example, the number0.125 x 165 is encoded as

01000101 00100000... 0000

Note that the left-most four bits 0010 of the mantissa represent the nonzero hexa-decimal digit 2; hence the above number is normalized. The number zero is
alwaysrepresented by the all-0 word, making the floating-point representation of zeroidentical to the System/360-370 fixed-point (twos-complement) representation.There
are no equivalents of the IEEE 754 standard's NaN, infinity, and denormal-ized formats. While most floating-point instructions are performed with automaticnormalization

of the results, a few may be specified without normalization, thusproviding some of the advantages of denormalization. Due to the larger value of Bbeing used, the
System/360-370 32-bit format can represent numbers with magni-tudes ranging from 5.40 x 10-79 to 7.24 x 1075 approximately.

3.3
INSTRUCTION SETS

Next we turn to the representation, selection, and application of instruction sets.This topic embraces opcode and operand formats, the design of the instructiontypes to
include in a processor's instruction set, and the use of instructions in exe-cutable programs.

3.3.1 Instruction Formats

The purpose of an instruction is to specify both an operation to be carried out by aCPU or other processor and the set of operands or data to be used in the operation.The
operands include the input data or arguments of the operation and the resultsthat are produced.

Introduction. Most instructions specify a register-transfer operation of the formXx:=op{X{,X2,...,.Xn)
which applies the operation op to n operands Xx, X2,..., Xn, where n ranges from zeroto four or so. We can write the same instruction in the assembly-language notation
op X,X2,...,X, (3.18) 179

which defines the operation and its operands by specific "fields" within the instruc- chapter 3tion word (3.18). The operation op is specified by a field called the
Processoropcode (operation code). The n X,, X2,..., Xn fields are referred to as addresses. An Basicsaddress X, typically names a register or a memory location that stores

an operandvalue. In some instances X, itself is the desired value, in which case it is called animmediate address.

To reduce instruction size and thereby reduce program storage space, it iscommon to specify only m < n operands explicitly in the instruction; the remainingoperands are
implicit. The explicit address fields refer to general-purpose CPU reg-isters or memory locations, while the implicit ones refer to special-purpose regis-ters. If m is the
normal maximum number of explicit main-memory addressesallowed in any processor instruction, the processor is called an m-addressmachine. Implicit input operands
must be placed in known locations before theinstruction that refers to them is executed.

Inside the computer, instructions are stored as binary words. There can be sev-eral different sizes and formats, depending on the instruction type. RISCs tend tohave few
instruction formats, while CISCs tend to have many to accommodatemore opcode types and operand addressing methods. The Motorola 680X0 (Exam-ple 3.3) is a CISC
microprocessor series with many different instruction formatsand sizes, a sampling of which appear in Figure 3.27 [Motorola 1989]. Instructionlength in the 680X0 varies
from 2 to 10 bytes. The 2-byte opcode field of the680X0 is often used to hold one or two 3-bit register addresses, blurring the dis-tinction between opcode and operand.
In the 680X0 family, simple instructions are assigned short formats. For exam-ple, the add-register instruction

ADD.L D1.D2 (3.19)

denotes register-to-register addition of 32-bit (long word) operands, that is,

D2:=D2 + D1

where Dl and D2 are two of the 680X0's data registers (Figure 3.11). This instruc-tion fits in the third 2-byte format F3 of Figure 3.27, which accommodates tworegister-
address fields. A variant of the same two-address instruction can also referto an operand in memory:

ADD.L ADRI1, D2 (3.20)

This instruction specifies the memory-to-register addition operation

D2:=D2 + M(ADR1)

and so combines the load and add operations. It uses the 6-byte format F6 to con-tain the 4-byte immediate address field ADR 1. It also requires a memory access toobtain
one of its input operands, the 4-byte long word with start address ADR1.Note that the binary (machine language) opcodes corresponding to (3.19) and(3.20) have to be
different to distinguish their operand types.

The longest (10 byte) format F8 of the 680X0 is employed by such memory-to-memory move instructions as

MOVE.B ADR1,ADR2

180

SECTION 3.3Instruction Sets
15 0
Opcode

1

iii

Opcode Rl
2

1 11

Opcode

Opcode Rl
3 Opcode R2

iii ii
31 150

Opcode/registers Immediate operand IMM (short)
4

iiiiiidiriiiiii
47 310

Opcode/registers Immediate operand IMM (long)
F6

iiiiiiiii
79 53 32

Opcode/registers Memory address ADR1
8

iiii fiiiiiiiiiiiiiiiii

Memory address ADR2

/R RS R

Figure 3.27

A selection of instruction formats of the Motorola 680X0.

which copies (via the CPU) the byte stored in memory location ADR1 to memorylocation ADR2, that is,

M(ADR2):=M(ADR1)

RISC formats. The instruction formats of the 680X0 accommodate a widevariety of operations and addressing modes. They also try to reduce object-programsize by
encoding the more common instructions in short formats and the less fre-quent and more complex instructions in longer formats. Since such instructions areoften
primitives in high-level programming languages, they serve to reduce bothprogram length and what has been called the semantic gap between the user and thecomputer

languages.

Complex instructions lead to several difficulties, which RISCs with theirsmaller and streamlined instruction sets attempt to minimize.

* The many instruction types and formats of a CISC complicate the program-control unit that decodes instruction opcodes and issues the control signals that

govern their execution. The 68020 employs a large, two-level micropro- 181grammed PCU (Figure 3.11), whereas the ARM6 has a smaller hardwired cir-cuit as its PCU.*
Fast, single-cycle instruction execution is harder to achieve with a complexinstruction set, and it is more difficult for a compiler to optimize object-code per-formance.

A typical RISC employs instructions of fixed length. Memory addressing isrestricted to load and store instructions, so the operands of most instructions are reg-ister
addresses, which are short and easy to accommodate in a one-word format.Figure 3.28 shows the single 32-bit format used by instructions in the RISC 1 com-puter, a
prototype RISC machine designed by David A. Patterson and his colleaguesat the University of California, Berkeley, around 1980 [Patterson and Sequin 1982].Most of the
31 instruction types defined for the RISC 1 perform register-to-registeroperations of the form

Rd := F(Rs,S2)

(3.21)

where Rd is the destination register, Rs is the first source register, and the right-most 5 bits of S2 define a second-source register. If bit 13 of the instruction is set toone,
then S2 is interpreted as an immediate address, that is, as a 13-bit constant.The instructions of the ARM6 microprocessor (Example 3.2), like those of theRISC 1, are all 32
bits long, but they come in a large and CISC-like number of for-mats [Furber 1989].

Operand extension. A CPU is designed primarily to process data words andaddresses of one specific length—a 32-bit word in the case of the ARM6 andRISC 1—although
some instructions handle longer or shorter operands. Numeri-cal operands can be unsigned binary number words, such as memory addresses, orsigned data words that
employ twos-complement code. (Recall from section 3.2.1that the same arithmetic circuits can be used with unsigned and twos-complementnumbers.) Instructions often
contain operand fields that are shorter than the stan-dard word size, for example, the 13-bit immediate address field S2 in the RISC 1format of Figure 3.28. This problem
is unavoidable in RISC instruction sets wherethe instruction length and the standard word size are the same. Consequently, asystematic method is needed to extend short
operand values to full-size, signed orunsigned numbers.

When a short w-bit, twos-complement number is used in an n-bit arithmeticoperation where n > m, a technique called sign extension is employed. This tech-niques
replicates the left-most bit s of the short operand N, which corresponds to itssign bit, n - m times and attaches s"~m = ss...s to the left side of N. Sign extension

CHAPTER 3

Processor

Basics

31

Set condition code23

Set immediate address12

Opcode

JITIIL

Source Rs

J 1IL

Destination Rd

AIII1

Source S2

iIT''"'III1L

Figure 3.28

Instruction format of the Berkeley RISC 1

182 changes a 13-bit operand

SECTION3.3 #=1010101010101 (3.22)

Instruction Sets

in the S2 field of Figure 3.28 to the 32-bit word

~sign-extended =111111111111111111 110101 01010101 (3.23)

In this case s = 1 and n -m = 19. If 5 were 0, then sign extension would precede Nby 19 leading Os. The point of sign extension is that it does not change the numeri-cal
value of a twos-complement number. For instance, both (3.22) and (3.23) repre-sent the same negative integer, namely, -2,64610, in twos-complement code, as canreadily
be verified. Sign extension maintains a number's correct sign and magni-tude because it introduces only numerically insignificant leading Os (positive num-bers) or
insignificant leading Is (negative numbers). If N is to be treated as anunsigned binary number, then it is always extended by leading Os, independent ofthe value of 5. This
technique has been called zero extension. Applying zero exten-sion to (3.22) yields

~zero-extended = 00000000 00000000 00010101 01010101

Next we ask: How is an n-bit memory address, which is a long (typically 32-bit) unsigned integer, constructed from a short m-bit address field, when n > mlZero extension
alone is sometimes used for this purpose, but it does not allow them-bit address to refer to all 2" possible addresses. The usual solution found inCISCs as well as in RISCs
is to treat a short memory address as a modifier, or off-set, which is added (in zero-extended form) to a full-length memory address storedin a designated CPU register,
called a base register. The RISC 1 uses its Rs registerfor this purpose, with S2 serving as the offset. The following store-byte instruction

STB Rs,Rd(S2) (3.24)

is designed to copy the byte from the right end of register Rs to the memory loca-tion whose address is Rd +S2zero.extended. In practice, sign extension is often
implicitand Rd +S2zer0_extended is written simply as Rd +S2. Hence (3.24) is equivalent to

M(Rd + S2):=Rs[24:31]

The final memory address Rd + S2 is an example of an effective address. As wewill see shortly in our discussion of addressing modes, many other techniques areemployed
for constructing effective addresses.

EXAMPLE 3.5 INSTRUCTION FORMATS OF THE MIPS RX000 SERIES
[Kane and heinrich 1992]. MIPS Computer Systems (now a division of SiliconGraphics) introduced the MIPS RX000 series of microprocessors in 1986. The firstmembers
of the series, the MIPS R2000 and R3000, are 32-bit machines that have mostof the classic RISC features: a streamlined instruction set, a load/store architecture, andan
instruction pipeline to support a performance target of one instruction completedevery clock cycle. Later RX000 machines, such as the R10000 announced in 1994.
addvarious extensions to the "MIPS I" architecture implemented in the R2000 and R3000;we will confine our discussion to the MIPS I case.
The RX000 is noteworthy for its simple and regular instruction formats, which wenow examine in detail. As seen from Figure 3.29, all the RX000 instructions are oneword
(32 bits) in length and contain a 6-bit opcode in a fixed position. The remaining

31 25 0

_ Branch address ADR

J-typeformat Opcodeiiiil i:i ii
iiiiiiiiiiiiiii
31 25 20 15 0
Rs Rt

I-typeformat Opcode Immediate operand IMM

iiii iiii

vRegister addresses (2)
183

CHAPTER 3

Processor

Basics

R-typeformat

25

20

10

Opcode

JIIIL

R~

Rt

Rd

Shift amount 1111
Function] ITIL
Register addresses (3)
Figure 3.29

Instruction formats of the MIPS RX000.

26 bits are used in various ways, depending on the instruction type. Any operandsincluded in the instruction must be less than a full word in length, so some way isneeded
to extend them to a full-size memory address or a twos-complement number.

In the case of a J-type (jump or branch) instruction, the 26 operand bits form amemory address ADR, which is the target or branch address. For example, a
simpleunconditional branch instruction has the J-type format

JADR
(3.25)

meaning go to ADR. Since RX000 memory addresses are 32 bits long, the PCU mustextend the 26-bit address field ADR in (3.25) to 32 bits. This is done automatically
bythe following two-step process:

Temp:=PC[31:28].ADR.OO;PC := Temp;

First the four high-order bits from the program counter PC are placed in front ofADR and 00 is appended to it. Then the resulting 32-bit word is made the new con-tents of
PC.

The above address-extension method confines the possible branch addresses to a226-word region of memory space near the location of the current branch
instruction.However, this is not as restrictive as it might appear. First of all, recall that a 32-bitmemory address refers to just one byte. Only 230 instructions can be placed
in a 2 -bytememory, so only 30 bits are really needed to locate an instruction. The RX000 and sim-ilar machines always assign instructions to memory word locations with
addresses thatend in 00: that is, all instructions are aligned with the natural word boundaries in M.Moreover, while the 26-bit address field ADR is still 4 bits short of 30.
the size of theaccessible region for branching (226= 6.71 X 107 different addresses) is more than ade-quate for most programming purposes—and can be increased by
software means, ifnecessary.

The other two formats shown in Figure 3.29 specify register addresses usingeither two or three 5-bit fields. The RX000 has 25 = 32 general-purpose registers in
itsregister file, so register addresses can be fully specified vuth no difficult). The second

Instruction Sets
184 (I type) format is used by ALU-immediate instructions such as
SECTION 3.3 ADDI Rs,Rt,IMM

which adds the contents of the instruction's immediate address field, that is, bits 15:00f the instruction, to the contents of register Rs and places the result in register Rt.
Toconvert the immediate operand FMM from 16 to 32 bits, it is sign-extended to 32 bitsby duplicating its left-most bit to obtain bits 31:16.

The third (R type) format of the RX000 is used by data-processing instructionsthat have a natural three-address format to define operations of the form X}:=op(X2,X3).
For instance, the add-register instruction

ADD Rd,Rs,Rt

performs the 32-bit addition

Rd := Rs + Rt

using the contents of the named registers. Since the register addresses occupy only 15bits of the instruction format, the remaining 11 bits are used in various ways to
increase(and complicate) the range of operations that can be performed. In effect, they serve asextensions to the opcode. For example, there are six shift-register
instructions, all ofwhich use instruction bits 10:6 to specify the amount by which the target register's con-tents are to be shifted. The shift-left logical instruction

SLL Rd,Rt,Shamt

shifts the contents of register Rt left by Shamt (shift amount) bits; it inserts Os in thevacated positions on the right and places the result in Rd. In other words,

Rt := Rd[31-Shamt:0].0Shamt

where 0* denotes a string of k Os.

For load and store instructions, the RX000 uses the typical RISC technique of pro-viding a short address in the instruction, which serves as an offset to a full-
lengthaddress stored in a CPU register. The I-type format of Figure 3.29 is used for load andstore instructions. In this case Rs serves as the base register, and Rt serves as
the datasource (for store) or destination (for load). The instruction that loads a word into theCPU has the assembly-language format

LW Rt, IMM(Rs)

which causes the 16-bit immediate address EMM, that is, the offset, to be sign-extendedto 32 bits and added to the contents of Rs to form the effective address. This
address isthen used to read a word of data from M into register Rt. In HDL terms

Rt := M(Rs + MM)

Addressing modes. The purpose of an address field is to point to the currentvalue V(X) of some operand X used by an instruction. This value can be specifiedin various
ways, which are termed addressing modes. The addressing mode of Xaffects the following issues:

* The speed with which V(X) can be accessed by the CPU.
* The ease with which V(X) can be specified and altered.

Access speed is influenced by the physical location of V(X)—normally the CPUor the external memory M. Operand values located in CPU registers, such as the

general-register file and the program counter PC, can be accessed faster thanoperands in M. It is therefore usual to favor instructions that address CPU regis-ters, both in
the design of instruction sets and in their use in computer programs.An operand's accessibility is also affected by the directness of its addressingmode: The address field X
itself can be V(X), it can specify directly the locationof V(X), or it can identify a location that specifies directly the location of V(X).We can thus distinguish the number of
levels of indirection associated with anaddress. The advantage of indirection, as we will see, is increased programmingflexibility. We can achieve further flexibility by
providing addresses that areautomatically altered or indexed, for example, to step through an array of consec-utive addresses.

If the value V(X) of the target operand is contained in the address field itself,then X is called an immediate operand and the corresponding addressing mode isimmediate
addressing. By implication X is a constant, since it is very undesirableto modify instruction fields during execution.4 More often than not, X is a variablein the usual
mathematical sense, and the corresponding address field identifies thestorage location that contains the required value V(X). Thus X corresponds to avariable, and its
value V(X) can be varied without modifying the instructionaddress field. Operand specification of this type is called direct addressing.

The addressing modes of the operands appearing in a machine-languageinstruction, which can vary from operand to operand, are defined in the instruc-tion's opcode.
Some assembly languages allow addressing modes to be similarlydefined by distinct opcodes. For example, the assembly language of the Intel 8085series has the opcode
MOV (move) to specify data transfers involving directaddressing only. Therefore, the register-to-register transfer A := B, for instance, isspecified by

MOV A,B

(3.26)

The A and B operands of (3.26) are considered to be directly addressed, since thecontents of the named registers are the desired operand values. In contrast, to spec-ify
the operation A := 99, where 99 is an immediate operand, the 8085 instruction

MVI A, 99
(3.27)
with the opcode MVI (wove /mmediate) must be used. Note that (3.27) uses boththe direct and immediate addressing modes.

Most assembly languages take a different approach by specifying the address-ing modes in the operand fields. For example, the Motorola 680X0 equivalents of(3.26) and
(3.27), with DI = A and D2 = B are

and
MOVE D2,DIMOVE #99. D1
(3.28)

respectively. (Note that the Motorola operand order is reversed with respect to theIntel convention.) In (3.28) the prefix # indicates that the immediate addressingmode is
to be used for the operand in question. Deleting the # from (3.28) causes

4Self-modifying programs like the IAS code shown in Figure 1.15 (section 1.2.2) reflect the madeqithe addressing modes available in the earliest computers.
185

CHAPTER 3

Processor

Basics

186

SECTION 3.3Instruction Sets

the first operand to refer to the data in memory location 99, that is, M(99), whichwould be an instance of direct memory addressing.

It is sometimes useful to change the location (as opposed to the value) of Xwithout changing the address fields of any instructions that refer to X. This may
beaccomplished by indirect addressing, whereby the instruction contains the addressW of a storage location, which in turn contains the address X of the desired
operandvalue V(X). By changing the contents of W, the address of the operand valuerequired by the instruction is effectively changed. While direct addressing
requiresonly one fetch operation to obtain an operand value, indirect addressing requirestwo. Figure 3.30 illustrates these different ways of specifying operands in the
caseof three load instructions that transfer the number 999 to the CPU register AC.

The ability to use all addressing modes in a uniform and consistent way withall opcodes of an instruction set or assembly language is a desirable feature
termedorthogonality. Orthogonal instruction sets simplify programming both by reducingthe number of distinct opcodes needed and by simplifying the rules for
operandaddress specification. Many CISC computers like the 680X0 have little orthogo-nality, since processor costs can be reduced (at the expense of programming
costs)by restricting instructions to a few frequently used addressing modes that varyfrom instruction to instruction.

LOADI 999

AC

Memory

(a)

LOAD X

AC

- 999

Memory

*)

LOADN W

AC

999

Memory

(c)

Figure 3.30

Three basic addressing modes: (a) immediate;(b) direct; (c) indirect.

Relative addressing. Absolute addressing, conceptually the simplest mode of 187direct address formation, requires the complete operand address to appear in
theinstruction operand field. This address is used without modification (except, per-haps, zero or sign extension in the case of a short address field) to access the
desireddata item. Frequently, only partial addressing information is included in the instruc-tion, so the CPU must construct the complete (absolute) address. One of the
com-monest address construction techniques is relative addressing, in which theoperand field contains a relative address, also called an offset or displacement D.The
instruction also implicitly or explicitly identifies other storage locations R{,

R2 Rk (usually CPU registers) containing additional addressing information. The

effective address A of an operand is then some function f(D,R]tR2,...,Rk). In mostcases of interest, each operand is associated with a single address register R from aset of
general-purpose address registers, and A is computed by adding D to the con-tents of R. that is,

A:=R+D
R may also be a special-purpose address register such as the program counter PC.There are several reasons for using relative addressing.

1. Since all the address information need not be included in the instructions,instruction length is reduced.

2. By changing the contents of R, the processor can change the absolute addressesreferred to by a block of instructions B. This address modification permits theprocessor
to move (relocate) the entire block B from one region of main mem-ory to another without invalidating the addresses in B. When used in this way, Rmay be referred to as a
base register and its contents as a base address.

3. R can be used for storing indexes to facilitate the processing of indexed data. Inthis role R is called an index register. The indexed items X(0), X(\),...,X(k) arestored in
consecutive addresses in memory. The instruction-address field D con-tains the address of the first item X(0), while the index register R contains theindex i. The address of
item X(i) is D + R. By changing the contents of the indexregister, a single instruction can be made to refer to any item X(i) in the givendata list.

The main drawbacks of relative addressing are the extra logic circuits and process-ing time needed to compute addresses.

So far we have assumed that each operand is a single memory word and cantherefore be specified by a single address. If an instruction must process variable-length data
consisting of many words, each operand specification is divided intotwo parts: an address field that points to the location of the first word of the oper-and and a length
field L that indicates the number of words in the operand. TheCPU automatically increments the instruction address field as successive words ofthe operand are accessed.
The access is complete when L words have beenaccessed.

Indexed items are frequently accessed sequentially so that a reference to X(k)stored in memory location A is immediately followed by a reference to X(k + 1) orX(k-1)
stored in location A + 1 or A -1. respectively. To facilitate stepping througha sequence of items in this manner, addressing modes that automatically incrementor
decrement an address can be defined; the resulting address-modification process

CHAPTER 3

Processor

Basics

188 is called autoindexing. In the case of the Motorola 680X0 series [Motorola 1989],

the address field -(A3) appearing in an assembly-language instruction indicates

Istm tin s ts tnat me con,:ents °ftne designated address register A3 should be decremented auto-

matically before the instruction is executed; this process is called predecrementing.Similarly, (A3)+ specifies that A3 should be incremented automatically after thecurrent
instruction has been executed ipostincrementing). In each case the amountof the address increment or decrement is the length in bytes of the indexed oper-ands.

Most processors have only a few, simple addressing modes for CPU registers,principally direct and immediate addressing. Immediate addresses represent datavalues that
come with the instruction fetch and are placed in the instruction registerIR. In register direct addressing, the address (name) R of the register containingthe desired value
V(R) appears in the instruction. The Motorola 680X0 instruction

MOVE #99, D1
which means "move the constant 99 to data register D1," uses immediate address-ing for 99 and register direct (or simply direct) addressing for DI.

The term register indirect addressing refers to indirect addressing with a regis-ter R name in the address field. It is often used to access memory, in which case Rbecomes
a memory address register. For example,

MOVE.B (A0),D1

uses parentheses to indicate that (A0) is an indirect address involving the 680X0'sA0 addresss register. This move-byte instruction—the opcodes's .B suffix speci-fies a 1-
byte operand—corresponds to

D1[7:0]:=M(A0)

and copies the byte addressed by A0 into the low-order byte position of data regis-ter D1. (The other three bytes of DI are unchanged.) An extension of this address-ing
mode is register indirect with offset, which can also be viewed as a type of baseor indexed addressing. This mode is the only memory addressing mode employedby the
MIPS RX000 series (Example 3.5). The RXOOO's store-word instruction, forexample, is written as

SW Rt, OFFSET(Rs) (3.29)
where Rs is the base register and OFFSET is a number acting as an (immediate)offset operand. Instruction (3.29) is equivalent to the HDL statement
M(Rs + OFFSET) := Rt

where the offset is sign-extended before adding it to Rs to obtain the effectiveaddress Rs + OFFSET. The PowerPC has two addressing modes: register indirectwith offset
as described above (but called register indirect with immediate index)and a second mode (called register indirect with index) in which the effectiveaddress is Rs + Ri,
where Ri is a register name.

The Motorola 680X0, like other CISC-style architectures, has many address-ing modes, including the following: immediate, register direct, register indirect,register
indirect with postincrement, register indirect with predecrement, registerindirect with offset, register indirect with index, absolute short, absolute long, PC

with offset, and PC with index. Its autoindexing features are illustrated in the fol- 189lowing example.
EXAMPLE 3.6 STACK CONTROL IN THE MOTOROLA 680X0 [GILL. CORWIN

and logar 1987; motorola 1989]. A stack is a sequence of storage locationsthat are accessible from only one end referred to as the top of the stack. A write opera-tion
addressed to a stack, termed a push operation, stores a new item at the top of thestack, while a read operation, termed a pop operation, removes the item stored at thetop
of the stack. Push or pop changes the position of the stack top by an amount thatdepends on the length of the operand pushed or popped. A stack is controlled by
anaddress register called the stack pointer SP. This register stores the address of the lastoperand placed in the stack; that address is automatically adjusted after a push
or popoperation so that SP contains the address of the new stack top.

Some computers—the Intel 80X86, for example—have special instructions andhardware for handling stacks that are intended as communication areas for program-control
instructions like call and return. A few early computers such as the BurroughsB6500/7500 even employed stacks in place of general-register files; see Example 1.5(section
1.2.3). The Motorola 680X0 has no explicit hardware for stack support, but, aswe now show, its various addressing modes make it easy to treat any contiguous regionof its
external memory M as a stack.

Suppose that the programmer designates the address register A2 of the 680X0 tobe a stack pointer and that the stack grows toward the low addresses of M. To push
thecontents of a data register, say, D6, into the stack requires the single instruction

MOVE.L D6,-(A2) (3.30)

The input operand is the 4-byte contents of D6, which is directly addressed in (3.30),while the output operand, which is the new contents of the top of the stack, is desig-
nated by -(A2), which denotes indirect addressing with predecrementing using addressregister A2. This push instruction is equivalent to the following HDL operations:

A2 := A2 - 4; M(A2) := D6;

Figure 3.31 shows the state of the affected parts of the CPU and M immediately before(Figure 3.31a) and immediately after (Figure 3.316) execution of instruction
(3.30).0Observe how the data bytes are stored in M according to the big-endian convention.It is easily seen that the pop instruction corresponding to (3.30) is

MOVE.L (A2)+,D6 (3.31)

which is equivalent to

D6 := M(A2); A2 := A2 + 4;

In this case the operand (A2)+ employs the register indirect with postincrementaddressing mode.

Number of addresses. Some computers, notably CISCs like the 680X0, haveinstructions of several different lengths containing various numbers of addresses.A source of
controversy in the early days was the question of how many explicitoperand addresses to include in instructions. Clearly the fewer the addresses, theshorter the
instruction format needed. However, limiting the number of addressesalso limits the range of operations that an instruction can perform. Roughlyspeaking, fewer
addresses mean more primitive instructions and therefore longer

CHAPTER 3

Processor

Basics

190
SECTION 3.3Instruction Sets
CPU

D6 = stack data register

B(0,3) B(0,2) B(0.1) B(0.0)

A2 = stack pointer register

OF FF 78 54

1 word B
(a)
CPU

D6 = stack data register

B(0,3] B(0,2) B<0,1) B(0,0)

A2 = stack pointer register

OF FF 78 50

1 word -

M
Address

OFFF7858*0FFF78570FFF78560FFF78550FFF78540FFF78530FFF78520FFF78510FFF78500FFF784F

t
Stackl Top
rof

stack

B(2.3)

B(1.0)

B(L])

Bd.2i

B(1,3)

FF

FF

FF

FF

FF

1 byte —

M
Address

OFFF78580FFF78570FFF78560FFF78550FFF78540FFF78530FFF78520FFF78510FFF78500FFF784F

B(2,3)

B(1.0)

BfLj

B(1.2) Stack

B(1.3) 1 TopVofstack

B(0.0)

B(0,1)

B(0,2)

Bi0.3)

FF

1 byte —

Figure 3.31

State of the Motorola 680X0 {a) immediately before and (b) immediately afterexecution of the push instruction MOVE.L D6,-(A2).

programs to perform a given task. While the storage requirements of shorterinstructions and longer programs tend to balance, larger programs require longerexecution
times. On the other hand, long instructions with multiple addressesrequire more complex decoding and processing circuits. RISC instructions, withthe exception of load
and store, contain short register addresses only, so two orthree addresses can be accommodated within a short and fixed-length instructionword.

Most instructions require no more than three distinct operands. For example,the fundamental arithmetic operations—addition, subtraction, multiplication, anddivision—
require three operands: two input operands and one output operand. Athree-address instruction can therefore specify all needed operands. For example,the three-address
add instruction

ADDZ,X,Y
means add the contents of memory locations X and Y and place the result in loca-tion Z; that is, Z := X + Y. A one-address add instruction has the format
ADD X

The unspecified operands are assumed to be stored in fixed locations such as theaccumulator AC. in which case the instruction specifies the operation AC := AC +X. In the
case of a two-address instruction, the accumulator is used to store theresult (the sum) only.

ADDX, Y

has the typical interpretation AC := X + Y. Another possibility is to use oneaddress, say, X, to store both the addend X and the sum as follows: X := X + Y. Inthe latter case
the addition operation destroys the X operand. Figures 3.32a, b, andc show how processors that employ one-address, two-address, and three-addressinstructions,
respectively, might implement the operation

X:=AXB + CXC
(3.32)
where the four operands A, B, C, and X are assumed to be stored in external mem-ory.

A few computers have been designed so that most instructions contain noexplicit addresses; they can be called zero-address machines; see also Example1.5. Addresses
are eliminated by storing operands in a push-down stack. All oper-ands used by a zero-address instruction are required to be in the top locations in thestack. For example,
the addition X + Y is invoked by an instruction such as

ADD

that causes the top two operands, which should be X and Y, to be removed from thestack and added. The resulting sum X + Y is then placed at the top of the stack. Astack
pointer automatically keeps track of the stack top. Push and pop instructionsare needed to transfer data to and from the stack. PUSH X causes the contents of Xto be
placed at the top of the stack. POP X causes the top word in the stack to betransferred to location X. Note that PUSH and POP are not themselves zero-address

instructions; as implemented by (3.30) and (3.31), for instance, they aretwo-address instructions. Figure 3.33 shows how a program for (3.32) might beconstructed for a
zero-address, stack machine.

191

CHAPTER 3

Processor

Basics

3.3.2 Instruction Types

‘We now turn to the question: What types of instructions shou'd be included in ageneral-purpose processor's instruction set? We are concerned with the instructions

iyi Instruction Comments

SECTION 3.3Instruction Sets LOAD AMULTIPLY B Transfer A to accumulator AC.AC := ACx B

STORET Transfer AC to memory location T. '
LOADC Transfer C to accumulator AC.
MULTIPLY C AC:=ACxC

ADDT AC:=AC+T

STORE X Transfer result to memory location X.

(a) One-address machine

Instruction Comments
MOVE TA T:=A
MULTIPLY RE- T:=TxB
MOVE X,C X:=C
MULTIPLY X,C X:=XxC

ADD X,T X:=X+T

(b) Two-address machine

Instruction Comments
MULTIPLY TA,B T:=AxB
MULTIPLY X,C,C X:=CxC
ADD XX, T X:=X+T

(c) Three-address machine

Figure 3.32

Programs to execute the operation X := Ax B + Cx C in one-address,two-address, and three-address processors.

that are in the processor's machine language. All processors have a well-definedmachine language, and some implement a lower-level "micromachine" languagespecified
by microinstructions. A typical machine instruction defines one or tworegister transfer (micro) operations, and a sequence of such instructions is neededto implement a
statement in a high-level programming language such as C. Becauseof the complexity of the operations, data types, and syntax of high-level languages,few attempts have
been made to construct computers whose machine languagedirectly corresponds to a high-level language. As noted earlier, there is a semanticgap between problem-
specification languages and the machine instruction set thatimplements them, a gap that language-translation programs such as compilers andassemblers must bridge.
The requirements to be satisfied by an instruction set can be stated in the fol-lowing general, but rather imprecise, terms:

Instruction

PUSH A

PUSHB

MULTIPLY

PUSHC

PUSHC

MULTIPLY

ADD

POPX

Comments

Transfer A to top of stack.

Transfer B to top of stack.

Remove A,B from stack and replace by A x B.

Transfer C to top of stack.

Transfer second copy of C to top of stack.

Remove C,Cfrom stack and replace byCxC

Remove CxC,AxB from stack and replace by their sum.

Transfer result from top of stack to X.

Figure 3.33

Program to execute X

193

CHAPTER 3

Processor

Basics

= AxB+CxC in a zero-address, stack processor.

« It should be complete in the sense that we should be able to construct a machine-language program to evaluate any function that is computable using a
reasonableamount of memory space.

« It should be efficient in that frequently required functions can be performed rap-idly using relatively few instructions.
« It should be regular in that the instruction set should contain expected opcodesand addressing modes; for example, if there is a left shift, there should be a rightshift.

« To reduce both hardware and software design costs, the instructions may berequired to be compatible with those of existing machines—previous membersof the same
computer family, for instance.

Because of the wide variation in CPU architectures between different computerfamilies, standard machine or assembly languages do not exist. There are, never-theless,
broad similarities between all instruction sets, which go back to the IAScomputer and other early machines.

Completeness. A function fix) is said to be computable if it can be evaluated ina finite number of steps by a Turing machine (see section 1.1.1). While real com-puters
differ from Turing machines in having only a finite amount of memory, theycan, in practice, evaluate any computable function to a reasonable degree ofapproximation.
‘When viewed as instruction-set processors, Turing machines havea very simple instruction set. In our discussion of Turing machines, we definedfour instruction types:
write, move tape one square to the left, move tape onesquare to the right, and halt, all of which are conditional on the control processor'sstate. It follows that complete
instruction sets can be constructed for finite-statemachines using equally simple instruction types. In fact, computers have been pro-posed that employ only a single type
of instruction; see problem 3.44. While verysmall instruction sets require simple, and therefore inexpensive, logic circuits toimplement them, they lead to excessively
complex programs. There is therefore afundamental trade-off between processor simplicity and programming complexity.

194 Instructions are conveniently divided into the following five types:

section 3.3 1. Data-transfer instructions, which copy information from one location to another

instruction Sets either in the processor's internal register set or in the external main memory.

2. Arithmetic instructions, which perform operations on numerical data.

3. Logical instructions, which include Boolean and other nonnumerical operations.

4. Program-control instructions, such as branch instructions, which change thesequence in which programs are executed.

5. Input-output (IO) instructions, which cause information to be transferredbetween the processor or its main memory and external IO devices.

These types are not mutually exclusive. For example, the arithmetic instructionA := B + C implements the data transfer A := B when C is set to zero.

Figure 3.34 lists representative instructions from the five types defined above,which have been culled from the instruction sets of various computers. The data-transfer

instructions, particularly load and store, are the most frequently usedinstructions in computer programs, despite the fact that they involve no explicitcomputation. The
arithmetic instructions cover a wide range of operations and aresometimes used as a rough measure of the complexity of an instruction set. Thelogical instructions include
the word-based Boolean operations, as well as opera-tions that have no obvious numerical interpretation. The major branch instructionsare jump (un)conditionally and the
call and return instructions used for subroutinelinkage. The simplest IO instructions are data-transfer instructions addressed to IOports, which transfer one or more words
between an IO port and either the CPU orM. If the CPU delegates control of IO operations to an IO processor (IOP), theCPU needs instructions that enable it to supervise
the execution of IO programs bythe IOP. Instructions that are specific to particular IO devices, such as REWINDTAPE, PRINT LINE, and SCAN KEYBOARD, are treated as
data by the CPU andIOP and are interpreted as instructions only by the IO devices to which they aretransferred.

The completeness of an instruction set can be demonstrated informally byshowing that it can program certain key operations in each of the five instructiongroups. It must
be possible to transfer a word between the processor and any mem-ory location. It must be possible to add two numbers, so an add instruction isincluded in most
instruction sets. Other arithmetic operations can readily be pro-grammed using addition. As noted in section 3.2.2, subtraction of twos-complementnumbers requires
addition and logical complementation (NOT) only. More com-plex arithmetic operations such as multiplication, division, and exponentiation canbe programmed using
addition, subtraction, and shifting, as in Example 2.7. If alogically complete set of Boolean operations such as {AND,NOT} is in the instruc-tion set. then any other
Boolean operation can be programmed. Branching requiresat least one conditional branch instruction that tests some stored quantity and altersthe instruction execution
sequence based on the test outcome. An unconditionalbranch can easily be realized by a conditional branch instruction.

RISC versus CISC. While an instruction set that is limited to two or threeinstructions is impractical, there is no agreement about the appropriate size ormembership of a
general-purpose instruction set. Early computers like the IAS hada small and simple instruction set forced by the need to minimize the amount of

Type

Operation name(s)
Description

Data

MOVE

transfer LOAD

STORE

SWAP (EXCHANGE)

CLEAR

SET

PUSH

POP

Arithmetic ADD

ADD WITH CARRY

SUBTRACT

MULTIPLY

DIVIDE

MULITPLY AND ADD

ABSOLUTE

NEGATE

INCREMENT

DECREMENT

ARITHMETIC SHIFT

Logical AND "i

OR

NOT

EXCLUSIVE-OR

LOGICAL SHIFT

ROTATE

CONVERT (EDIT)

Program JUMP (BRANCH)

control ~ JUMP CONDITIONAL

JUMP TO SUBROUTINE(BRANCH-AND-LINK)
RETURN

EXECUTE

SKIP CONDITIONAL

TRAP (SOFTWARE
INTERRUPT)TESTCOMPARE

Copy word or block from source to destination.Copy word from memory to processor register.Copy word from processor register to memory.Swap contents of source and
destination.Transfer word of Os to destination.Transfer word of Is to destination.Transfer word from source to top of stack.Transfer word from top of stack to destination.

Compute sum of two operands.

Compute sum of two operands and a carry bit.

Compute difference of two operands.

Compute product of two operands.

Compute quotient (and remainder) of two operands.

Compute product of two operands; add it to a third

operand.Replace operand by its absolute value.Change sign of operand.Add 1 to operand.Subtract 1 from operand.Shift operand left (right) with sign extension.

Perform the specified logical operation bitwise.

Shift operand left (right) introducing Os at end.Left- (right-) shift operand around closed path.Change data format, for example, from binary to decimal.

Unconditional transfer: load PC with specified address.Test specified conditions; if true, load PC with specified

address.Place current program control information including PC in

known location, for example, top of stack; jump to

specified address.Restore current program control information including PC

from known location, for example, from top of stack.Fetch operand from specified location and execute as

instruction; note that PC is not modified.Test specified condition; if true, increment PC to skip next

instruction.Enter supervisor mode.

Test specified condition; set flag(s) based on outcome.Make logical or arithmetic comparison of two or moreoperands; set flag(s) based on outcome.

195

CHAPTER 3

Processor

Basics

Figure 3.34

List of common instruction types.

196

SECTION 3.3Instruction Sets

Type

Operation name(s) Description

Programcontrol

SET CONTROLVARIABLES

WAIT (HOLD)

NO OPERATIONInput-output INPUT (READ)

OUTPUT (WRITE)START IOTEST 10

HALTIO

Large class of instructions to set controls for protection pur-poses, interrupt handling, timer control, and so forth (oftenprivileged). '

Stop program execution; test a specified condition continu-ously; when the condition is satisified, resume instructionexecution.

No operation is performed, but program execution continues.

Copy data from specified 10 port to destination, for example,output contents of a memory location or processor register.

Copy data from specified source to 10 port.

Transfer instuctions to IOP to initiate an 10 operation.

Transfer status information from IO system to specified desti-nation.

Transfer instructions to IOP to terminate an 10 operation.

Figure 3.34

(continued).

CPU hardware. These instruction sets included only the most frequently used oper-ations such as load a register from memory, store a result in memory, and add twofixed-
point numbers. As hardware became cheaper, instructions tended to increaseboth in number and complexity so that by 1980 a typical computer had dozens ofinstruction
types, with versions to handle several data types and addressing modes.These large instruction sets contain infrequently used but hard-to-program opera-tions like
floating-point divide. Since such operations are primitives in program-ming languages, they serve to reduce the semantic gap between the user's languageand the
computer's. However, complex instructions lead to a number of complica-tions in both hardware and software design, which we now consider.

Suppose that a particular operation F can be implemented either by a singlecomplex instruction IF or by a multiinstruction routine PF composed of simpleinstructions.
Execution of PF will generally be slower than execution of IF becausethe processor must spend more time fetching the instructions of PF and, dependingon the nature of
F, handling the intermediate data that links the instructions. A fur-ther drawback of PF is that it occupies more memory space than IF occupies. Anobvious disadvantage of
IF is that it adds to the complexity of a processor's controlunit, thereby increasing both the size of the processor and the time required todesign it.

Clearly a program involving F is simplified by using IF in place of PF. Whenthe program is written in a high-level language, however, as most programs are, theexecution
speedup that justifies a complex instruction like /Fmay not be fully real-izable. A compiler will typically translate F into the corresponding machineinstruction IF, if
available, which uses fixed CPU registers and has a fixed execu-tion time. On the other hand, if IF is not available, an efficient or optimizing com-piler may be able to
generate object code QF corresponding to PF that exploitsinformation known at compilation time to reduce F's execution time. Suppose, forinstance, that F is fixed-point
multiplication and is implemented by both IF and QFvia a shift-and-add algorithm of the kind described in Example 2.7. If one of F's

operands is a small constant or zero, then the compiler can easily generate a shorterform of PF that is faster than the generic n-step multiply instruction IF. The speedgap
between IF and PF can also be narrowed by designing the small instruction setrequired for PF to reduce the instruction fetch and execute cycle times as far aspossible,

preferably to one CPU clock cycle each. Another speed advantage of PFover IF is that PF can be interrupted in midoperation at an appropriate instructionboundary,
whereas IF must proceed to termination before the CPU can respond toan interrupt.

Motivated by considerations of the foregoing sort, a number of computerdesigners advocated machines with relatively small and simple instruction sets,which have been
dubbed RISCs for reduced instruction-set computers. RISC archi-tecture is contrasted with the complex instruction-set computer (CISC) architecturefound in most pre-
1980 designs such as the IBM System/360-370 and the Motorola680X0. The major attributes of RISCs have been defined as follows [Colwell et al.1985]:

 Relatively few instruction types and addressing modes.

« Fixed and easily decoded instruction formats.

« Fast, single-cycle instruction execution.

¢ Hardwired rather than microprogrammed control.

* Memory access limited mainly to load and store instructions.

« Use of compilers to optimize object-code performance.

Several of these RISC attributes are closely related. For example, the small sizeand regularity of the instruction set simplifies the design of a hardwired programcontrol
unit, which in turn facilitates the achievement of fast single-cycle execu-tion. The stress placed on efficient compilation requires the machine architects andcompiler
writers to cooperate closely in the design process.

RISC architectures restrict the instructions that access memory to load andstore. Consequently, most RISC instructions involve only register-to-register oper-ations that
are internal to the CPU. To support them, a larger-than-usual number ofregisters may be placed in the CPU. This design facilitates single-cycle executionand minimizes the
CPU cycle time. Pipelining the instruction execution processalso supports single-cycle execution. Since complex instructions are not in theinstruction set, they must be
implemented by multiinstruction routines, whichprompts the attention to efficient compilation. Machine code compiled for a RISCcomputer is likely to have more
instructions than the corresponding CISC code butcan execute more efficiently, especially if only fixed-point (integer) instructionsare involved. However, if the frequency
of complex operations is high, then theperformance of the CISC machine may be better than that of the RISC machine.

197

CHAPTER 3

Processor

Basics

EXAMPLE 3.7 INSTRUCTION SET OF THE MIPS RX000 [KANE AND HEIN-

RI ¢ H 1992]. The RX000 microprocessor series and its instruction formats were intro-duced in Example 3.5 (section 3.3.1). A microprocessor in this family is
implementedby a single IC and has the major components indicated in Figure 3.35. These include afile of 32 general-purpose 32-bit registers and the processing logic to
perform the basicfixed-point ALU functions: add, subtract, multiply, divide and logical operations using32-bit operands. Numerical operands are treated as unsigned or
signed integers intwos-complement code. One register RO in the register file permanently stores the con-stant zero. Some special-purpose arithmetic circuits perform
address computation. The

198

SECTION 3.3Instruction Sets

Localcontrol logic Register filegeneral purpose

32-bit registers)

«

System controlcoprocessor(Control registers,memory manage-ment unit) iLIF

Processing logic(ALU, shifter,

multiplier/divider,address logic)

System bus

To M and10 system
Figure 3.35
Overall organization of the MIPS RXOOO.

overall organization of the RXOOO E-unit is similar to that of the ARM6 (Figure 3.9).As in the ARMS6 case, the E-unit of the RXOOO is pipelined to support the goal of exe-
cuting instructions at a peak rate of one instruction per clock cycle. Floating-pointoperations meeting the requirements of the IEEE 754 standard are supported by an on-
chip or off-chip floating-point unit (FPU).

In addition to the control logic needed for instruction execution, the RXOOO con-tains a unit referred to as the system control coprocessor whose functions include com-
munication with external memory (caches and main memory) and the automaticaddress translation logic needed to support a virtual memory system. The virtual mem-ory
feature uncouples the address space seen by the programmer from the computer'sphysical address space, making it possible, for example, to run a large program in
asmall amount of physical memory. The system control coprocessor is essentially invis-ible to the applications programmer. The RXOOO can have several additional
coproces-sors implemented on additional ICs.

‘We now consider in detail the RXOOO's basic (MIPS I) instruction set, which issummarized in Figure 3.36. There are 74 types, divided almost equally between data-
transfer, data-processing, and program-control instructions. All are 32 bits long and useone of the I, J, and R formats illustrated in Figure 3.29. The smallest addressable
itemin external memory M is, as usual, an 8-bit byte, which requires a 32-bit address tospecify its location. Smaller address fields such as the 26-bit branch address field
of J-type instructions are automatically extended to 32 bits before loading into the programcounter PC. Note that to increment PC to point to the next sequential
instruction of aprogram requires the step PC := PC + 4. The 16-bit (half-word) IMM field of I-typeinstructions serves either as an immediate data operand or else as an
address offset. Ineither case it is also extended to 32 bits either by zero extension or by sign extension.During initialization, the microprocessor can be reset to store data
according to eitherthe big-endian or the little-endian convention.

Following the basic RISC philosophy, communication between the CPU andexternal memory M is via load and store instructions only, using the I-type format (Fig-ure
3.29). The RXOOO has instructions to load and store data in bytes and half-words (2bytes), as well as full, 4-byte words. If a byte or half-word is to be loaded into a
CPUregister, then the loaded item is expanded to a full word by sign extension, unless the"unsigned" version of the load instruction is specified, in which case zero
extension is

Type

Instruction

Assembly-language format

Narrativeformat (comment)

199

Datatransfer

Load byte

Load byte unsigned

Load half-word

LB Rt, Source

Dataprocessing

Load register Rt with sign-extended

memory byte.Load register Rt with zero-extended

memory half-word.Load register Rt with sign-extended

memory half-word.Load register Rt with zero-extended

memory half-word.Load register Rt with memory word.Load left side of register Rt with 1 to
3 memory bytes.Load right side of register Rt with 1 to

3 memory bytes.Store least significant byte of register

Rt in memory.Store least significant half-word of

register Rt in memory.Store register Rt in memory.Store left 1 to 3 bytes of register Rt in
memory.Store right 1 to 3 bytes of register Rt in

memory.Move immediate operand IMM.016 into

register Rt.

(Four special register-move instructions for use with multiplication and division)
(Eight special data-transfer instructions for use with coprocessors, including the systemcontrol coprocessor)
Add ADD Rd.Rs.Rt

Load half-word

unsignedLoad wordLoad word left

Load word right

Store byte

Store half-word

Store wordStore word left

Store word right

Load upper immediate

LBU Rt.Source

LH Rt,Source

LHU Rt.Source

LW Rt.SourceLWL Rt.Source

LWR Rt,Source

SB Rt.Dest

SH Rt,Dest

SW Rt.DestSWL Rt.Dest

SWR Rt.Dest

LUI Rt,IMM

Add unsignedAdd immediate

ADDU Rd.Rs.RtADDI Rt.Rs.IMM

Add immediate unsigned ADDIU

Subtract

SUB Rd.Rs.Rt

Subtract unsigned SUBU Rd.Rs.Rt

AND AND Rd.Rs.Rt

AND immediate =~ ANDI Rt.Rs.IMM

NOR NOR Rd.Rs.Rt

OR OR Rd.Rs.Rt

OR immediate ORI Rt.Rs.IMM

XOR

XOR Rd.Rs.Rt

Add Rs to Rt; put result in Rd (trap on

overflow).Add Rs to Rt: put result in Rd.Add sign-extended IMM to Rs; put

result in Rt (trap on overflow).Rt.Rs.IMM Add sign-extended IMM to Rs; put

result in Rt.Subtract Rt from Rs; put result in Rd

(trap on overflow).Subtract Rt from Rs: put result in Rd.Bitwise AND Rt and Rs; put result
inRd.Bitwise AND zero-extended IMM and

Rs; put results in Rt.Bitu ise NOR Rt and Rs; put result

inRd.Bitwise OR Rt and Rs; put result in Rd.Bitwise OR zero-extended IMM and Rs;
put result in Rt.Bitwise XOR Rt and Rs: put result

inRd.

Figure 3.36

Instruction set of the MIPS RXOOO.

CHAPTER 3

Processor

Basics

200

SECTION 3.3Instruction Sets

Type Instruction

Assembly-language format

Narrativeformat (comment)

XOR immediateSet on less than

Set on less

than unsignedSet on less

than immediate

Set on less thanimmediate unsi

gned

XORI Rt,Rs,IMM Bitwise XOR zero-extended IMM

and Rs; put result in Rt.SLT Rd,Rs,Rt Compare Rt with Rs as signed integers;
if Rs < Rt, then Rd := 1, else Rd := 0.SLTU Rd,Rs,Rt Compare Rt with Rs as unsigned integers;
if Rs < Rt, then Rd := 1, else Rd := 0.SLTI Rt,Rs,IMM Compare sign-extended IMM with Rs as
signed integers; if IMM < Rs, then

Rt := LelseRt := 0.SLTIU Rt,Rs,IMM Compare sign-extended IMM with Rs as
unsigned integers; if IMM < Rs, then

Rt := 1, elseRt:=0.

(Two multiply and two divide instructions)(Six logical and arithmetic shift instructions)
Program Jumpcontrol Jump and link

J ADRJAL ADR

Jump and link register JALR Rd.Rs

Rs.Rt.IMM

Rs,Rt,IMM

Rs,IMM

Rs,IMM

Rs,IMM

Branch on equal BEQ

Branch on not equal BNE

Branch on less than 0 BLTZ

Branch on greater than 0 BGTZBranch on less than or BLEZ

equal to OBranch on greater than

or equal to OBranch on less than 0

and linkBranch on greater than or

equal to 0 and linkSystem call SYSCALL

Break BREAK

(10 miscellaneous coprocessor instructions)

Jump unconditionally to address ADR.Place PC + 8 in R31 and jump
unconditionally to address ADR.Place PC + 8 in Rd and jump

unconditionally to address in Rs.If Rs = Rt, then jump to PC + 8 + IMM.If Rs * Rt, then jump to PC + 8 + IMM.If Rs < 0, then jump to PC + 8 + IMM.If RS > 0, then jump
to PC + 8 + IMM.If Rs < 0, then jump to PC + 8 + IMM.

BGEZ RsJMM If Rs > 0, then jump to PC + 8 + IMM.
BLTZAL RsJMM

BGEZAL RsJMM

Place PC + 8 in R31; if Rs < 0, then

jump to PC + 8 + IMM.Place PC + 8 in R31; if Rs > 0, then
jump to PC + 8 + IMM.Jump unconditionally to the exception
handler.Jump unconditionally to the exception

handler.

Figure 3.36

(continued)

used. For example, if M(Source) = 10101111, then the load byte instructionLB Rt,Source transfers

1111111111111111 11111111 10101111

to the destination register Rt, whereas LBU Rt,Source transfers

00000000 00000000 00000000 10101111

to Rt. While most load and store instructions assume that full words are aligned onmemory word boundaries, that is, their addresses terminate with 00, the RX000 pro-
vides four special instructions LWL. LWR. SWL. and SWR to load and store mis-aligned words.

The RXOOO's data-processing instructions include a typical set of arithmetic andlogical operations. They employ two instruction types implying two different address-ing
modes: I type, in which case the instruction contains a 16-bit immediate operand inits EMM field, and R type, in which case all operands are stored in registers. For exam-
ple, the logical OR instruction

OR Rd.Rs.Rt

implements the word-OR operation Rd := Rs or Rt. whereas the corresponding ORimmediate instruction

201

CHAPTER 3

Processor

Basics

ORI Rt.Rs.EMM

implements Rt := Rs or EMM, with EMM zero-extended to 32 bits.

The RX000 does not employ the usual set of status flags (zero, carry, overflow,and so on) to indicate special properties of results. The only exceptional condition thatis
automatically detected is twos-complement overflow in the case of ADD, ADDI. andSUB. When that happens, an automatic trap occurs, accompanied by a switch fromuser
to supervisor state. To avoid such traps, "unsigned" versions of the precedinginstructions are provided. ADDU, for example, is identical to ADD except that nooverflow trap

occurs under any circumstances.

Four compare or "set" instructions test register values and place the binary testoutcome in a register Rd, effectively using Rd as a flag. For example, if Rt containszero,
then the "set on less than" instruction

SLT Rd.Rs,Rt

determines whether Rs contains a negative number. If Rs is less than Rt. then SLT setsRd to 1; otherwise, it resets Rd to 0. While it seems a waste of hardware to use an
entire32-bit register to store a binary flag, such exception-indicating registers are more easilyaccessed by exception-handling software than individual flag bits. However,
certainother common operations are complicated; see problem 3.41.

For simplicity, we will not discuss the RXOOO's shift instruction, which has nounusual features. We will also not discuss the multiply and divide instructions, whichare
unusual in that they require many cycles to execute and are handled by a specialarithmetic unit within the CPU. Once execution of a multiply or divide instructionbegins,
other instructions may execute in parallel in the RX000*s main arithmetic-logiccircuitry.

In the program-control category, the RXOOO has unconditional "jump" instruc-tions, which employ absolute addressing with the J-type format, and conditional"branch"
instructions, which employ PC-relative addressing and have the R format.The conditions tested by branch instructions are all determined by examining the con-tents of
registers, which as noted above, serve as flags in this architecture. Consider, forexample, the branch on less than or equal to zero instruction

BLEZ Rs,EMM

It is executed in two clock cycles / and t +1. In the first cycle f, a target address TAR-GET is determined as follows. The address offset IMM has 2 bits appended to its
rightend and the sign 5 of IMM (bit 15 of the instruction BLEZ) is extended by 14 bits toform a full 32-bit address. In other words, the branch address is given by

TARGET :=.v14.EMM.00

SECTION 3.3Instruction Sets

202 In the second clock cycle t + 1, the CPU checks for the branch condition by examining

the contents of the specified general register Rs. If Rs contains zero or if its sign bit is1, indicating a negative number, then the operation PC := PC + TARGET is
performed.Since PC is automatically incremented by four at the start of each clock cycle, we haveeffectively added TARGET plus eight to the contents oT PC present at the

start of cyclef; for brevity, this is indicated by PC + 8 + IMM in Figure 3.36.

The various branch instructions have "link" versions that unconditionally save thePC contents in a designated register. These are useful for implementing procedure
callsand interrupts.

The design and control of instruction-processing logic are examined in Chap-ters 4 and 5.

3.3.3 Programming Considerations

To design programs using the instruction sets discussed in the preceding sections, asymbolic format called assembly language can be used. This section discusses thebasic
features of assembly language and their relationship both to the computerorganization and to the machine-language programs that are actually executed bythe host
processor. Most computer programming is now done using higher-levellanguages such as C, which, like assembly language, must be translated (compiled)into machine
language prior to execution.

Assembly language. Machine-language programs (object programs) are lists ofinstructions, each of which has the general form

opcode operand,operand,...,operand

For example, the machine-language version of the instruction for the Motorola680X0 microprocessor series "Load the (immediate) decimal operand 2001 intoaddress
register AO," which is used in the program of Figure 3.13, has the 32-bitbinary format

00100000 01111000 00000111 11010001 (3.33)
It may also be written more compactly in hexadecimal code thus:
2078 07D1 (3.34)

Here 2078 is the opcode word indicating "move long (32-bit) operand to registerA0," while the operand field 07D1 is the hexadecimal equivalent of the decimalnumber
2001. Assembly-language versions of this instruction are

MOVE.L #2001,A0 (3.35)
and MOVE.L #$07D1,A0 (3.36)

where the opcode and the operand AQ are represented in symbolic form. The prefix# denotes an immediate operand in the Motorola convention, while $ indicates
thatbase 16 rather than base 10 is being used. Before they can be executed, assembly-language instructions like (3.35) and (3.36) must be translated into the equivalent

machine-language form represented by (3.33) and (3.34). The translation or assem-bly process is carried out by a system program known as an assembler, which
isanalogous to a compiler that translates a high-level language program into machinecode.

In addition to using symbolic names for opcodes and registers, assembly lan-guages allow symbolic names to be assigned to user-defined constants and vari-ables, such as
the immediate operand appearing in (3.35) and (3.36). For example,many assembly languages use the statement

A EQU 2001
(3.37)

to indicate that the symbol A is to be equivalent (EQU) to the decimal number2001. If statement (3.37) is present in a program for the 680X0 microprocessor,then (3.35)
and (3.36) can be replaced by

MOVE.L A,A0

which is assembled into exactly the same machine code as before. This instructionalso corresponds to the register-transfer operation denoted symbolically by A0 :=A.
Statement (3.37) is considered an assembly-language instruction but, unlike theMOVE instructions, does not translate into an executable instruction in machinelanguage.
Rather it is an instruction that tells the assembler how to treat the symbolA during the program-translation process. This type of nonexecutable assembly-language
instruction is called a directive or pseudoinstruction.

The memory location to be assigned to an instruction can be indicated symbol-ically by means of a label at the beginning of an assembly-language statement. Forexample,
the label LI in

LI MOVE.L A,A0 ; Load initial value into AQ
(3.38)

is assigned to a physical memory address by the assembler, normally to the oneimmediately following the address assigned to the preceding instruction. Labelsare
generally used in an assembly-language instruction only when another instruc-tion needs to refer to the first one. For example, the 680X0 instruction

IMP LI ; Branch unconditionally to instruction labeled LI

(3.39)

causes a branch to instruction (3.38), which has the label LI; JMP LI is theassembly-language equivalent of the high-level language statement go to LI. Allassembly
languages allow the programmer to introduce comments, which have noeffect on the assembly process but are useful for documenting a program toimprove its readability.
As illustrated by (3.38) and (3.39), 680X0 assembly lan-guage uses a semicolon as a prefix to mark comments.

Assemblers also allow the programmer to assign a symbolic name to asequence of instructions, permitting those instructions to be treated as a singleinstructionlike entity
termed a macroinstruction, or simply a macro. Assembly lan-guages often have built-in macros that appear to the programmer to augment themachine's instruction set.
For example, the MIPS RX000 machine language lacksthe logical NOT instruction found in other computers. However, a NOT instruction3f the form

203

CHAPTER 3

Processor

Basics

NOT Rd, Rs ; Form bitwise logical complement Rs of Rs and place in -Rd

204

SECTION 3.3Instruction Sets

is easily synthesized from the RXOOO's NOR instruction, as follows:

NORRGd, Rs, 0 ; Compute the NOR function Rs + 0 = Rs and place in Rd

Thus we conclude that assembly-language instructions have the following gen-eral format:

label opcode operand,operand,...,operand comments

where the opcode can be an executable command corresponding to a machine-language opcode, a directive, or a macro. Like machine languages, assembly lan-guages
vary from computer to computer and are usually defined (not alwaysconsistently) by a computer's primary manufacturer.

Assembly process. The input to the assembler program is a source programwritten in assembly language. The output is an object program in machine lan-guage and an
optional assembly listing that shows both the assembly-language andmachine-language versions of the program and the correspondence between them.The object code
can be combined with other machine-language programs to pro-duce a final composite executable program. A system program called a linker per-forms the task of
combining different programs in this fashion. The use ofsymbolic names for shared data and labels plays an important role in allowing thelinker to merge different
assembly-language programs, or perhaps to merge thework of different programmers.

Nonexecutable assembly-language instructions such as the EQU statement(3.37) are known as directives. They are used to define the values of programparameters, to
assign programs and data to specific physical or symbolic memorylocations, and to control the output of the assembly process. In the case of macro-assemblers, directives
are also used to define macros. Figure 3.37 lists a represen-tative set of the directives found in most assembly languages. The EQU directivetells the assembler to equate
two different names for the same thing. In (3.37) EQU

Type

Opcode Description

Symbol definitionMemory assigment

Macro definition

Miscellaneous

EQU Equate symbolic name (in label position) to operand value.

ORG Origin: use operand value as starting address for subsequent

instructions.DS Define storage: reserve the specified number of consecutive

locations (bytes) in memory.DC Define constant: store the operand values as constants.

MACRO Start of macro definition.ENDM End of macro definition.

END End of program(s) to be assembled.

TITLE Use operand as title on each page of assembly listing.

IF Start of conditional block of instructions to be assembled only

if a specified condition is met.ENDIF End of conditional block.

Figure 3.37

List of representative assembly-language directives.

assigns a symbolic name to a constant; it can also be used to equate two symbolicnames for variables, as in

ALPHA EQU BETA

which defines a new variable ALPHA that must always have the same value as apreviously defined parameter BETA. The ORG (origin) directive tells the assem-bler which
memory address to assign for storing the subsequent executable code ordata. For example, in

LI

ORG 100MOVEL A, A0

the ORG directive states that the MOVE instruction is to be assigned to memorylocation 100, which equates the symbolic address or label LI to the physicaladdress 100.
The assembler needs this address value to translate into machine codethe address fields of any instructions that refer to LI. Once the start address of ablock of code has

been established, the assembler automatically keeps track of thememory locations to be assigned to all items in the block.

Sometimes it is useful to reserve a block of memory for future use, for exam-ple, as a buffer storage area for IO data, without specifying its contents. The DS(define
storage) instruction is provided for this purpose. Thus the directive

L2 DS 500

states that a block of 500 memory bytes should be reserved, beginning at the cur-rent location L2. If it is desired to actually define data to be placed in a program,the DC
(define constant) directive is used. DS and DC typically exist in severalversions depending on the word size to be used. For example, the 680X0 directive

L3 DC.B 1,2,3,4,5,6,7

causes the seven specified operand values to be placed (in binary form) in sevenconsecutive 1-byte memory locations starting with L3. If the same data is to bestored in
the ASCII character code, then the format

L3 DC.B '1234567'

is used. We now turn to an example that illustrates the directives discussed so far.

205

CHAPTER 3

Processor

Basics

EXAMPLE 3.8 ASSEMBLY OF VECTOR ADDITION PROGRAM FOR THE

motorola 680X0 . This particular programming task, which was considered ear-lier for the IAS computer (Example 1.4), the PowerPC (Example 1.7), as well as the680X0
(Example 3.3), is to add two 1000-element vectors A and B creating a sum vec-tor C. We assume again that the vectors are 1000-byte decimal (BCD) numbers. The680X0
series has a 1-byte add instruction ABCD (add BCD), which is placed in a pro-gram loop and executed 1000 times to accomplish the desired vector addition. The pro-gram
can be described abstractly in the following high-level language format:

forl= 1 to 1000 do

Cli] := A[i] + B[i] + carry; (3.40"

We assume that A, B, and C are stored in three consecutive 1000-byte blocks of mem-ory as depicted in Figure 3.38.

206

SECTION 3.3Instruction Sets

Hexadecimaladdress

0000

0100

01040108010C

0114

03E9

07D10BB9OFAO

- MOVE.L#2001. AO -

- MOVE.L#3001. Al -

_ 0256 >

J 02600264

MOVE.L#4001. A2 I

ABCD-(AO), -(Al) - 0268

BXE SF6

VectorA

VectorB

VectorC

Decimaladdress

0000

> Program

0276

1001

2001

3001

4000

> Data

Figure 3.38Memory allocation forthe 680X0 vector additionprogram.

To determine how best to implement (3.40) in assembly language, the availableinstruction types and addressing modes must be examined carefully. The ABCDinstruction,
besides being limited to byte operands, allows only two operand addressingmodes: direct register addressing and indirect register addressing with predecrement-ing. As
explained earlier, the latter mode causes the contents of the designated addressregister to be automatically decremented just before the add operation is carried out.This
approach is convenient for stepping through lists, in this case the elements of avector, and hence it is selected here. Two of the address registers A0 and Al are chosento
address or point to the current elements of A and B, respectively. Thus the basicaddition step is implemented by the instruction

ABCD -(AOMAl)

(3.41)

which is equivalent to

A0:=A0-1, Al :=A1-1;M(Al) := M(AO) + M(A1) + carry:

A third address register A2 is used to point to vector C, and the result computed by(3.41) is stored in the C region by the 1-byte data transfer instruction

MOVE.B (A1),-(A2)

(3.42)

MOVE.L #2001, AO

MOVE.L #3001, Al

MOVE.L #4001,A2

ABCD -(A0),-(A1)

MOVE.B (A1),-(A2)

CMPA #1001,A0

START

Because addresses are predecremented, AO, Al, and A2 must be initialized to valuesthat are one greater than the highest addresses assigned to A, B, and C,
respectively.The foregoing instructions (3.41) and (3.42) are executed 1000 times, that is, until thelowest address (1001 in the case of vector A) is reached. This point can
be detected bythe CMPA (compare address) instruction

CMPA #1001, AO

which sets the zero-status flag Z to 1 if AO = 1001 and to 0 otherwise. When Z ~ 1, abranch is made back to (3.41) using the BNE (branch if not equal to 1) instruction.
Theresulting code, which also appears with comments in Figure 3.13, is as follows:

START

BNE

Figure 3.39 shows an assembly listing of the foregoing code with various direc-tives added for both illustrative purposes and to complete the program. The assembly-
language source code appears on the right side of Figure 3.39, while the assembledobject program appears on the left in hexadecimal code. The left-most column
containsthe memory addresses assigned by the assembler to the machine-language instructionsand data, which are then listed to the right of these memory addresses.
The first ORGdirective causes the assembler to fix the start of the program at the hexadecimaladdress 0100. The symbolic names A, B, and C are assigned by EQU
directives to theaddresses of the first elements of the three corresponding vectors. The subsequentMOVE.L (move long) instructions contain arithmetic expressions that
are evaluatedduring assembly and replaced by the corresponding numerical value. For example, theexpression A + 1000 appearing in the first MOVE.L instruction is
replaced by 1001 +1000 = 2001. In general, assembly languages allow arithmetic-logic expressions to beused as operands, provided the assembler can translate them to
the form needed for theobject program. The statement MOVE.L #2001, A0 is thus the first executable state-ment of the program, and its machine-language equivalent
2078 07D1 is loaded intomemory locations 0100:0103 (hex), as indicated in Figures 3.38 and 3.39. The remain-der of the short program is translated to machine code and
allocated to memory in sim-ilar fashion.

Many 680X0 branch instructions use relative addressing, which means that thebranch address is computed relative to the current address stored in the program
counterPC. Consider, for instance, the conditional branch instruction BNE START, the lastexecutable instruction in the vector-addition program. As shown by Figure 3.39.
thecorresponding machine-language instruction is 66F6 in which 66 is the opcode BNEand F6 is an 8-bit relative address derived from the operand START. Now F6)6
=111101102, which when interpreted as a twos-complement number is -1010 or -0A,6.After BNE START has been fetched from memory locations 011416 and 011516, PC
isautomatically incremented to point to the next consecutive memory location 0116,6.Hence at this point PC = 00000116,6. Now when the CPU executes the branch
instruc-tion BNE, it computes the branch address as PC + (-0A) = 0000010C!6. which, asrequired, is the physical address of the instruction (ABCD) with the symbolic
addressSTART.

The remainder of the vector-addition program illustrates the assembly-languagedirectives that define data regions. ORG is used again to establish a start address for
thedata region; in this case the start address is 10011(, = 03E916. The DS.B (define storage

207

CHAPTER 3

Processor

Basics

208

SECTION 3.3Instruction Sets

Machine language

Location Code/Data

Assembly language

68000/68020 program for vector addition

The vectors are composed of a thousand 1-byte (two digit) decimalnumbers. The starting (decimal) addresses of A, B, and C are1001, 2001, and 3001, respectively.

0100 2078 07D1

0104 2278 0BB9

0108 2478 OFA1l

010C C308

010E 1511

0110 BOF8 03E9

0114 66 F6

; Define origin of program at hex address 1000100 ORG $100
; Define symbolic vector start addresses03E9 A EQU 1001
07D1 B EQU 2001

0BB9 C EQU 3001

; Begin executable code

MOVE.L A+1000,AO ; Set pointer beyond end of AMOVE.L B+1000.A1 ; Set pointer beyond end of BMOVE.L C+1000,A2 ; Set pointer beyond end of CSTART ABCD -(A0),
-(Al); Decrement pointers & addMOVE.B (A1),-(A2) ; Store result in CCMPA A,AQ ; Test for termination

BNE START : Branch to START if Z * 1
; End executable code

03E9

03E9

07D1 010101

07D4 16 16 16

Begin data definition

ORG A

DS.B 1000

DC.B1.1.1

DC.B 22,22,22

END

; Define start of vector A: Reserve 1000 bytes for A; Initialize elements 1:3 of B: Initialize elements 4:6 of B; End program
Figure 3.39

Assembly listing of the 680X0 program for vector addition.

in bytes) directive reserves a region of 1000 bytes. This directive merely causes theassembler's memory location counter, which it uses to keep track of memoryaddresses,
to be incremented by the specified number of bytes. As indicated by Figure3.38, this action makes the location counter point to the start of the region storing vec-tor B.
The two DC. B (define constant in bytes) commands initialize six elements of Bto the specified constant values. Finally the END directive indicates the end of theassembly-
language program.

Macros and subroutines. Two useful tools for simplifying program design byallowing groups of instructions to be treated as single entities are macros and sub-routines. A
macro is defined by placing a portion of assembly-language codebetween appropriate directives as follows:

name MACRO operand,..., operand

Body of macro

ENDM

The macro is subsequently invoked by treating the user-defined macro name,which appears in the label field of the MACRO directive, as the opcode of a new(macro)
instruction. Each time the macro opcode appears in a program, the assem-bler replaces it by a copy of the corresponding macro body. If the macro has oper-ands, then the
assembler modifies each copy of the macro body that it generates byinserting the operands included in the current macro instruction. Macros thus allowan assembly
language to be augmented by new opcodes for all types of operations;they can also indirectly introduce new data types and addressing modes. A macrois typically used to
replace a short sequence of instructions that occur frequently ina program. Note that although macros shorten the source code, they do not shortenthe object code
assembled from it.

Suppose, for example, that the following two-instruction sequence occurs in aprogram for the Intel 8085 [Intel 1979]:

LDHL ADR ;Load M(ADR) into address register HLMOV A,M ;Load M(HL) into accumulator register A

This code implements the operation A := M(M(ADR)), which loads register Atreating ADR as an indirect memory address. We can define it as a macro namedLDAI (load
accumulator indirect) as follows:

LDAI

MACROLDHLMOVENDM

ADRADR

AM

;Load M(ADR) into address register HL;Load M(HL) into register A

With this macro definition present in an 8085 program, LDAI becomes a newassembly-language instruction for the programmer to use. The subsequent occur-rence of a
statement such as

LDAI 1000H (3.43)

in the same program causes the assembler to replace it by the macro body

LDHL 1000HMOV A,M

with the immediate address 100016 from (3.43) replacing the macro's dummy inputparameter ADR. Note that the macro definition itself is not part of the object pro-gram.

A subroutine or procedure is also a sequence of instructions that can beinvoked by name, much like a single (macro) instruction. Unlike a macro, how-ever, a subroutine
definition is assembled into object code. It is subsequently used.

209

CHAPTER 3

Processor

Basics

210

SECTION 3.3Instruction Sets

not by replicating the body of the subroutine during assembly, but rather duringprogram execution by establishing dynamic links between the subroutine objectcode and
the points in the program where the subroutine is needed. The necessarylinks are established by means of two executable instructions named CALL orJUMP TO
SUBROUTINE, and RETURN. Consider, for example, the followingcode segment:

CALL SUB 1

NEXT

SUB1

Main (calling) program
Subroutine SUB 1
RETURN

After CALL SUB1 has been fetched, the program counter PC contains the addressNEXT of the instruction immediately following CALL; this return address mustbe saved
to allow control to be returned later to the main program. Thus a callinstruction first saves the contents of PC in a designated save area. It then transfersthe address that
forms the operand of the call statement, SUBL1 in this case, into PC.SUB 1 is the address of the first executable instruction in the subroutine and alsoserves as the
subroutine's name. The processor then begins execution of the sub-routine. Control is returned to the original program from the subroutine by execut-ing RETURN, which
simply retrieves the previously saved return address andrestores it to PC.

CALL and RETURN may use specific CPU registers or main-memory loca-tions to store return addresses. The RX000, for instance, uses a CPU register fromits register file
to save a return address on executing any of its jump/branch-and-link-register instructions, which serve as call instructions; see Figure 3.36. Manycomputers use a
memory stack for this purpose. CALL then pushes the returnaddress into the stack, from which it is subsequently retrieved by RETURN. Thestack pointer SP automatically
keeps track of the top of the stack, where the lastreturn address was pushed by CALL and from which it will be popped byRETURN.

Figure 3.40 illustrates the actions taken by the CALL instruction in a stackrealization. For simplicity, we assume that opcodes and the addresses are all onememory word
long. The instruction CALL SUBI is stored in memory locations1000 and 1001, and we assume that the assembler has replaced SUB1 with thephysical address 2000.
Immediately before the CALL instruction cycle begins, theprogram counter PC contains the address 1000, as shown in Figure 3.40a. TheCALL opcode is fetched and
decoded, and PC is incremented to 1001. On identify-ing the instruction as a subroutine call, the CPU fetches the address part 2000 ofthe instruction and stores it in the
(buffer) address register AR; again PC is incre-mented to 1002. At this point the system state is as shown in Figure 3.40b, and PCcontains the return address to the main
program. Next the contents of PC arepushed into the stack. Then the contents of AR are transferred to PC, and the stack

IR | MOV
AR 17893PC
1000

SP 13500

CALL

2000

Main- program

Subroutine" SUB1

RETURN

1034

Stack y»

1000
2000
3500

IR |CALL

AR |2000

PC| 1002 *-{-

SP 13500

CALL
2000 _
Main
program
1000

2000

211
CHAPTER 3
Processor
Basics

3500

(a)

(b)

IR | CALL |
AR | 2000
2000

3499 «f-[
_CALL 2000
Mainprogram
SubroutineSUB1
RETURN

1002

1034

1000
2000
3500

(c)

Figure 3.40

Processor and memory state during execution of a CALL instruction: (a) initial state,(b) state immediately after fetching the instruction, and (c) final state.
pointer SP is decremented by one. The resulting state of the system is depicted inFigure 3.40c.

3.4SUMMARY

The main task of a CPU is to fetch instructions from an external memory M andexecute them. This task requires a program counter PC to keep track of the
activeinstruction, and registers to store the instructions and data as they are processed.The simplest CPUs employ a central data register called an accumulator,
alongwith an ALU capable of addition, subtraction, and word-oriented logic operations.In most CPUs a register file containing 32 or more general-purpose registers

SECTION 3.5Problems
212 replaces the accumulator. RISC processors such as the ARM and the MIPS RXOOO

allow only load and store instructions to access M, and use small instruction setsand techniques such as pipelining to improve performance. CISC processors suchas the
Motorola 680X0 have larger instruction sets and some more powerfulinstructions that improve performance in some applications but reduce it in others.The arithmetic
capabilities of simpler processors are limited to the fixed-point(integer) instructions unless auxiliary coprocessors are used. More powerful CPUshave built-in hardware to
execute floating-point instructions.

Computers store and process information in various formats. The basic unit ofstorage (the smallest addressable unit) is the 8-bit byte. The CPU is designed tohandle data
in a few fixed-word sizes, 32-bit words being typical. The two majorformats for numerical data are fixed-point and floating-point. Fixed-point numberscan be binary (base
2) or, less frequently, decimal, meaning a binary code such asBCD that preserves the decimal weights found in ordinary (base 10) decimal num-bers. The most common
binary number codes are sign magnitude and twos com-plement. Each code simplifies the implementation of some arithmetic operations;twos complement, for example,
simplifies the implementation of addition and sub-traction and so is generally preferred. A floating-point number comprises a pair offixed-point numbers, a mantissa M,
and an exponent E and represents numbers ofthe form M X BE where B is an implicit base. Floating-point numbers greatlyincrease the numerical range obtainable using a
given word size but require muchmore complex arithmetic circuits than fixed-point numbers require. The IEEE 754standard for floating-point numbers is widely used.

The functions performed by a CPU are defined by its instruction set. Aninstruction consists of an opcode and a set of operand or address fields. Varioustechniques called
addressing modes are used to specify operands. An instruction'soperands can be in the instruction itself (immediate addressing), in CPU registers,or in external memory
M. Operands in registers can be accessed more rapidly thanthose in M. An instruction set should be complete, efficient, and easy to use insome broad sense. Instructions
can be grouped into several major types: data trans-fer (load, store, move register, and input-output instructions), data processing(arithmetic and logical instructions), and
program control (conditional and uncon-ditional branches). All practical computers contain at least a few instructions ofeach type, although in theory one or two
instruction types suffice to perform allcomputations. RISCs are characterized by streamlined instruction sets that are sup-ported by fast hardware implementations and
efficient software compilers. WhileCISCs have larger and more complex instruction sets, they simplify the program-ming of complex functions such as division. The use of
subroutines (procedures)and macroinstructions can simplify assembly-language programming in all typesof processors.

3.5PROBLEMS

3.1. Show how to use the 10-member instruction set of Figure 3.4 to implement the follow-ing operations that correspond to single instructions in many computers; use as
few in-structions as you can. (a) Copy the contents of memory location X to memory locationY. (b) Increment the accumulator AC. (c) Branch to a specified address adr if
AC "~ 0.

3.2. Use the instruction set of Figure 3.4 to implement the following two operations as-suming that sign-magnitude code is used, (a) AC := -M(X). (b) Test the right-most
bitb of the word stored in a designated memory location X. If b = 1, clear AC; otherwise,leave AC unchanged. [Hint: Use an AND instruction to mask out certain bits of
aword.]

3.3. Consider the possibility of overlapping instruction fetch and execute operations whenexecuting the multiplication program of Figure 3.5. (a) Assuming only one word
canbe transferred over the system bus at a time, determine which instructions can be over-lapped with neighboring instructions, (b) Suppose that the CPU-memory
interface isredesigned to allow one instruction fetch and one data load or store to occur during thesame clock cycle. Now determine which instructions, if any, in the
multiplication can-not be overlapped with neighboring instructions.

3.4. Write a brief note discussing one advantage and one disadvantage of each of the fol-lowing two unusual features of the ARM®6: (a) the inclusion of the program
counter PCin the general register file; (b) the fact that execution of every instruction is conditional.

3.5. Use HDL notation and ordinary English to describe the actions performed by eachof the following ARM6 instructions: (a) MOV R6,#0; (b) MVN R6,#0; (c)ADD
R6,R6,R6; (d) EOR R6,R6,R6.

3.6. Suppose the ARM6 has the following initial register contents (all given in hex code):
Rl =11110000; R2 = 0000FFFF; R3 = 12345678; NZCV = 0000

Identify the new contents of every register or flag that is changed by execution of thefollowing instructions. Assume each is executed separately with the foregoing
initialstate, (a) MOV R1,R2; (b) MOVCS R1.R2; (c) MVNCS R2.R1; (d) MOV R3,#0;(e)MOV R3,R4, LSL#4.

3.7. Suppose the ARM6 has the following initial register and memory contents (all givenin hex code):
Rl = 00000000; R2 = 87654321; R3 = A0O5B77F9; NZCV = 0000

Identify the new contents of every register or flag that is changed by executionof the following instructions. Assume each is executed separately with the forego-ing initial
state, (a) ADD R1,R2,R3; (b) ADDS R1.R3.R3; (c) SUBS R2,R1,#1;(</)ANDS R3,R2,Rl;(e)EORCSS R1,R2,R3.

3.8. Use the instruction set for the ARM6 given in Figure 3.10 to write short code segmentsto perform the tasks given below. Note that an opcode can be followed by two
optionalsuffixes, a two-character condition code to determine branching and S to activate thestatus flags. Figure 3.41 lists all possible condition fields. The required tasks
are:(a) Replace the contents of register Rl by its absolute value, (b) Perform the 64-bitsubtraction R5.R4 := R1.RO - R3.R2, where the even-numbered registers contain
theright (less significant) half of each operand.

3.9. Write the shortest ARM6 program that you can to implement the following conditionalstatement:

while (x © y) do x := \ - 1:Assume that x and y are stored in CPU registers R1 and R2, respectively.

213
CHAPTER 3
Processor
Basics
214 Code Mnemonic Flag test Usual interpretation
Z=
SECTION 3.5Problems 00000001 EQNE Result equal to zero.Result not equal to zero.
Z=0
0010 CS or HS C=1 Unsigned overflow: result higher or same.
0011 CCor LO C=0 No unsigned overflow: result lower.
0100 MI N=1 Result negative.
0101 PL N=0 Result positive or zero.

0110 VS V=1 Signed overflow.

0111 vC V=0 No signed overflow.

1000 HI C=1landZ=0 Unsigned result higher.

1001 LS C=0o0rz=1 Unsigned result lower or same.
1010 GE N=V Signed result greater or equal.
1011 LT N =V Signed result less than.

1100 GT Z=0and N=V Signed result greater than.

1101 LE Z=1lorN=V Signed result less than or equal.
1110 AL None Always (unconditional branch).
mi NV None Never (no branching)

Figure 3.41
Condition codes of the ARM6 and their interpretation.
3.10. Identify five major differences between the instruction sets of the ARM6 and the680X0 and comment on their impact on the CPU cost and performance.

3.11. Use HDL notation and ordinary English to write the actions performed by each ofthe following 680X0 instructions: (a) MOVE (A5)+,D5; (b) ADD.B $2A10,DO0;(c)
SUBI #10,(A0); (d) AND.L #SFEDO.

3.12. The 680X0 has two types of unconditional branch instructions BRA (branch always)and JMP (jump). Therefore, branch to statement L can be implemented either by
BRAL or JMP L. What is the difference between these two instructions? Under what cir-cumstances is each type of branch instruction preferred?

3.13. Write a program for the 680X0 that replaces the word DATA stored in memory loca-tion ADR by its bitwise logical complement DATA if and only if DATA ~ 0.

3.14. Modify the vector addition program of Figure 3.13 (Example 3.3) to compute the sumC := A + B for 100 instead of 1000 one-byte decimal numbers. Assume that the
loca-tions of the A and B operands are unchanged, but the result C is now required to replace(overwrite) B.

3.15. Suppose that the hex contents of two CPU registers in a 32-bit processor are as follows:

RO = 01237654: Rl = 7654EDCB

The following store-word instructions are executed to transfer the contents of theseregisters to main memory M.
STORE RO,ADR 215

STORE RI.ADR+4 CHAPTER 3

Assuming that M is byte-addressable, give the contents of all memory locationsaffected by the above code (a) if the computer is big-endian and (b) if the computer islittle-
endian.

3.16. Suppose that a 680X0-based computer C,, which is big-endian, is communicatingwith another computer C2, which is similar to Cx except that it is little-endian.
C2stores 4-byte (long) words from its register file into a common memory M, which Cxsubsequently loads into its data registers. Outline an efficient way to program
C,'sload operations so that data words always appear in the correct form in its register file.

3.17. The usual objection to tagged architecture is that the presence of tags in stored data in-creases memory size and cost. It has been argued, however, that tags can
actually re-duce storage requirements by decreasing program size. Analyze the validity of thisargument.

3.18. Figure 3.42 lists all the 16 code words of a code known as a Hamming code [Ham-ming 1986], which is designed to check 4-bit words using three check bits. Prove
thatall single-bit errors can be corrected and all double-bit errors can be detected by thiscode.

3.19. Consider the small Hamming code defined in Figure 3.42. Show that each check bit c,can be expressed in the form c, = axdx © a2d2 © a3d3 © a4d4, where ay = 0
or 1 and djis an information (data) bit. Hence the check bits for this (and other) Hamming codescan be generated by a set of EXCLUSIVE-OR (parity) circuits.

Information bits Check bits
0000000
0001111

0010110
0011001
0100101
0101010

0110011

0111100

1000011
1001100

1010101

1011010

1100110

1101001

1110000

1111 111
ProcessorBasics
Figure 3.42

Hamming SECDED code for 4-bit words.
216

SECTION 3.5Problems

3.20. Convert the following three 2'-bit words to standard decimal form assuming they rep-resent (a) sign-magnitude and (b) twos-complement integers: FFFF16;
FEDCBA9816;7EDCBA916.

3.21. The following binary word W= 10001011101001 is stored in a 14-bit register. What isthe decimal number represented by Wif it is interpreted as an integer in each of
the fol-lowing codes: (a) unsigned binary; (b) sign-magnitude; (c) twos-complement?

3.22. Using 32-bit integer formats, give the sign-magnitude, twos-complement, and BCDrepresentation of each of the following decimal numbers: +999, -999, +1000,
-1000,zero. State your assumptions concerning sign representation.

3.23. (a) What are the decimal equivalents of the largest fixed-point binary numbers thatcan be represented in 32-, 64-, and 128-bit words? (b) Convert the following sign-
magnitude words to decimal: 10111011, 01010101, 1011101010111010. (c) Repeatpart (b) assuming this time that the numbers are in twos-complement code.

3.24. Figure 3.43 shows the single-precision number format used in the B6500/7500 andother early Burroughs computers. This format is used for both fixed- and floating-
pointnumbers—an unusual feature. The total length of a number is 47 bits, including the ex-ponent, mantissa, and two sign bits. The implicit number base B - 8. Fixed-
point num-bers are treated as a special case of floating point where the exponent E is always zero(encoded as 0000002). The exponent and mantissa are treated as sign-
magnitude inte-gers and biasing is not used. Write a note listing the advantages and disadvantages ofcombining fixed- and floating-point representation in this way.
3.25. Consider again the B6500/7500 single-precision number format described in the pre-ceding problem, (a) Give in decimal form the largest and the smallest nonzero
numbersthat can be represented, when no normalization is used, (b) Again calculate the largestand the smallest nonzero numbers, this time assuming that the numbers
are normalizedaccording to the following definition: a B6500/7500 number is normal if there are noleading-zero digits in the mantissa.
3.26. A floating-point processor is being designed with a number format that must meet thefollowing requirements:
* Numbers in the range =1.0 x 10*¥64 must be represented.
« The precision required is eight decimal digits; that is, the eight most significant dig-
its of the decimal equivalent of every number in the required range must be repre-sentable.
Unused bitSign of MSign of E
E M
000
Mini111r1111111111111111111111111111111111
Tag Exponent
E (6 bits)
Mantissa M (39 bits)
Figure 3.43
The B6500/7500 format for single-precision numbers.
CHAPTER 3
* The representation of each number should be unique, with zero represented by a 217
sequence of Os.
 Binary arithmetic is to be used throughout with B = 2. where B is the floating-point
number base. Processor
BasicsDesign a number format that satisfies these requirements and uses as few bits as pos-sible. Indicate clearly the number codes used and why they were chosen.

3.27. Suppose that in the 6-bit floating-point format illustrated by Figure 3.24, B = 2, E is a3-bit sign-magnitude integer as before, but M is now a 3-bit sign-magnitude
fraction.

(a) What are the decimal values of the largest and smallest nonzero real numbers thatcan be represented by this format? (b) How many different real numbers can be rep-
resented?

3.28. Consider the 6-bit floating-point format defined in Figure 3.24. Suppose that E and Bare unchanged, but M is a 3-bit sign-magnitude fraction and that all floating-
point num-bers are normalized with an excess-A' biased exponent, (a) What is a suitable value forthis bias K and why? (b) How many different real numbers can be
represented in thisnormalized format?

3.29. Obtain the (approximate) decimal values that conform to the IEEE 754 floating-pointformat of the following two numbers:

A= 100101111 10000000000000000000000

5=010001110 00000000000000000000001

3.30. Derive the correct floating-point representation for the decimal numbers +3.25 and-3.25 using the 32-bit IEEE 754 floating-point standard.

3.31. Consider the 64-bit IEEE floating-point number format defined in section 3.2.3. Deter-mine the largest positive number, the smallest nonzero positive number, and
the nega-tive number with the largest magnitude that can be represented in this format. Assumethat the three numbers are to be normalized and give your answers in the
form of 16-digit hexadecimal strings.

3.32. The floating-point number format used by the IBM System/360-370 series is definedin section 3.2.3. Determine the total number of different normalized numbers
that the32-bit version of this format can represent.

3.33. Consider a 32-bit RISC-style processor P whose only addressing modes for register-to-register instructions are immediate and direct and whose only addressing
mode forload/store instructions is register indirect with offset. Assume also that the CPU has 64general-purpose registers R0:R63 that can serve either as data or address
registers. Asingle 32-bit instruction format contains four fields: an opcode, two register fields, anda 16-bit immediate address field, (a) What is the maximum number of
opcode types?

(b) Using an ad hoc but typical assembly-language notation with clear comments, de-scribe how a single instruction of P might perform each of the following three opera-
tions: load a word from M; store a byte in M; double the number word stored in aregister (there is no multiply opcode).

3.34. Consider the 32-bit RISC-style processor P sketched in the preceding problem. De-scribe how one or more instructions of P might perform each of the following
three op-erations, assuming that P has no explicit clear, swap, or push opcodes: clear a register;swap the contents of two registers; push a word into a stack. Again use an
ad hoc but

218 typical assembly-language notation with clear explanatory comments. Use as few in-
structions as you can.
SECTION 3.5Problems

3.35. Suppose the memory data register DR in a CPU like that of Figure 3.3 transfers 32-bitwords to M in a single clock cycle. The data item D t© be stored may be 16 or
32 bitslong. If a 16-bit data item D is placed in DR, it is automatically extended to 32 bits asit is transmitted from DR to M. The size of D is given by a flag 5, whose 0 and 1
valuesdenote 16 and 32 bits, respectively. The extension method is given by a second flag E,whose 0 and 1 values denote zero extension and sign extension, respectively.
Design aregister-level logic circuit to perform the needed extension, making it as simple and asfast as possible.

3.36. A memory data register DR can transfer 32-bit words to M in a single clock cycle. Thedata items to be stored can be 4, 8, 16, or 32 bits long, and short items are
always sign-extended to 32 bits for transmission to M. A 2-bit flag S in the CPU is set to 00,01, 10,or 11 to indicate a data size of 4, 8, 16, or 32 bits, respectively. Design
an efficient logiccircuit at the register level to implement the sign extension.

3.37. Consider the instruction formats of the MIPS RX000 defined in Example 3.5. Supposethat the currently executing instruction / in an RX000 CPU is stored at
(hexadecimal)memory address FFFFFF0016. (a) If/is not a branch instruction, what is the (hexadec-imal) memory address of the instruction that will be executed
immediately after /? (b)Suppose that / is an unconditional jump instruction that contains the 26-bit branch ad-dress field ADR = 2A9FFFF16. Again what is the
(hexadecimal) memory address ofthe instruction that will be executed immediately after /?

3.38. Use a figure similar to Figure 3.31 to show the state of the CPU and M in the Motorola680X0 immediately before and after execution of the stack-pop
instructionMOVE.L (A2)+,D6.

3.39. The stack shown in Figure 3.31 for a 680X0-based computer grows toward the low-address end of M. Suppose that the stack is required to grow in the opposite
direction,that is, toward the high-address end of M. Construct the push and pop instructionsneeded for this case.

3.40. The 680X0 instruction JSR SUB pushes the contents of the program counter PC ontoa stack using stack pointer register SP and then causes a jump to the instruction
at mem-ory location SUB. Its operation may be described as follows:

(-SP) := PC; PC := SUB

(a) Show how to use the 680X0 MOVE instructions to simulate JSR, assuming thatJSR can have SP and PC as operands, (b) The last instruction executed by a
subroutineshould be return from subroutine (RTS) which restores to PC the address saved earlierby JSR; this instruction should also update SP. Again use the 680X0
MOVE instruc-tions to simulate RTS, again assuming that SP and PC can be operands of MOVE.

3.41. The MIPS RX000 has no status flag C to indicate whether an arithmetic instruction ap-plied to an unsigned number generates a carry, that is, overflows a 32-bit
register. Infact, the RX000 add unsigned instruction that computes Rd := Rs + Rt

ADDU Rd,Rs,Rt

sets no status flags under any circumstances. Using standard instructions (but noflags), devise a short program that will determine whether the foregoing instruction
causes overflow. A useful RX000 instruction for this purpose is the compare instruc- 219

tion

CHAPTER 3SLTU Rd,Rs,Rt Processor

which compares the contents of Rs and Rt, treating both as 32-bit unsigned numbers. BasicsIf Rs < Rt, then Rd := 1 = 0311; otherwise, Rd := 0 - 032. The RX000 also has
a typicalset of conditional branch instructions that test the contents of a register for zero.

3.42. An arithmetic right shift (ARS) instruction—arithmetic left shifts are uncommon—shifts an operand D k bits to the right and fills the vacated positions by sign
extension.The bits shifted out from the right end of D are discarded. It is often stated that a fc-bitARS implements division by 2k when applied to a twos-complement
integer D; that is,the shifted result SD is the integer quotient Q on dividing D by 2k. The discarded bitsrepresent the integer remainder R. (a) Show that this division-by-2*
interpretation isvalid when D is positive, (b) Show that the division-by-2* interpretation of ARS is in-valid for negative D by considering operands of length 4 bits and
finding a specificcounterexample.

3.43. As noted in the preceding problem, ARS instructions cannot be used directly to im-plement division of twos-complement integers by 2k. Some computers provide a
spe-cial instruction—let us call it SI—such that if we apply SI to the result SD producedby a k-bit ARS, we obtain the correct integer quotient for division by 2k. For this

two-instruction combination to work, ARS is designed to set a special flag F when its in-put operand D is negative and the bits shifted out and discarded by ARS include

atleast one 1 bit. What is the function performed by SI? Explain informally how itworks with ARS to implement division by 2k.

3.44. Single-instruction computers (SICs) have attracted interest for many years. They areextreme cases of RISCs in which the instruction set has been reduced to the
absoluteminimum. One type of SIC is based on a conditional move (CMOVE) instruction. Thisinstruction has the two-address format

CMOVE dest, source

corresponding to if cond then dest := source, where cond is a condition code and allmovable items are w-bit words stored in a common rc-bit address space shared by

M, 10 devices, and CPU registers (which can be placed in M). CMOVE combines condi-tional load and store instructions of the type found in the ARM—it is a pure
load/storearchitecture. The CPU contains the logic needed to fetch instructions (a PC andaddress-generation logic), but it does not contain the usual ALU logic. Instead,
special"10 processors" execute all arithmetic and logical operations. For example, A x B isimplemented by moving A, B, and any necessary control words to the input ports
of anexternal multiplier MULT and subsequently moving the result from MULTSs outputport. The tested conditions cond can include a flag C that is set by the sign bit of
thelast word moved. It is also desirable to have an always-true condition to implement anunconditional move. Most proposed CMOVE architectures support a few
addressingmodes, including indexing. Write a note analyzing the advantages and disadvantagesof this type of SIC architecture.

3.45. Consider a set of four processors PO, />,, P2. and P3, where P, is an /-address machine.P0 is a zero-address stack machine, while />,. P2, and P3 are conventional
computerseach with 16 general-purpose registers R0:R15 for data and address storage. All fourprocessors have instructions with the (assembly language) opcodes ADD.
SUB, MUL.

220

SECTION 3.5Problems

31 231570
Ra Ba3 Ba2 Bal BaO
Rb Bb3 Bb2 Bbl BbO

Register file

(@)

Figure 3.44

Snapshot of RX000 state.
Byte

address

(hex)
100101102103104105106107108109
BaO

Bal

Ba2

Ba3

BbO

Bbl

Bb2

Bb3

M

(b)

Byte

resslex)

100

101 BaO

102 Bal

103 Ba2
104 Ba3
105 BbO
106 Bbl

107 Bb2
108 Bb3
109

M

(c)

and DIV to implement the operations +, -, X, and /, respectively, (a) Using as few in-structions as you can, write a program for each of the four machines to evaluate the
fol-lowing arithmetic expression:

X := (A/B + CX D)/(D XE-F+ C/A) + G

(3.44)

Use standard names for any additional instructions that you need, for example, LOADor PUSH, (b) Calculate the total object-program size in bits for each of your four pro-
grams assuming the following data on machine-language instruction formats: opcodes(which contain no addressing information) are 8 bits long; memory-address length
is16 bits; and register-address length is 4 bits. (For example, the two-address instructionLOAD R7,B for P2, which denotes R7 := M(B), occupies 8 + 4 + 16 = 28 bits.)
3.46. Figure 3.44a shows the byte-by-byte contents of two registers in the RX000 generalregister file, (a) Construct a short program that transfers the data in question
from theregister file to memory M exactly as indicated in Figure 3.446. (b) Suppose that thesame two words must be stored as shown in Figure 3.44c, where they are not
alignedwith memory word boundaries. Suggest two methods for performing the two-wordstorage operation in this case.

3.47. Show how each of the following macroinstructions can be implemented by a singlemachine instruction from the RX000 instruction set.

(a) LI Rdest.IMM ; Load immediate: load IMM (sign-extended) into register Rdest

(b) MOVE Rdest,Rsource ; Move contents of register Rsource to register Rdest

(c) NOP ; No operation: execute an instruction cycle that does not change the

: CPU's state

3.48. A new microprocessor is being designed with a conventional architecture employingsingle-address instructions and 8-bit words. Due to physical size constraints,
only

eight distinct 3-bit opcodes are allowed. The use of modifiers or the address field toextend the opcodes is forbidden, (a) Which eight instructions would you implement?
Specify the operations performed by each instruction as well as the location of its op-erands, (b) Demonstrate that your instruction set is functionally complete in some
rea-sonable sense; or if it is not, describe an operation that cannot be programmed usingyour instruction set.

221
CHAPTER 3
Processor
Basics

3.49. Write a short code segment for the RXOOO to implement the following common macro,which computes the absolute value of the contents of register Rsource and
puts the re-sult in register Rdest.

ABS Rdest.Rsource

3.50. There are few well-defined general principles concerning hardware-software trade-offs in processor design. Two principles of this type are given below. Write a brief
noteon each, illustrating it with examples, (a) "Whenever there is a system function that isexpensive and slow in all its generality, but where software can recognize a
frequentlyoccurring degenerate case (or can move the entire function from run time to compiletime) that function [should be] moved from hardware to software, resulting
in lowercost and improved performance." (George Radin, 1983) (b) "Simple, frequent, andhighly-skew conditional branches [e.g., tests for arithmetic overflow] should be
imple-mented in hardware [rather than software]." (Brian Randell, 1985)

3.51. (a) Explain how directives differ from other assembly-language instructions, (b) Listthe criteria for using macros instead of subroutines to structure assembly-
language pro-grams.

3.52. A program called a disassembler is sometimes useful for debugging programs. It is de-signed to convert object code to assembly-language format, thus reversing the
work ofan assembler. However, a disassembler cannot recover all the structure of the originalassembly-language code. Explain in detail why this is so.

3.53. Consider the processor and memory state depicted in Figure 3.40 and suppose that ex-ecution of the subroutine continues to completion. Let the subroutine's
RETURN in-struction be stored in memory location 2500 (decimal). Draw a diagram similar toFigure 3.40 that shows the system state at the same three points during the
executionof RETURN.

3.6REFERENCES

1. Circello, J. et al. "The Superscalar Architecture of the MC68060." IEEE Micro, vol.15 (April 1995) pp. 10-21.

2. Cohen, D. "On Holy Wars and a Plea for Peace." IEEE Computer, vol. 14 (October1981)pp.48-54.

3. Colwell, R. P. et al. "Computers, Complexity, and Controversy." IEEE Computer, vol.18 (September 1985) pp. 8-19.

4. Feustel, E. A. "On the Advantages of Tagged Architecture." IEEE Transactions on Com-puters, vol. C-12 (July 1973) pp. 644-56.

5. Furber, S. B. VLSI RISC Architecture and Organization. New York: Marcel Dekker.1989.

222 6. Gill, A., E. Corwin, and A. Logar. Assembly Language Programming for the 68000. En-

glewood Cliffs, NJ: Prentice-Hall, 1987.

SECTION 3.6 7 Goldberg, D. "What Every Computer Scientist Should Know about Floating-Point

References Arithmetic." ACM Computing Surveys, vol. 23 (March 1991) pp. 5-48.

8. Hamming, R. W. Coding and Information Theory. 2nd ed. Englewood Cliffs, NJ: Pren-tice-Hall, 1986.

9. IEEE Inc. IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985), New York, August 1985.

10. Intel Corp. MCS-80/85 Family User's Manual. Santa Clara, CA, 1979.

11. Kane, G. and J. Heinrich. MIPS RISC Architecture. Englewood Cliffs, NJ: Prentice-Hall,1992.

12. Motorola Inc. M68000 Family Programmer's Reference Manual. Phoenix, AZ, 1989.

13. Myers, G. J. Advances in Computer Architecture. 2nd ed. New York: Wiley-Inter-science, 1982.

14. Patterson, D. A. and C.H. Sequin. "A VLSI RISC." IEEE Computer, vol. 15 (September1982) pp. 8-21.

15. Siewiorek, D. P. and R. S. Swarz. Reliable Computer Systems. 2nd ed. Burlington, MA:Digital Press, 1992.
16. van Someren A. and C. Atack. The ARM RISC Chip. Wokingham, England: Addison-Wesley, 1994.
CHAPTER 4

Datapath Design

An instruction-set processor consists of datapath (data processing) and controlunits. This chapter addresses the register-level design of the datapath unit, whileChapter 5
covers the control unit. The focus is on the arithmetic algorithms and cir-cuits needed to process numerical data. These circuits are examined first for fixed-point numbers
(integers) and then for floating-point numbers. The use of pipeliningto speed up data processing is also discussed.

4.1
FIXED-POINT ARITHMETIC

The design of circuits to implement the four basic arithmetic instructions for fixed-point numbers—addition, subtraction, multiplication, and division—is the maintopic of
this section. It also discusses the implementation of logic instructions andALU design.

4.1.1 Addition and Subtraction

Add and subtract instructions for fixed-point binary numbers are found in theinstruction set of every computer. In smaller machines such as microcontrollersthey are the
only available arithmetic instructions. As we have seen in earlier chap-ters, addition and subtraction hardware (Example 2.7) or software (Example 3.1)can be used to
implement multiplication and, in fact, any arithmetic operation.Beginning with Charles Babbage, computer designers have devoted considerableeffort to the design of
high-speed adders and subtracters. As we will see. thesebasic circuits can be designed in many different ways that involve various.trade-offs between operating speed and
hardware cost.

223

224
SECTION 4.1
Fixed-Point
Arithmetic

Basic adders. First consider the design of a circuit to add two n-bit unsignedbinary numbers, a topic discussed in section 2.1.3. The fastest such adder is, inprinciple, a
two-level combinational circuit in which each of the n sum bits isexpressed as a (logical) sum of products or product of sums of the n input vari-ables. In practice, such a
circuit is feasible for very Small values of n only, as itrequires c{n) gates with fan-in f(n), where both c(n) and f(n) grow exponentiallywith n. Practical adders take the form
of multilevel combinational or, occasionally,sequential circuits. They sacrifice operating speed for a reduction in circuit com-plexity as measured by the number and size of
the components used. In general, theaddition of two /7-bit numbers X and Y is performed by subdividing the numbersinto stages X, and Yt of length nt, where n> «, > 1. Xi
and K, are added separately,and the resulting partial sums are combined to form the overall sum. The formationof this sum involves assimilation of carry bits generated by
the partial additions.

The sum zi,ci of two 1-bit numbers x, and v, can be expressed by the half-adderlogic equations
z, =% 0>>,-

where zt is the sum bit, c, is the carry-out bit, © denotes EXCLUSIVE-OR, andjuxtaposition denotes AND. If we introduce a third input bit c, , denoting a carry-insignal, we
obtain the following full-adder equations:

¢, =jry+xr_1+yc,_1(4.1)

(Note that + denotes logical OR—not plus—here.) A full adder, also called a 1-bit adder, can be directly implemented from these equations in various ways,
asdemonstrated by Figure 2.9 (section 2.1.1). Figure 4.1 shows a fast AND-ORrealization of a 1-bit adder, along with an appropriate circuit symbol for use inregister-level
designs.

The least expensive circuit in terms of hardware cost for adding two «-bitbinary numbers is a serial adder, the design of which was covered in Example 2.2.A serial adder
adds the numbers bit by bit and so requires n clock cycles to com-pute the complete sum of two n-bit numbers. As Figure 4.2 indicates, a serial adderconsists of a full
adder realizing Equations (4.1) and a flip-flop to store c,. One sumbit is generated in each clock cycle; a carry is also computed and stored for use dur-ing the next clock
cycle. Figure 4.2 presents a high-level view of a serial adder thathas a D flip-flop as the carry store. Although this adder is slow, its circuit size isvery small and is
independent of n.

Circuits that, in one clock cycle, add all bits of two «-bit numbers, as well asan external carry-in signal cin, are called n-bit parallel adders or simply n-bitadders. The
simplest such adder is formed by connecting n full adders as in Figure4.3. Each 1-bit adder stage supplies a carry bit to the stage on its left. A 1 appear-ing on the carry-in
line of a 1-bit adder can cause it to generate a 1 on its carry-out line. Hence carry signals propagate through the adder from right to left, givingrise to the name ripple-
carry adder. In the worst case a carry signal can ripplethrough all n stages of the adder. The input carry signal cm is normally set to Ofor addition. The maximum signal
propagation delay of an «-bit ripple-carryadder, which in synchronous circuit design determines the operating speed, is nd,

fc>

G

e =

Dutainx, —|
1-bit
Datainy, = e

Camyinc,_, —|

Sum;,Carrv out c,

(@)

(b)

Figure 4.1

A 1-bit (full) adder: (a) two-level AND-OR logic circuit and (b) symbol.

where d is the delay of a full-adder stage. Unlike a serial adder, the amount ofhardware in a ripple-carry adder increases linearly with n, the word size of thenumbers
being added.

Subtracters. Adders like those of Figures 4.2 and 4.3 operate correctly onboth unsigned and positive numbers because the 0 sign bit of a positive numberhas the same
effect as a leading zero in an unsigned number. The best way to add

225
CHAPTER 4Datapath Design

Data
Carry
= L]
B
| — Carry
€6 oute;
e D
(=3
cr
Sum.

Reset Clock

Figure 4.2

A serial binary adder.
226

SECTION 4.1
Fixed-Point
Arithmetic

LJ

1-bitadder
1-bitadder

cn-i

rr Ti

-~n-1 >'n-I xn-1 Vn-1
1-bitadder

*0 ~0

Figure 4.3

An n-bit ripple-carry adder composed of n 1-bit (full) adders.

negative numbers—these have 1 as the sign bit—depends on the number code inuse. Adding -X to Y is equivalent to subtracting X from Y, so the ability to add neg-ative
numbers implies the ability to do subtraction.

Subtraction is relatively simple with twos-complement code because negation(changing X to -X) is very easy to implement. As discussed in section 3.2.2, if X =xn_x
xn_2...x0 is a twos-complement integer, then negation is realized by

X =
-1*n-2-
..Xn+1
(4.2)

where + denotes addition modulo 2". An efficient way to obtain the ones-comple-ment portion X = xn_xxn 2... X0 of -X in (4.2) uses the word-based EXCLUSIVE-OR
functionX® s with a control variable s. When s = 0, X© s = X, but when 5=1,X © 5 = X. Suppose that Y and X © s are now applied to the inputs of an n-bitadder. The
addition of 1 required by (4.2) to change X to -X can be realized byapplying s to the carry input line of the adder. In the resulting circuit shown in Fig-ure 4.4, the control
line s selects theaddition operation Y + X when 5 = 0 and thesubtraction operation Y — X =Y + X + 1 when 5=1. Thus extending a paralleladder to perform twos-
complement subtraction as well as addition merely requiresconnecting n two-input EXCLUSIVE-OR gates to the adder's inputs; these gatesare represented by a single rc-
bit word gate in Figure 4.4.

zZ= Y+X
1 \
n
Carry

Carry ~ cn-\ rc-bit paralleladder Cin in

out
i i -i
n, *
(\
“oy W
Subtract s
Figure 4.4

An n-bit twos-complement adder-subtracter.
As an example, let X = 11101011 and Y = 00101000, denoting -2110 and 4010, 227

respectively, in twos-complement code. Bit-by-bit addition produces

v]v]y CHAPTER 4

Z =X+Y= 11101011 +00101000 = 00010011 (4.3) Datapath Design

which corresponds to -21,0 + 4010 = +1910. (Observe that the output carry c,_, = 1lin (4.3) is ignored.) To subtract X from Y, we first compute
-X=111010 11+ 1=00010101

and then the sum

Z=(X)+Y=00010101 + 00101000 = 00111101

which corresponds to 2110 + 4010 = +6110.

Subtraction is not so readily implemented in the case of unsigned or sign-mag-nitude numbers. It is sometimes useful to construct a subtracter for such numbersbased on
the full (1-bit) subtracter function z, =y, - xt - bt_x. This operation isdefined by the logic equations:

Z;=X,@y,0&; 1

b, = xiyi+xibi i+ >>, !

Here z, is the difference bit, while b, , and b{ are the borrow-in and borrow-out bits,respectively, n-bit serial or parallel binary subtracters are constructed in
essentiallythe same way as the corresponding adders with carry signals replaced by borrows.Subtracters are of minor interest compared with adders, because, as we have

justseen, an adder suffices for both addition and subtraction when twos-complementnumber code is used.

Overflow. When the result of an arithmetic operation exceeds the standardword size n, overflow occurs. With n-bit unsigned numbers, overflow is indicatedby an output
carry bit c, , = 1. For example, adding the unsigned numbers X =11101011 = 23510 and Y= 00101010 = 4210 using an adder like that of Figure 4.3yields

Z=X+Y=11101011 +00101010 = 00010101 (4.4)

with ¢, [= ¢7 =1. Now Zcorresponds to 2110, which is 235]0 + 4210 (modulo 256)and is the result of addition that "wraps around" when the largest number 2" - 1. inthis
case 11111111 = 25510, is exceeded. On appending c7 to Z, we get c7Z =100010101 = 27710 = 25610 + 2110, which is the sum in ordinary (modulo infinity)arithmetic.
Unsigned arithmetic operations are often viewed as modulo-2" opera-tions only, and overflow is not explicitly detected. This is the case when computingmemory addresses
in a computer, for instance, where addresses simply wraparound to zero after the highest address is reached.

Overflow is indicated by a flag bit v in operations involving signed numbers;this flag is found in CPU status (condition code) registers. If we reinterpret thenumbers in the
preceding example as twos-complement rather than as unsigned,then X = 11101011 denotes -2110, while Y = 00101010 denotes +421(). The result Zcomputed in (4.4)
now denotes +2110, and the fact that cn_1 = 1 does not indicateoverflow. In fact, we can never have overflow on adding a positive to a negativenumber. Overflow in
modulo-2" twos-complement addition can only result fromadding two positive numbers or two negative numbers. In the first case overflow

228

SECTION 4.1

Fixed-Point

Arithmetic

is indicated by a carry bit into the sign position, that is, by c,_2 = 1, since this indi-cates that the magnitude of the sum exceeds the n - 1 bits allocated to it. A littlethought
shows that overflow from adding two negative numbers is indicated bycn_2 = 0. We can thus conclude (as we did earlier in section 3.2.2) that the over-flow condition is
specified by the logic expression

L7!-1->7!-1Ln-2

+X

n-Vn-\Ln-2

(4.5)

Now c,_,, the carry output signal from the sign position, is defined by xn_lyn 1 +xn_iCn_2 + }',_icn-2' fr°m which it follows that

v=¢c,

(4.6)

Either (4.5) or (4.6) can be used to design overflow detection logic for twos-complement addition or subtraction. Overflow detection in the case of sign-magnitude
numbers is similar and is left as an exercise (problem 4.6).

High-speed adders. The general strategy for designing fast adders is to reducethe time required to form carry signals. One approach is to compute the input carryneeded
by stage i directly from carrylike signals obtained from all the precedingstagesi- 1i- 2,...,0, rather than waiting for normal carries to ripple slowly fromstage to stage.
Adders that use this principle are called carry-lookahead adders. An/i-bit carry-lookahead adder is formed from n stages, each of which is basically afull adder modified by
replacing its carry output line ¢, by two auxiliary signalscalled gj and /?,, or generate and propagate, respectively, which are defined by thefollowing logic equations:
&=*# Pi=xi+yt (4-7)

The name generate comes from the fact that stage i generates a carry of 1 (c, = 1)independent of the value of ct_x if both x, and y, are 1; that is. if x,v, = 1. Stage
ipropagates cM; that is, it makes c, = 1 in response to ¢, , =1 if x, ory, is 1—in otherwords, if Xj +y, = 1.

Now the usual equation ¢, = jc,v,+ *,<:,_, + >',<",_x, denoting the carry signal c, tobe sent to stage i + 1, can be rewritten in terms of g, and p,.
ct=g,+Pf,-\ (4-8)

Similarly, c{_x can be expressed in terms of g{ x, /?,,, and c, 2.

c”_1=ft 1+p~1lcl 2 (4.9)

On substituting (4.9) into (4.8) we obtain

Ci = gi+Pig"i+PiPi-iCi-2

Continuing in this way, ¢, can be expressed as a sum-of-products function of the pand g outputs of all the preceding stages. For example, the carries in a four-stagecarry-
lookahead adder are defined as follows:

C\=g\+P\80 + PIPOCin

C2 = 82 + P28l + P2P180 + P2PIPOcin
c3 = 8i+ P382 + /~ Sl + PzP2P\80 + P3P2P\POcin
(4.10)

C,-i

Carry-lookahead generator

Pn-\

A

Sn-\

1-bitadder

Pn-2

Zn-2

<V2

1-bitadder

Irn

Po

1-bitadder

Xxn-\ yn-\

cn-2 yn-2

n

f0 >0

Figure 4.5

Overall structure of carry-lookahead adder.

229

CHAPTER 4Datapath Design

Figure 4.5 shows the general form of a carry-lookahead adder circuit designed inthis way.

‘We can further simplify the design by noting that the sum equation for stage /

is equivalent to

2,.= "ev,Oc,_,

zf = />,0&0<;:,. ,

(4.11)

Combining the pg equations (4.7), the carry-lookahead equations (4.10), and themodified sum equations (4.11) for 0 < i < 3, we obtain the 4-bit carry-lookaheadadder
depicted in Figure 4.6. This design is found in practical adders such as the74283 IC [Texas Instruments 1988]. It has four levels of logic gates, so the adder'smaximum
delay is Ad, where d is the (average) gate delay. This delay is indepen-dent of the number of inputs n as long as carry generation is defined by two-levellogic as in (4.10).
However, the number of gates grows in proportion to n2 as nincreases. In contrast, the number of gates in a two-level adder of the sum-of-products type grows
exponentially with n, while the number of gates in a ripple-carry adder grows linearly with n. The complexity of the carry-generation logic inthe carry-lookahead adder,

including its gate count, its maximum fan-in, and itsmaximum fan-out, increases steadily with n. Such practical cost considerationslimit n in a single carry-lookahead adder
module to four or so.

Adder expansion. The methods of handling carry signals in the two main com-binational adder designs considered so far, namely, ripple-carry propagation (Fig-ure 4.3)
and carry-lookahead (Figure 4.5), can be extended to larger adders of thekind needed to execute add instructions in, say, a 64-bit computer. If we replace then 1-bit (full)
adder stages in the /7-bit ripple-carry design of Figure 4.3 with n k-bitadders, we obtain an nk-bit adder. Four 4-bit adders such as the 4-bit carry-lookahead circuit of

Figure 4.6 can be connected in this way to form the 16-bitadder appearing in Figure 4.7. This design represents a compromise between a 16-stage ripple-carry adder,
which is cheap but slow, and a single-stage 16-bit

230
SECTION 4.1
Fixed-Point

Arithmetic

S
HD+-

P3| £ Pi| £ Pl & Pnl g0

*G9 m fts m

Figure 4.6

A 4-bit carry-lookahead adder.
M5:-12

y-ix2 yi x\ y\ xo >0
UstIng e it Z3izp

i 4 ot «

Con | amit e | asn | e bt o | abit |
adder adder adder

A S S S B R

~15712 yi5:>'12

*n:*8 >n:>8

x1:x4 >7:y4

xi-x0 ys-yo

Figure 4.7

A 16-bit adder composed of 4-bit adders linked by ripple-carry propagation.

carry-lookahead adder, which is fast, expensive, and impractical because of thecomplexity of its carry-generation logic. The circuit of Figure 4.7 effectively com-bines sets
of four xiyi inputs into groups that are added via carry lookahead; theresults computed by the various groups are then linked via ripple carries.

Comparing Figures 4.3 and 4.7, we see that we have effectively replaced com-ponents designed for 1-bit addition with similar but larger components intended for4-bit
addition. If we apply the same principle to the carry-lookahead circuit of Fig-ure 4.5, we get the expanded design of Figure 4.8. Again we are replacing 1-bit

231

P8 CHAPTER 4

Datapath Design

- ¢3 4-bit carry-lookahead generator In W*—i

P3 #3 c2 Pi 8l c\ P\ 8\ cO Po So

i 1i i i ii k i ii i1 \i i
P g P g ~774 P 8 P B
c7
4-bitadder Cll 4-bitadder 4-bitadder @4 ' 4-bitadder c in
o<
4$ 4% 4] 4] 4> 4j 4> 4}
xi S:x12 y\s >'i2 *11:*S >u B x?:” jv™ x3:x0 ft~o
Figure 4.8

A 16-bit adder composed of 4-bit adders linked by carry lookahead.

adders with 4-bit adders, but now each adder stage produces a propagate-generatesignal pair pg instead of cout, and a carry-lookahead generator converts the four setsof
pg signals to the carry inputs required by the four stages. The "group" g and psignals produced by each 4-bit stage are defined by

g = xiyi + xi_lyi I(xi+y,) + xi 2yi 2(xi + >',)(%_! + yt {)
+ *t-a)Y-3&j+y " xi-\ + yi-\)(xi-2+y,-2)p = (*- + y*-i+ y_D)x,_2 +y,_2)(*_3 +y-3)
(4.12)

which directly extend (4.7). It is not hard to show that the logic to generate thegroup carry signals cout, cn, c7, and c3 in Figure 4.8 is exactly the same as that ofthe
carry-lookahead generator of Figure 4.6 and is therefore defined by Equations(4.10).

EXAMPLE 4.1 DESIGN OF A COMPLETE TWOS-COMPLEMENT ADDER-SUBTRACTER. To illustrate the preceding concepts, we will design a twos-comple-ment adder-
subtracter that computes the three quantities X + Y, X - Y, and Y - X, aswell as overflow and zero flags. The design goal is to minimize the number of gatesused; operating
speed is not of concern. The circuit is required in several versions thathandle different data word sizes, including 4, 8, and 16 bits. We will assume that wehave standard
gate-level and 4-bit register-level components available as buildingblocks.

The lowest cost adders employ ripple-carry propagation and can easily provideaccess to the internal signals needed by the flags. Recall that overflow detection usesc, 2,
the input carry to the sign position. Zero detection requires access to all the sumoutputs and poses no special problems. Figure 4.9a shows die logic diagram of
anappropriate 4-bit ripple-carry adder. The overflow flag is defined by Equation (4.6) asv = c3(& c2 and is realized here by an XOR gate. The zero flag is defined by z =
232

SECTION 4.1

Fixed-Point

Arithmetic

Over- Zero

flow v z3 z z2

1-bit

adder

1-bitadder

4-bit «adder

1-bitadder

1-bitadder

c3 >3*2>"2

ciy\

X0 >0

(a)
Comtrol Z Duaom

ourputs £
Zero
Overtlow ——) 4 ;)

z RSO
abit g

abit g

i fa—] o
addex

¥

Lh 4 bs

i 4 4
:“’ i
8

R

Controlinputs

COMPXCOMPY

Y Data in

(b)

Figure 4.9

Low-cost addition and subtraction of twos-complement numbers: (a) 4-bit adder moduleand (b) 8-bit adder-subtracter.

z3 + z2 + zj + Zq ~d implemented by a NOR gate. We can use k copies of this adder toproduce a 4/c-bit ripple-carry adder in the usual way. The overflow flag for the
entirecircuit is taken from the v output of the left-most (most significant) stage, while the zoutputs of all the stages are ANDed to produce the zero flag.

To extend the adder to an adder-subtracter, the design of Figure 4.4 is a good start-ing point. It uses an XOR word gate to complement the X input, thereby enabling
thecircuit to compute X + Y and Y- X. To implement the third operation X - Y, we could

insert a two-way 4-bit multiplexer into each of the data-in buses so that both X and Y 233

can be applied to each of the adder-subtracter's data inputs. A cheaper solution is to

insert a second XOR word gate into the Ybus, enabling Y to be complemented indepen- CHAPTER 4

dently. We can then compute X - Y in the form X + Y+1. Datapath Design

The complete design of an 8-bit adder-subtracter along the foregoing lines isdepicted in Figure 4.9b. It contains two 4-bit adders of the type in Figure 4.9a linked bytheir
carry lines. Two lines COMPX and COMPY control the XOR gates that change Xand Kto X and Y, respectively. The OR gate sets the adder's carry-in line to 1
duringsubtraction. A two-input AND gate combines the two z outputs to produce the zeroflag, which is 1 if and only if the entire 8-bit result Z = 0.

Three of the four signal combinations on COMPX and COMPY control linesimplement the desired three arithmetic functions. The fourth combination 11 imple-ments the
sum X + Y + 1, which is an arithmetic function implemented by our designthat has no obvious uses.1 Such superfluous functions are common in the design of
dataprocessing circuits.

4.1.2 Multiplication

Fixed-point multiplication requires substantially more hardware than fixed-pointaddition and, as a result, is not included in the instruction sets of some smaller pro-
cessors. Multiplication is usually implemented by some form of repeated addition.A simple but slow method to compute X x Y is to add the multiplicand Yto itself Xtimes,
where X is the multiplier. (A version of this technique using counters is dis-cussed in problem 2.4.) Often multiplication is implemented by multiplying Y by Xk bits at a
time and adding the resulting terms. Figure 4.10 shows this process forunsigned binary numbers in pencil-and-paper calculations with k = 1. The mainoperations involved
are shifting and addition. The algorithm of Figure 4.10 is inef-ficient in that the 1-bit products xJZ'Y must be stored until the final addition step iscompleted. In machine
implementations it is desirable to add each JCy2'Fterm as it isgenerated to the sum of the preceding terms to form a number Pi+, called a partialproduct. Figure 4.11
shows the calculation in Figure 4.10 implemented in this way.The computation involved in processing one multiplier bit Xj can be described by aregister-transfer
statement of the form

PM :=Pl + Xj2'Y (4.13)

1010 Multiplicand Y

1101 Multiplier X = xix2xIx0

1010 x0Y

0000 x{1Y

1010 x222Y

1010 xY 3 Figure 4.10

10000010 Product P = Z,Xj2Y] Typical pencil-and-paper method for

;=0

multiplication of unsigned binary numbers.

'On the other hand, it has been observed, that "there is no feature of a machine, however pathological, whichcannot be exploited by a programmer." (Kampe 1960].

234 1010 Multiplicand YMultiplier X = x}x2x1x0

SECTION 4.1 1101
Fixed-Point 00000000 PO = 0
Arithmetic 1010 x0Y
00001010 B, = PO + x0Y
0000 x{lY
00001010 P2 = Px+x{2Y
1010 x222Y]
00110010 P} = P2 + x222Y
1010 x323Y
10000010 P4 = P3 + xg?Y-P

Figure 4.11
The multiplication of Figure 4.10 modified formachine implementation.

where 2'Y is equivalent to Y shifted /' positions to the left. In the version of this mul-tiplication algorithm presented in Example 2.7 (section 2.2.3), P, is shifted rightwith
respect to a fixed multiplicand Y so that (4.13) is replaced by the equivalenttwo operations

[>,:=/>, + */; PM*Z*ti (4.14)

The multiplication of sign-magnitude numbers requires a straightforwardextension of the unsigned case discussed above. The magnitude part of the productP = X X Y is
computed by the unsigned shift-and-add multiplication algorithm, andthe sign ps of P is computed separately from the signs of X and Y as follows: ps :=xs ® ys. The
implementation of sign-magnitude multiplication using this sequentialmethod is covered in Example 2.7.

Twos-complement multipliers. The multiplication of twos-complement num-bers presents some difficulties in the case of negative operands. For example, whena negative
P, is right-shifted as in (4.14), leading Is rather than leading 0s must beintroduced at the left end of the number. More seriously, the multiplication processmust treat
positive and negative operands differently.

A conceptually simple approach to twos-complement multiplication is tonegate all negative operands at the beginning, perform unsigned multiplication onthe resulting
(positive) numbers, and then negate the result if necessary. Twos-complement negation for an integer X = xn_lxn 2xn_3...x]x0 is specified by

-X=1, 1x, 2Jc, 3...x1x0 + 000...01 (modulo2") (4.15)

and can easily be implemented by an adder and an EXCLUSIVE-OR word gate, asshown in Figure 4.4. However, up to four extra clock cycles are needed to negate Xand Y
and the double-length product P. Several faster schemes have been proposedto handle negative operands. Since these hinge on certain properties of the twos-complement
representation, we consider the latter first.

Clearly x, = 1 - jc, (modulo 2), so we can rewrite (4.15) as follows:

(modulo 2") (4.16)

X=111...11

-2An

.3...jc1jco + 000...01
Since 2" = 111... 11 4+ 000.. .01, this equation is equivalent to -X = 2" - X, which,incidentally, indicates the origin of the term twos-complement. Now if Xis positive

(xn_1 = 0), we can express its value as 235

n-2
x= £2"*, (4-17)
(=0

If X is negative (xn_x = 1), then (4.17) does not hold. However, we can rewrite(4.16) as

-X= 1l\...1l-(0x,,_2xn_y..x:x0+ 100...00) + 000...01

= 2*]-xn 2xn_3...x1x0 (4.18)

because 2"1 = 111... 11 — 100.. .00 + 000.. .0. Hence for negative X,

X =-2+x, 2x, 3..XxXq

n-2

= -2"-'+ X2« (4-19)

i=0

Finally, we combine (4.17) and (4.19) into a single formula

n-2

Z = -2""Vi+ X2'*, (4-20)

i=0

which is valid for both positive and negative n-bit integers. For example, supposethat n = 6 and X = 101101. Evaluating X according to (4.20) yields
X=-25x1+24x0+23x1+22x1+21x0+2°x1

=-32+8+4+1=-19

Equation (4.20) implies that we can treat bits xn_2xn_3...x1x0 of a negativetwos-complement integer in the same way as the corresponding (magnitude) bits ofa positive
number; each bit xt has the positive weight 2'. Weight +2""1 is assignedto the sign bit xn_x of a positive number; however, since x,_, = 0, its contribution tothe number is
zero. In the negative case, the sign xn_x is assigned weight -2"~'; thisadds -2"~1 to the number, ensuring that it is negative.

If X = xn_lxn 2...xIx0 is a twos-complement fraction instead of an integer, thenthe negation formula (4.15) remains valid, but because bit /" now has weight 2'""+1instead
of 2', Equation (4.20) is replaced by

n-2

* = -2Vi+ X2"" +\ (4-2D

;=0

In effect we have multiplied (4.20) by the scaling factor 2"*"-1'. For example, letn - 4 and X = 1011, which represents the fraction -0.62510. Application of (4.21)yields
X =-2°X1 +2 1 X0 + 2 2X1 +2'3X1

=-1.000 + 0.250 + 0.125 = -0.625

Suppose that X is the multiplier operand in a shift-and-add multiplication algo-rithm to compute P = X x Y for twos-complement numbers. Equations (4.20) and
CHAPTER 4Datapath Design

236

SECTION 4.1

Fixed-Point

Arithmetic

Sign

logic

Accumulator

Multiplier register

Qro]

Paralleladder

f

Pis-Pi

Data out

M[7]Multiplicand register

M

<£

Controlunit

PYPoData out

X YData in

Figure 4.12

The datapath of the twos-complement multiplier.

(4.21) suggest that we can use an unsigned multiplication technique like thoseillustrated in Figures 4.12 and 4.13 with one change: When multiplying by the signbit,
perform subtraction rather than addition in the final step if a minus sign xn_x = 1is encountered. This observation is the basis of a twos-complement

multiplicationalgorithm developed by James E. Robertson, which has been widely used in com-puter design [Robertson 1955; Cavanagh 1984]. We now show one way to
adaptthe circuit developed in Example 2.7 for sign-magnitude multiplication to dealwith the twos-complement case.

2Cmultiplier (in: INBUS; out: OUTBUS):

register A[7:0], M[7:0], Q[7:0], COUNT[2:0], F;

bus INBUS[7:0], OUTBUS[7:0]:

BEGIN: A:=0.COUNT:=0, F:=0.
INPUT: M:= INBUS;

Q:= INBUS;
ADD: A[7:0] := A[7:0] + M[7:0] x Q[O],

F :=(M[7] and Q[0]) or F;
RSHIFT: A[7] := F, A[6:0].Q := A.Q[7:1], COUNT := COUNT + 1;
TEST: if COUNT * 7 then go to ADD;
SUBTRACT: A[7:0] := A[7:0] - M[7:0] x Q[0], Q[0] := 0;
OUTPUT: OUTBUS := Q;
OUTBUS := A;
end 2Cmultipl er;

Figure 4.13

HDL description of the multiplier for 8-bit twos-complement fractions.

EXAMPLE 4.2 DESIGN OF A MULTIPLIER FOR TWOS-COMPLEMENT

fractions. Consider again the task of multiplying two 8-bit binary fractions X =x1x(/x5x4xyx2x1x0 and Y = Jvy~ iV~ ~vv'~Vo t0 forrn tne product P = YxX, this time
usingtwos-complement code. (Example 2.7 analyzed this problem for the sign-magnitudecase.) Assume that the multiplier will have a register-level structure similar to
that inFigure 2.41, with registers A, M, and Q storing the various operands and A.Q forminga right-shift register. Since sign bits will be included in additions and

subtractions, weneed an 8-bit adder-subtracter, rather than the 7-bit magnitude-only adder used in theearlier design. Figure 4.12 shows the datapath of the proposed
design at the registerlevel.

To develop the required twos-complement multiplication algorithm for thismachine, we consider the four possible cases determined by the signs of X and Y.

1. x-j = y7 = 0; that is, both X and Y are positive. The computation in this case is effec-tively unsigned multiplication with the product P computed in a series of add-and-
shift steps of the form

P:=P +xY:

Vi

All partial products P{ are nonnegative, so leading Os are introduced into A duringthe right-shift operation indicated by the factor 2"1.

2.x7 = 0, y-j = 1; that is, X is positive and Y is negative. The partial product />,- will bezero, and leading Os should be shifted into A as before, until the first 1 in X
isencountered. Multiplication of Y by this 1 and addition of the result to A causes />,to become negative, from which point on leading Is rather than 0s must be shiftedinto
A. These rules ensure that a right shift corresponds to division by 2 in twos-complement code.

3.x7 =1, v7 = 0; that is, X is negative and Y is positive. This follows case 1 for the firstseven add-and-shift steps yielding the partial product

237

CHAPTER 4Datapath Design

For the final step, often referred to as a correction step, the subtraction P := P7 Bperformed. The result P is then given by

6/6\

P = Y+ X2"V = U+ E2'-7]clJy

yis

which is XxYby (4.21).4. x1 = yl= 1; that is, both X and Kare negative. The procedure used here follows case2, with leading Os (Is) being introduced into the accumulator
whenever its contentsare zero (negative). The correction (subtraction) step of case 3 is also performed,which ensures that the final product in A.Q is nonnegative.

Each addition/subtraction step can be performed in the usual twos-complementfashion by treating the sign bits like any other and ignoring overflow. Care is needed inthe
shift step to ensure that the correct new value is placed in the accumulator's signposition A[7]. This value must be a leading 0 if the current partial product in A.Q
ispositive or zero, and 1 if it is negative. We introduce a flip-flop F to control the valuesassigned to A[7]. F is initially set to 0, and is subsequently defined by

F := (v7an</-t,-)Or F

738 Step Action F Accumulator A Register Q

SECTION 4.1 Initialize registers 0 00000000
0 10110011 = multiplier X
Fixed-Point 11010101
1 = multiplicand Y= M10110011

Arithmetic AddMtoA 111010101
Right-shift FA.Q 11101010 11011001
2 11010101
Add M to A [10111111 Uo011001
Right-shift FA.Q [11011111 11101100
3 00000000

Add zero to A 111011111 Inonoo

Right-shift FA.Q 11101111 11110110

4 00000000
Add zero to A 11101111 nnono
Right-shift FA.Q 111110111 11111011
5 11010101
AddMtoA] [11001100 union
Right-shift FA.Q 11100110 oinnoi
6 11010101
AddMtoA] 10111011 oninoi
Right-shift FA.Q 11011101 101 nno
7 00000000
Add zero to A 11011101 10111110
Right-shift FA.Q 11101110 11011111
8 11010101
Subtract M from A 00011001 11011111
Set Q[0] to 0 00011001 11011110 = product P

Figure 4.14
Ilustration of the Robertson multiplication algorithm for twos-complement fractions.

Here y7 is the sign of the multiplicand stored in M[7], and x, is the current multiplier bitbeing tested in Q[0]. Thus F is set to 1 if Y is negative and at least one nonzero xt
isencountered. Once set to 1, it remains at that value. A negative Y and a positive or neg-ative X therefore produce a series of negative partial products. This situation is to
beexpected, since bits x6:x0 of the multiplier X are always treated as if they were positive.A positive Y, or X = 0, causes F to remain permanently at 0. Note that the sign
pi5 of theproduct P requires no separate computational step. As in Example 2.7, the least signifi-cant bit p0 of P is set to 0 to make the result exactly 16 bits long.

Figure 4.13 presents an HDL description of the twos-complement multiplicationalgorithm, which summarizes the foregoing analysis; compare the corresponding sign-
magnitude algorithm in Figure 2.39. An application of the present algorithm to the caseX = 10110011 and Y = 11010101 appears in Figure 4.14. The sign bit x7 of the
multi-plier X is underlined to show its passage through Q. Observe how F becomes 1 in stepl, when the negative multiplicand is first added to the accumulator. F
continues to sup-ply leading Is to the A register until step 8. Then because Q[7] = xn = 1, a subtraction isperformed that produces the proper sign pi5 = 0 in A(0). Setting
Q[0] = pO0 to 0 com-pletes the multiplication process.

Booth's algorithm. Another interesting and widely used scheme for twos-complement multiplication was proposed by Andrew D. Booth in the 1950s

[Booth 1951]. Like Robertson's method in Example 4.2, Booth's algorithm 239employs both addition and subtraction, but it treats positive and negative operandsuniformly
—no special actions are required for negative numbers. Booth's algo-rithm can also be readily extended in various ways to speed up the multiplicationprocess; see
problems 4.16 and 4.17. A version of this algorithm implements theARM6's multiply instruction.

The multiplication algorithms we have considered so far involve scanning themultiplier X from right to left and using the value of the current multiplier bit xi todetermine
which of the following operations to perform: add the multiplicand Y,subtract Y, or add zero, that is, no operation. In Booth's approach two adjacent bitsxixi_] are examined
in each step. If xpcj 1 = 01, then Y is added to the current partialproduct Pj, while if x-x~ = 10, Y is subtracted from Pt. If x-x~ = 00 or 11, then nei-ther addition or
subtraction is performed; only the subsequent right shift off, takesplace. Thus Booth's algorithm effectively skips over runs of Is and runs of Os thatit encounters in X. This

skipping reduces the average number of add-subtract stepsand allows faster multipliers to be designed, although at the expense of more com-plex timing and control
circuitry.

The validity of Booth's method can be seen as follows. Suppose that X is apositive integer and contains a subsequence X* consisting of a run of k 1 s flankedby two 0Os.
X* = xixi Ixi 2 ... xj_k+Ixi kxi k 1
=011..110

In a direct add-and-shift multiplication algorithm such as Robertson's, Y is multi-plied by each bit of X* in sequence and the results are summed so that X*'s contri-bution
to the product P =X x Y is

1
~y (4.22)
j=ik

Now when Booth's algorithm is applied to X*, it performs an addition when itencounters *;*,] = 01, which contributes 2'Y to P. It performs a subtraction atxi-kxi-k-i = 1"
which contributes -2'~kY to P. Thus the net contribution of X*to the product P in this case is

2>Y-2i-kY=2-KY(2k-\)Y

/-1

= 2'-* £2mr
m=20
k-Im =0

2m + '-kY (4.23)

Suppose the index m is replaced by j = m + i - k. Then the upper and lower limits ofthe summation in (4.23) change from k- 1 and 0 to /- 1 and /' - k, respectively,implying
that (4.22) and (4.23) are, in fact, the same. It follows that Booth's algo-rithm correctly computes the contribution of X*, and hence of the entire multiplierX, to the product
P. Equation (4.20) implies that the contribution of a negative X*

CHAPTER 4Datapath Design

(in: INBUS; out: OUTBUS);

2W BoothMult register A[7:0], M[7:0], Q[7:-1], COUNT[2:0],

SECTION 4.1
Fixed-Point bus INBUS[7:0], OUTBUS[7:0];
Arithmetic =~ BEGIN: A:=0, COUNT :=0,
M := INBUS;
INPUT:
Q[7:0]:= INBUS, Q[-1]:=0;
if Q[1] Q[0] = 01 then A[7:0] := A[7:0] + M[7:0], go toTEST;
SCAN: else if Q[1] Q[0] = 10 then A[7:0] := A[7:0] - M[7:0];
TEST: if COUNT = 7 then go to OUTPUT,
RSHIFT: A[7] := A[7], A[6:0].Q = A.Q[7:0],
INCREMENT: COUNT := COUNT + 1, go to SCAN;
OUTPUT: OUTBUS := A, Q[0] := 0;0UTBUS :=Q[7:0];
end BoothMult;
Figure 4.15

HDL description of an 8-bit multiplier implementing the basicBooth algorithm.

to P can also be expressed in the formats of (4.20) and (4.23); a similar argumentdemonstrates the correctness of the algorithm for negative multipliers. The argu-ment for
fractions is essentially the same as that for integers.

The twos-complement multiplication circuit of Figure 4.12 can easily be mod-ified to implement Booth's algorithm. Figure 4.15 describes a straightforwardimplementation
of the Booth algorithm using the above approach with n = 8 and acircuit based on Figure 4.12. An extra flip-flop Q[-1] is appended to the right endof the multiplier register
Q, and the sign logic for A is reduced to the simple signextension A[7] := A[7]. In each step the two adjacent bits Q[0]Q[-1] of Q areexamined, instead of Q[0] alone as in
Robertson's algorithm, to decide the opera-tion (add Y, subtract Y, or no operation) to be performed in that step. For compari-son with Robertson's method in Figure 4.13,
the operands are assumed to befractions. The application of this algorithm to the example solved by Robertson'smethod in Figure 4.14 appears in Figure 4.16. where the
bits stored in Q[0]Q[-1] ineach step are underlined.

Combinational array multipliers. Advances in VLSI technology have made itpossible to build combinational circuits that perform n x H-bit multiplication forfairly large
values of n. An example is the Integrated Device TechnologyIDT721CL multiplier chip, which can multiply two 16-bit numbers in 16 ns [Inte-grated Device Technology
1995]. These multipliers resemble the «-step sequentialmultipliers discussed above but have roughly n times more logic to allow the prod-uct to be computed in one step
instead of in n steps. They are composed of arraysof simple combinational elements, each of which implements an add/subtract-and-shift operation for small slices of the
multiplication operands.

Suppose that two binary numbers X = xn_Jxn_2..x1x0 and Y = y,,_iy,_2---)'i)'oare to be multiplied. For simplicity, assume that X and Fare unsigned integers. Theproduct P
= X X Kcan therefore be expressed as
Step Action Accumulator Register Q
0 Initialize registers 00000000 10110011 = multiplier X
SetQ[-11toO 00000000 101100110
1 11010101 = mulitplicand Y=M
Subtract M from A 00101011 1011001K)
Right-shift A.Q 00010101 110110011
2 Skip add/subtract 00010101 1101100U
Right-shift A.Q 00001010 111011001
3 11010101
Add M to A 11011111 11101100].
Right-shift A.Q 11101111 111101100
4 Skip add/subtract 11101111 111101100
Right-shift A.Q 11110111 111110110
5 11010101
Subtract M from A 00100010 111110110
Right-shift A.Q 00010001 011111011
6 Skip add/subtract 00010001 oiii non

Right-shift A.Q 00001000 101111101

7 11010101

Add M to A 11011101 loiimpi
Right-shift A.Q 11101110 110111110
8 11010101
Subtract M from A 00011001 110111110
Set Q[0] to O 00011001 110111100 = product/3

241

CHAPTER 4Datapath Design

Figure 4.16

Mlustration of the Booth multiplication algorithm.

p= X2V

(4.24)

=0

corresponding to the bit-by-bit multiplication style of Figure 4.10. Now (4.24) canbe rewritten as

P=12'

XrA2m

;=0

(4.25)

Each of the n2 1-bit product terms x-yi appearing in (4.25) can be computed by atwo-input AND gate—observe that the arithmetic and logical products coincidein the 1-bit
case. Hence an n x n array of two-input ANDs of the type shown inFigure 4.17 can compute all the x"j terms simultaneously. The terms aresummed according to (4.25) by
an array of n(n - 1) 1-bit full adders as shown inFigure 4.18; this circuit is a kind of two-dimensional ripple-carry adder. Theshifts implied by the 2' and 2j factors in (4.25)
are implemented by the spatial dis-placement of the adders along the x and y dimensions. Note the similaritiesbetween the circuit of Figure 4.17 and the multiplication
examples of Figures4.10 and 4.11.

242

SECTION 4.1

Fixed-Point

Arithmetic

The AND and add functions of the array multiplier can be combined into a sin-gle component (cell) as illustrated in Figure 4.19. This cell realizes the arithmeticexpression
jrs = a plus b plus xy

(4.26)

An n x rt-bit multiplier can be built using n copies of this cell as the sole compo-nent, although, as in Figure 4.18, some cells on the periphery of the array haveinputs set
to 0 or 1, effectively reducing their operation from (4.26) a plus bplus xyto a plus b (a half adder). The multiplication time for this multiplier is determinedby the worst-
case carry propagation and, ignoring the differences between theinternal and peripheral cells, is {In -\)D, where D is the delay of the basic cell.

Multiplication algorithms for twos-complement numbers, such as Robertson'sand Booth's, can also be realized by arrays of combinational cells as the nextexample shows.
EXAMPLE 4.3 ARRAY IMPLEMENTATION OF THE BOOTH MULTIPLICA-TION algorithm [KOREN 1993]. Implementing the Booth method by a combi-national array
requires a multifunction cell capable of addition, subtraction, and nooperation (skip). Such a cell B is shown in Figure 4.20a. Its various functions areselected by a pair of
control lines H and D as indicated. It is easily seen that therequired functions of B are defined by the following logic equations.

Z=a©bH®cH

cOM = (a@ D)(b + ¢) + bc

When HD = 10, these equations reduce to die usual full-adder equations (4.1); whenHD =11, they reduce to the corresponding full-subtracter equations

z=a@b@c

c0,, = ab + ac + be

i
AT

Figure 4.17

AND array for 4 x 4-bit unsigned multiplication.

carryout

o P P4 Py P n

Wo

243

CHAPTER 4Datapath Design

Po

Figure 4.18

Full-adder array for 4 x 4-bit unsigned multiplication.

=

Figure 4.19

Cell M for an unsigned array multiplier.

in which c and cout assume the roles of borrow-in and borrow-out, respectively. WhenH = 0, z becomes a, and the carry lines play no role in the final result.

An H-bit multiplier is constructed from n2 + n(n - 1)/2 copies of the B cell con-nected as shown in Figure 4.20b. The extra cells at the top left change the array's shapefrom
the parallelogram of Figure 4.18 to a trapezium and are employed to sign-extendthe multiplicand Y for addition and subtraction. Note how the diagonal lines marked
bdeliver the sign-extended Y directly to every row of B cells. When Y is positive, it issign-extended by leading Os; this is implicit in the array of Figure 4.18. In the
presentcase, when Kis negative, it must be explicitly sign-extended by leading Is.

The operation to be performed by each row ; of B cells is decided by bits xixj_iof the operand X. To allow each possible “rv, , pair to control row operations, we
244

SECTION 4.1

Fixed-Point

Arithmetic

1 -bit adder/subtracter

HD

0X

10

11

Function

z = a (no operation)

coulz = apluf bplus c (add)

coutz = a - b- ¢ (subtract)

(@)

ZJLZJU'JLVJL™ .L/JV-

-s

B mE*-B

B *

B *

VHTI®

/>4

Pi Pi

(b)

P\

Po

Figure 4.20

Combinational array implementing Booth's algorithm: (a) main cell B and(b) array multiplier for 4 x 4-bit numbers.

introduce a second cell type denoted C in Figure 4.20b to generate the control inputsignal H and D required by the B cells. Cell C compares jc, with xj] and generatesthe
values of HD required by Figure 4.20a; these values are as follows:

4.1.3 Division

In fixed-point division two numbers, a divisor V and a dividend D, are given. Theobject is to compute a third number Q, the quotient, such that Q X V equals or isvery close
to D. For example, if unsigned integer formats are being used, Q is com-puted so that

D=QXV+R

where R, the remainder, is required to be less than V, that is, 0 < R < V. We can then 245

Writf “TER4

D/V =Q + R/V (4.27) Datapath Design

Here R/V is a small quantity representing the error in using Q alone to representD/V; this error is zero if R = 0.

Preliminaries. The relationship D ~ Q X V suggests that a close correspon-dence exists between division and multiplication, specifically the dividend, quo-tient, and divisor
correspond to the product, multiplicand, and multiplier,respectively. This correspondence means that similar algorithms and circuits canbe used for multiplication and
division. In multiplication the shifted multiplier isadded to the multiplicand to form the product. In division the shifted divisor is sub-tracted from the dividend to form the
quotient. Just as multiplication ends with adouble-length product, division often begins with a double-length dividend.Despite these similarities, division is a more difficult
operation than multiplicationbecause to determine a particular quotient bit ¢,, we have to answer the question:How many multiples is the divisor V of the current partial
dividend D(? This ques-tion is typically answered by trial and error: Multiply V by a trial value for gjt sub-tract the result from D,, and check the value of the remainder.
Note too that the nextquotient bit gl+x cannot be determined until gi is known. Thus division has an ele-ment of uncertainty not found in multiplication.

One of the simpler binary division methods is a sequential digit-by-digitalgorithm similar to that used in pencil-and-paper methods with decimal numbers.Figure 4.21
illustrates this approach for a 3-bit divisor V = 101 and a 6-bit divi-dend D = 100110. The dividend is scanned from left to right, and the quotient iscomputed bit by bit. In

each step divisor V is compared to the current partial divi-dend Dj, referred to here as the partial remainder R,2 The current quotient bit gt iseither 0 or 1, and is
determined by comparing V with /?,; this comparison is thehard part of division. Note that decimal division is harder than binary in this

Jil Quotient Q = qrftfrfo

Divisor V= 101 100110 Dividend D = RO

000 «iV

100110 R.

101 q22-W

10010 «2

101 <7,2-2V

1000 «3

101 <702-3V

011 R4 = remainder R
Figure 4.21

Typical pencil-and-paper method for division of unsigned numbers.

2We use the terms partial dividend and partial remainder interchangeably because the remainder from step iis used as the dividend in step r + 1.
246

SECTION 4.1

Fixed-Point

Arithmetic

regard because q{ must be selected from 10 possible digit values instead of fromtwo. If the numbers appearing in the division calculation of Figure 4.21 areunsigned
binary integers of length six, then (4.27) becomes

100110./000101. = 000111. + 000011./000101.

<

corresponding to the decimal division 38/5 = 7 + 3/5. If the numbers are unsigned6-bit fractions, then Figure 4.21 is interpreted as
.100110/. 101000 = .111000+ .000011/. 101000

corresponding to .59375A625 = .875 + .046875/.625.

In integer arithmetic Q and R are always integers of the standard word size. Iffraction formats are used, however, the number of bits of Q is not necessarilybounded. For
example, .2000/.3000 = .66666..., a repeating fraction. It is neces-sary, therefore, to limit the number of quotient bits generated by the division pro-cess. Division of
.2000 by .3000 might be required to yield a four-digit quotient Qwith truncation or rounding determining the final digit of Q. Several other difficul-ties occur in division. If
D is too large relative to V, then Q will not fit in the stan-dard word size, resulting in quotient overflow. For instance, the four-digit fractiondivision .2000/.0100 produces a
nonfraction six-digit result 20.0000. When V = 0,the quotient Q is treated as undefined or infinity and a divide-by-zero error is saidto occur. Special circuits are employed
to check for, and flag, quotient overflowand zero divisors before division begins.

Basic algorithms. Suppose that the divisor V and dividend D are unsignedintegers and the quotient Q = on_xqn_2qn_y.. is to be computed one bit at a time. Ateach step i,
2~'V, which represents the divisor shifted / bits to the right, is comparedwith the current partial remainder /?,-. The quotient bit qi is set to 1 (0) if 2~'V is less(greater)
than /?,-, and a new partial remainder Ri+, is computed according to therelation

*+1:=/?,-4,2-'V

(4.28)

In machine implementations it is more convenient to shift the partial remainder tothe left relative to a fixed divisor, in which case (4.28) is replaced by
Ri+l:=2Rl-q,V

Figure 4.22 shows the calculation of Figure 4.21 modified in this way. The finalpartial remainder R4 is now the overall remainder R shifted three bits to the left, sothat R =
2~3R4.

As observed above, the central problem in division is finding the quotient digitgx. If radix-r numbers are being represented, then q{ must be chosen from among rpossible
values. When r = 2, g, can be generated by comparing V and 2/?, in the rthstep, as is done implicitly in Figure 4.22. If V> 2/?,, then q{ = 0; otherwise, g, W= 1. IfV is long,

a combinational magnitude comparator circuit may be impractical, inwhich case q, is usually determined by subtracting V from 2Rt and examining thesign of 2Rj - V. If 2/?,
- Vis negative, qi = 0; otherwise, q,= 1.

The circuit used for multiplication in Example 4.2 (Figure 4.12) is easily mod-ified to perform division, as shown in Figure 4.23. The 2«-bit shift register A.Qstores the
partial remainders. Initially the dividend (which can contain up to 2n

Divisor V Quotient Q

Dividend D =<73V
*
2/,
101 100110000 aQ2v ~2R0 0
R22R2
*3
2f13qOVR4 = 23/?

1001101001100101 01

1001001001000101 Oil

1000001000000101 0111

011000

247

CHAPTER 4Datapath Design

Figure 4.22

The division of Figure 4.21 modified for machine implementation.

bits) is placed in A.Q. The divisor V is placed in the M register where it remainsthroughout the division process. In each step A.Q is shifted to the left. The posi-tions
vacated at the right-most end of the Q register can be used to store the quo-tient bits as they are generated. When the division process terminates, Q containsthe quotient,
while A contains the (shifted) remainder.

As noted already, the quotient bit gi can be determined by a trial subtraction ofthe form 2Ri - V. This subtraction also yields the new partial remainder Ri+1 when27?, - V
is positive; that is, when qgill,= 1. Clearly, the process of determining q{ andRi+1 can be integrated. Two major division algorithms are distinguished by the waythey
combine the computation of g(and Ri+l. If g{ = 0, then the result of the trial

Accumulator

Quotient (multiplier)register

Divisor (multiplicand)register

A*—Q M
i nx A'i ii
n 'n'
v ri
! T
Paralleladder-subtracter
n In-*

« Controlunit

Remainder R Quotient Q

Figure 4.23

The datapath of a sequential n-bit binary divider.
248

SECTION 4.1Fixed-PointArithmetic

subtraction is 2Rt - V; however, the required new partial remainder Rl+, is 2/?,-. Thepartial remainder Ri+1 can be obtained by adding V back to the result of the
trialsubtraction. This straightforward technique is called restoring division. In everystep the operation

1?,41:=2/?,V (4.29)

is performed. When the result of the subtraction is negative, a restoring addition isperformed as follows:

R

i+i

=tfl+1 + V

If the probability of gt = 1 is 1/2, then this algorithm requires n subtractions and anaverage of nil additions.

The restoration step of the preceding algorithm is eliminated in a slightly dif-ferent technique called nonrestoring division. This method is based on the observa-tion that a

restoration of the form

1?2, =R, +V

(4.30)

is followed in the next step by the subtraction (4.29). Operations (4.29) and (4.30)can be merged into the single operation

Ri+l:=2R,+ V

(4.31)

Thus when gi = 1, which is indicated by a positive value of Rt, /?/+1 is computedusing (4.29). When gt = 0, Ri+l is computed using (4.31). The calculation of eachquotient
bit involves either an addition or a subtraction, but not both. Nonrestoringdivision therefore requires n additions or subtractions, whereas restoring divisionrequires an
average of 3«/2 additions and subtractions.

Figure 4.24 presents a nonrestoring division algorithm designed for the circuitof Figure 4.23 with unsigned integers. The divisor V and quotient Q are n bits long(with
leading Os if necessary), while the dividend D is up to In - 1 bits long, whichis the maximum length of the product of two «-bit integers. The flip-flop S isappended to the
accumulator A to record the sign of the result of an addition orsubtraction and to determine the quotient bit. Each new quotient bit is placed inQ[0], and the final values of
the quotient Q and the remainder R are in the Q and Aregisters, respectively. An application of this algorithm when n = 4 appears in Fig-ure 4.25 with D = 11000012 =
9710 and V= 10102 = 1010.

The restoring and nonrestoring division techniques can be extended to signednumbers in much the same way as multiplication. Sign-magnitude numbers presentfew
difficulties; the magnitudes of the quotient and remainder can be computed asin the unsigned number case, while their signs are determined separately. Asremarked in
[Cavanagh 1984], there are no simple division algorithms for handlingnegative numbers directly in twos-complement code because of the difficulty ofselecting the
quotient bits so that the quotient has the correct positive or negativerepresentation. The most direct approach to signed division is to negate any nega-tive operands,
perform division on the resulting positive numbers, and then negatethe results, as needed. A fast division algorithm for twos-complement numbersbased on the
nonrestoring approach was devised independently in 1958 by DuraW. Sweeney, James E. Robertson, and Keith D. Tocher and is called the SRTmethod in their honor; see
[Cavanagh 1984; Koren 1993] for details.

NRdivider

BEGIN:INPUT:

SUBTRACT.TEST:

CORRECTION:OUTPUT:

end NRdivider;

(in: INBUS; out: OUTBUS);

register S, A[n-1:0], M[n-1:0], Q[n-1:0], COUNT[Tlog2nl:0];

bus INBUS[/i-1:0]. OUTBUS[n-1:0];

COUNT:=0, S:=0,

A := INBUS; {Input the left half of the dividend D)

Q := INBUS; {Input the right half of the dividend D)

M := INBUS; {Input the divisor V}

S.A := S.A-M; {S is the sign of the result}

if S = 0 then

begin Q[0] :=1;

if COUNT = n - 1 then go to CORRECTION; else

begin COUNT := COUNT + 1, S.A.Q[/i-l:]] := A.Q; end

S.A:=S.A-M, go to TEST; endelse {if S =1}

begin Q[0] := 0;

if COUNT =n - 1 then go to CORRECTION; else

begin COUNT := COUNT + 1, S.A.Q[n-l:1] := A.Q; endS.A := S.A + M, go to TEST; endif S = 1 then S.A := S.A + M;OUTBUS := Q; {Output the quotient Q)QOUTBUS := A;
{Output the remainder/?}

249
CHAPTER 4Datapath Design
Figure 4.24

Nonrestoring division algorithm for unsigned integers.

Step Action SA Q
0 Initialize registers 0 1100 0010 = = dividend D
1 1010 = divisor V=M

Subtract M from A 0 0010 0010

Reset Q[0] 000100011

Left shift S.A.Q 001000110

2 1010

Subtract M from A1 1010 0110

Set Q[0] 110100110

Left shift S.A.Q 101001100

3 1010

Add M to A 111101100

Set Q[0] 111101100

Left shift S.A.Q 111011000

4 1010
Add M to A 00111 1000
Reset Q[3] 0011110011001 =: quotient Q
0111 MW remainder R
Figure 4.25

Illustration of the nonrestoring division algorithm for unsigned integers.

250
SECTION 4 1 1

Borrow out u B<—Control linea —» p *— Borrow in t—*Ml a
Fixed-Point a Function

uz = X minus v minus t
Arithmetic 01
zZ=X

Figure 4.26
A cell D for array implementation of restoring division.

Combinational array dividers. Combinational array circuits can be used fordivision as well as for multiplication. Figure 4.26 shows a cell D suitable for imple-menting a
version of the restoring division algorithm. This cell is basically a fullsubtracter with t and u being the borrow-in and borrow-out bits, respectively. Themain output z is
controlled by input a. When a = 1, z is the difference bit defined bythe arithmetic equation

z = X minus v minus t

When a = 0, z = x. Thus the behavior of the cell D is given by the logic equations
z = x@a{y@t)

u=xy+xt+yt

Figure 4.27 shows an array of D cells to divide 3-bit unsigned integers and gen-erate a 4-bit quotient. Each row of the array subtracts the divisor Vfrom the shiftedpartial
remainder 2Ri generated by the row above. The sign of the result, and there-fore of the quotient bit, is indicated by the borrow-out signal from the left-most cellin the row.
This signal «, is connected to the control inputs a of all cells in the samerow. If Uj = 0, then the output from the row is 2/?, - Vand qt= tij= 1. If ut = 1, thenthe output from
the row is restored to 2/?,-, and again qi = Uj - 0. Thus the output ofeach row is initially 2R{ - V, but it is restored to 2/?,- when required. Restoration isachieved by
overriding the subtraction performed by the row rather than by explic-itly adding back the divisor.

Let d and d' be the carry (borrow) propagation and restore times of a cell,respectively. Let the divisor and dividend be n bits long. Each row of the dividerarray functions
as an n-bit ripple-borrow subtracter, so the maximum time requiredto compute one quotient bit is nd + d'. The time required to compute an m-bit quo-tient and the
corresponding remainder is therefore m(nd + d'), and the number ofcells needed is m(n + 1) - 1.

Division by repeated multiplication. In systems containing a high-speed multi-plier, division can be performed efficiently and at low cost using repeated multipli-cation. In
each iteration a factor F, is generated and used to multiply both thedivisor V and the dividend D. Therefore

Divisor VDividend D d5

Divisor V' " b v

Remainder 8 r, " i

Remainder R

Figure 4.27

A divider array for 3-bit unsigned numbers using the cell D of Figure 4.26.

Q=

DxFOxFxF2x...VXFOxF: xF2x ...

F, is chosen so that the sequence V X FOX F{ X F2 ... converges rapidly towardone. Hence DX FOX F, X F2 ... must converge toward the desired quotient.
The convergence of the method depends on the selection of the E's. For sim-plicity, assume that D and V are positive normalized fractions so that V=1 — x,
251

CHAPTER 4Datapath Design

VXFO = (1 x){\ +x)=\-x2

Clearly V X FO is closer to one than to V. Next set F, = 1 + x2. Hence

VXFOXF =(1-j"Xl+x2)=1-x4

and so on. Let V, denote VX FOX F~X ... X .. The multiplication factor at eachstage is computed as F, = 2 - V,_,, which is simply the twos-complement of V,_,.Hence
F=1+x2andV, =1

2'+

As i increases, V, converges quickly toward one. The process terminates when V, =0.11... 11, the number closest to one for the given word size.

252

SECTION 4.2

Arithmetic-Logic

Units

4.2

ARITHMETIC-LOGIC UNITS

The various circuits used to execute data-processing instructions are usually com-bined in a single circuit called an arithmetic-logic unit or ALU. The complexity ofan ALU
is determined by the way in which its arithmetic instructions are realized.Simple ALUs that perform fixed-point addition and subtraction, as well as word-based logical
operations, can be realized by combinational circuits. ALUs that alsoperform multiplication and division can be constructed around the circuits devel-oped for these
operations in the preceding section. Much more extensive data-processing and control logic is necessary to implement floating-point arithmetic inhardware, as we will see
later. Some processors having fixed-point ALUs employspecial-purpose auxiliary units called arithmetic (co)processors to performfloating-point and other complex
numerical functions.

4.2.1 Combinational ALUs

The simplest ALUs combine the functions of a twos-complement adder-subtracterwith those of a circuit that generates word-based logic functions of the form J\X,Y),for
example, AND, XOR, and NOT. They can thus implement most of a CPU'sfixed-point data-processing instructions. Figure 4.28 outlines an ALU that has sep-arate subunits

for logical and arithmetic operations. The particular class of opera-tion (logical and arithmetic) to be performed is determined by a "mode" controlline M attached to a
two-way multiplexer that channels the required result to the

x —*—t *W
y—"r
Data

n-bitlogicunit

n -bitadder-subtracter

Two-wayn -bit

multiplexer

,' > Z Data out

kr, , Flags (cout, p, g,overflow, etc.)

Select 5 Carry in cin

Figure 4.28

A basic n-bit arithmetic-logic unit (ALU).

Mode M

output bus Z The specific operation performed by the desired subunit is deter-mined by a "select" control line S as shown. The ALU's logical operations are per-formed
bitwise; that is, the same operation / is applied to every pair of data linesx”j. The maximum number of distinct logical operations of the form/(*,,}+,) is 16,which is the
number of distinct truth tables of two Boolean variables. Hence theselect bus S needs to be of size 4 at most, as in Figure 4.28. 5 can also be used toselect up to 16
different arithmetic operations suchas X +Y, X-Y, Y- X, X + 1(increment), X- 1 (decrement), and so on, as needed.

The logical operations in Figure 4.28 can be obtained by generating all fourminterms of/(*,,)',), namely,

m3 = xy{ m2 = xft m, = *y,- m0 = y{y.f

for every pair x$t of data bits and by using the control lines S = S3S-,SXSO0 to selectdesired subsets of the minterms to be ORed together. In particular, if we constructthe
sum-of-products expression

f(xity,) = m3S3 + m2S2 + mlSl + m”~S0
(4.32)

then we see that every combination of S~iS~q produces a different function. Forexample, 5 = 0110 makes/(x,,y,) = x(y(+ x-y{, which is EXCLUSIVE-OR. Becauseof the
bitwise nature of the logic operations, we can replace jc(and y, in (4.32) withthe n-bit words X and Y.

f(X,Y) = XYS3 + XYS2 + XYSX + XYSO
(4.33)

We can now implement the logic unit directly from Equation (4.33), using severalH-bit word gates as in Figure 4.29. The adder-subtracter can be designed by any ofthe
techniques presented earlier, with appropriate additional connections to X, Y,and 5.

Despite its conceptual simplicity, the ALU of Figure 4.28 is more expensiveand slower than necessary. For n = 4, the logic subunit employs about 25 gates andinverters. If
the arithmetic subunit is designed with carry lookahead in the style ofFigure 4.6, around 60 gates are needed, depending on the variants of add and sub-tract that are
implemented. The multiplexer in Figure 4.28 also requires additional

253

CHAPTER 4Datapath Design

Y —*<-i>

Data

D-

32>

O-i

Dataout

53 S2 5[SO Select 5

Figure 4.29

An n-bit logic unit that realizesall 16 two-variable functidns.

254

SECTION 4.2

Arithmetic-Logic
Units

gates. The complete 4-bit ALU can therefore be expected to contain more than 100gates of various kinds and have depth 9 or so. By judicious sharing of functionsbetween
the two main subunits, both of these figures can be reduced by a third, asthe next example shows.

EXAMPLE 4.4 DESIGN OF A COMBINATIONAL ARITHMETIC-LOGIC UNIT

[Hansen and hayes 1995]. We now examine the structure of a well-known com-binational ALU design that is found in many commercial products including me74181, an IC
referred to as a 4-bit ALU/function generator [Texas Instruments 1988].Like the circuit of Figure 4.29, this design implements all 16 two-variable logic func-tions, as well
as 16 arithmetic functions (some of which, like X Y plus A, are of ques-tionable value). Its standard realization has about 60 gates and depth 6; see problem4.21. We will
describe its structure at the register level, following the model developedin [Hansen and Hayes 1995].

The main internal features of the 74181 appear in Figure 4.30. The key arithmeticoperation of twos-complement addition is implemented by the carry-lookaheadmethod.
As in the design of Figure 4.6. the adder consists of propagate-generate logicfeeding a lookahead circuit that computes carries, and a set of XOR gates that computethe
final sum. The 74181's carry-lookahead generator is the same as that given earlierwith the addition of propagate and generate outputs (denoted p and g) for
extensionpurposes. However, the pg and sum circuits are also designed to be shared with thelogic unit in an efficient, but nonobvious fashion. The modules labeled M] and
M2 gen-erate a pair of 4-bit signals IP and IG that serve as internal propagate and generate,respectively, in the arithmetic mode and as minterm sources in the logic mode.
FromFigure 4.30 we see that each data output function Fi is defined by

Ft = IPf® IG/® (10"~ + M)

(4.34)
& 4 Sum Data
logic out
Maxiule w»
, — 4 4 F
b 4, 4 4
Data
sbitcamy- |4
lookahead A=8)
generator Ic
Module [16 ;
My 4 -y
4
Select 5
Carry in clr
Mode M
Figure 4.30

A register-level view of the 74181 4-bit ALU.

for 3 > i > 0, where IC denotes the set of four internal carries produced by the carry-lookahead generator. The IP and IG functions are defined by

IP = A, + B,S0+B,SI (4.35)

IG"AiBfo + AjBfo (4.36)

(See Figure 4.64 in this chapter's problem set for the gate-level implementation ofthese functions.)

In the logic mode of operation, M - 1, so (4.34) becomes

F =1P © Jg, (4.37)

On substituting (4.35) and (4.36) into (4.37) and simplifying, we obtain

Fi =A ,B,SQ+AfB,S i + AtBS2 + Afifo (4.38)

This expresses F,(A,,fi() in sum-of-minterms form, with a distinct (possibly comple-mented) select variable controlling each minterm. It therefore produces a differentlogic
function for each of the 16 possible combinations of the 5 variables, and so isessentially the same as (4.33). Hence with M= 1, the 74181 acts as a universal
functiongenerator capable of producing any two-variable Boolean function F(A,B).In the arithmetic mode M = 0, and (4.34) changes to

F~/"e/G,0/7.,

This has the general form of a sum (or difference) output—compare Equation (4.11).We can interpret the entire output function F = F3F2F]F0 more easily using the arith-
metic expression

F = IP plus IG plus c-

(4.39)

which is implied by (4.35) to (4.37) when M - 1. Here plus denotes twos-complementaddition to distinguish it from + denoting logical OR. When S - 1001, Equations
(4.35)and (4.36) imply that IP, and IG, become the usual propagate and generate functions,IPj = Aj + Bj and /G, = Afi” respectively. Hence the control settings M - 1 and S
= 1001make the 74181 behave like a carry-lookahead adder that computes

F = A plus B plus cjn

Changing 5 to 0110 produces the twos-complement subtraction

F = A minus B minus cin

and effectively reconfigures the ALU as shown in Figure 4.4.

The various combinations of 5 produce a total of 16 different functions in thearithmetic mode, only a few of which are useful. For example, with S = 0100. Equation(4.39)
becomes

F = 1111 plus 0000 plus cin

which is 1111 when cin = 0, that is, the constant minus-one in twos-complement code.When cjn = 1, F changes to 0000, since we are adding plus-one to minus-one. The
abil-ity to generate constants like +1 and 0 in this way is useful for implementing sometypes of instructions.

The74181's/], g, and coul outputs are intended to allow k copies of the 74181 to becombined either using ripple-carry propagation or carry-lookahead to form a 4£-bitALU.
Figure 4.31 shows a 16-bit ALU composed of four 74181 stages, with ripple-carry propagation between stages; compare Figure 4.3. Note how the 5 and AT control

255

CHAPTER 4Datapath Design

256

SECTION 4.2

Arithmetic-Logic

Units

lines are shared, while the data lines are separate. Note too that no interstage connec-tions are needed for the logic operations because of their bitwise, word-oriented

nature.Another interesting feature of the 74181 is its ability to act as a magnitude comparatorin conjunction with the carry output cout; see problem 4.23. The electronic
circuits driv-ing the 74181's (A = B) output are designed so that "when several (A = B) lines arewired together as in Figure 4.31, the wired connection outputs the AND

function of allits input signals. In other words, the overall (A = B) output signal is 1 if and only if each74181 slice produces (A = B)= 1. This type of technology-specific
connection is calleda wired AND. No extra gates or other "glue" logic are needed for ripple-carry expan-sion of the 74181.

4.2.2 Sequential ALUs

Although, as we have seen, both multiplication and division can be implementedby combinational logic, it is generally impractical to merge these operations withaddition
and subtraction into a single, combinational ALU. The reason is twofold.Combinational multipliers and dividers are costly in terms of hardware. They arealso much slower
than addition and subtraction circuits, a consequence of theirmany logic levels. An n-bit combinational multiplier or divider is typically com-posed of n or more levels of
add-subtract logic, making multiplication and divisionat least n times slower than addition or subtraction. The number of gates in themultiply-divide logic is also greater
by a factor of about n. Hence except when n isvery small, complete ALUs are usually constructed from low-cost sequential cir-cuits where add and subtract each take one
clock cycle, while multiplication anddivision are multicycle operations.

Basic design. Figure 4.32 shows a widely used sequential ALU design thataims at minimizing hardware costs. This ALU organization is found in the IAScomputer (Figure
1.11) and in many computers built after IAS. It is intended to

(A=B)
(A=B)
F><:F,
(A=B)

741814-bitALU

tf

4,-A,-

115:-A12 B15:512

Fn-E4] (A=B)

741814-bitALU

Cl

4>

Aw'.Aa SiiiSo

Fn.Fi

(A=B)

Fv-Fn

741814-bitALU

4,<4,>

A-,:A4 By.Bt

741814-bitALU

ALU *—|

AA

4.-4,-

A3A0 ByBO

-is— SM

Figure 4.31

A 16-bit combinational ALU composed of four 74181s linked by ripple-carry propagation.

Systembus

Accumulator AC

Multiplier-quotientregister MQ

Parallel adder

andlogic circuits

(Memory) dataregister DR

Flags

Control unit

Figure 4.32

Structure of a basic sequential ALU.

257

CHAPTER 4Datapath Design

implement multiplication and division using one of the sequential digit-by-digitshift-and-add/subtract algorithms discussed earlier. Three one-word registers areused for
operand storage: the accumulator AC, the multiplier-quotient register MQ.and the data register DR. AC and MQ are organized as a single register AC.MQcapable of left-
and right-shifting. Additional data processing is provided by acombinational ALU capable of addition, subtraction, and logical operations; wewill refer to this unit as the
add-subtract unit. This unit derives its inputs from ACand DR and places its results in AC. The MQ register is so-called because it storesthe multiplier during multiplication
and the quotient during division. DR stores themultiplicand or divisor, while the result (product or quotient and remainder) isstored in the register-pair AC.MQ. The role of
these registers is defined conciselyas follows:

Addition

Subtraction

Multiplication

Division

AND

OR

EXCLUSIVE-OR

NOT

AC := AC + DRAC := AC - DRAC.MQ := DR x MQAC.MQ := MQ/DRAC := AC and DRAC := AC or DRAC := AC xor DRAC := not(AC)

DR can serve as a memory data register to store data addressed by an instructionaddress field ADR. Then DR can be replaced by M(ADR) in the above list of
ALUoperations, resulting in a one-address memory-referencing format.

Register files. Modern CPUs retain special registers like the multiplier-quo-tient register MQ for multiplication and division, but the accumulator AC and thedata register
DR are usually replaced by a set of general-purpose registers R(,:Rm_|

known as a register file RF. Each register R, in RF is individually addressable—itsaddress is the subscript /—so that arithmetic-logic instructions can take the generictwo-
and three-address forms

SECTION 4.2

Arithmetic-Logic

Units

R2 :=/(R!,R2) . (4.40)

R3:=/(R1,R2) (4.41)

respectively. Hence the processor can retain intermediate results in fast, easilyaccessed registers, rather than having to pack them off to external memory M.Clearly RF
functions as a small random-access memory (RAM) and, in fact, isoften implemented using a fast RAM technology. RF differs from M in one impor-tant respect: RF
requires two or three operands to be accessible simultaneously.For example, to implement (4.40) as a single-cycle instruction, we must be able toread R, and R2, and write
to R2 in the same clock cycle. RF then needs severalaccess ports for simultaneously reading from or writing to several different regis-ters. Hence a register file is often
realized as a multiport RAM. A standard RAMhas just one access port with an associated address bus ADR and data bus D. Thisport can be used to read or write the data
word in the single word location wedenote by M(ADR).

To build a multiport register file requires a set of registers of the appropriatesize and several multiplexers and demultiplexers that allow data words to besteered from any
desired registers to the various output ports (read operations) orfrom the various input ports to registers (write operations). Of course, we don'twant several devices
writing to the same register R, simultaneously, although theymay read from several R/s simultaneously. Figure 4.33 shows a three-port registerfile that supports
simultaneous reads from two ports A and 5, while writing cantake place via a third port C. This file contains four 16-bit registers and meets thedata access requirements
of (4.40) and (4.41). In the two-address case (4.40), theaddress of R, is applied to port A, while that of R2 is applied to ports B and C.

Figure 4.34 shows a representative datapath unit for implementing logical andfixed-point operations; it is often referred to as an integer or fixed-point unit. Itcontains a
register file RF and a (combinational) ALU capable at least of additionand subtraction. Often specialized circuitry is added for multiplication and divi-sion because the
longer delay of these operations and their use of double-lengthoperands make it difficult to include their registers in RF. Also shown are linksthat connect the datapath
unit to the external memory M (a cache or main mem-ory) and the IO system. These links can also connect to other functional units suchas a floating-point unit.

ALU expansion. It is quite feasible to manufacture an entire sequential ALUfor fixed-point w-bit numbers on a single IC chip. Moreover, the ALU can easilybe designed for
expansion to handle operands of size n = km, or indeed any wordsize n > m, in two ways:

1. Spatial expansion: Connect k copies of the m-bit ALU in the manner of a rip-ple-carry adder to form a single ALU capable of processing km-b\t wordsdirectly. The
resulting array-like circuit is said to be bit sliced because eachcomponent ALU concurrently processes a separate "slice" of m bits from eachkm-b\\. operand.

Data in C16L

Address C

Address A

PortC

Register fileRF

Portal |Portfi

Address B

Writeaddress C

Tel ieT

Data out A Data out B(a)
Data in C16L

J- 4-way 16-bitdemultiplexer
16], 16| 16 L16 L

16-bit register R3

16

X

16-bit register R2

16

JL.

16-bit register R,

16

16-bit register Rq

16

Readaddress A

4-way 16-bitmultiplexer
Data out A

4-way 16-bit / 2 Readmultiplexer s/ address B
16LData out B

(b)

Figure 4.33

A register file with three access ports: (a) symbol and (b) logic diagram.
259

CHAPTER 4Datapath Design

2. Temporal expansion: Use one copy of the m-bit ALU chip in the manner of aserial adder to perform an operation on /cm-bit words in k consecutive steps(clock cycles). In
each step the ALU processes a separate m-bit slice of eachoperand. This processing is called multicycle or multiple-precision processing.

The 16-bit ALU in Figure 4.31 composed of four copies of the 4-bit 74181 ICis an example of a bit-sliced combinational ALU. The hardware cost of a bit-slicedALU such as
this increases directly with k, the number of slices, but the ALU'sperformance measured, say, in cycles per instruction (CPI), remains essentiallyconstant. The cycle period
does increase slowly with k, however. In a multicycleALU, on the other hand, the performance decreases directly with k. but the amountof hardware remains constant. A
multicycle ALU must be controlled by a (micro)program that repeatedly applies the same basic instruction to all slices of the oper-ands, which must be supplied serially
(slice by slice) to the ALU.

260

SECTION 4.2
Arithmetic-Logic
Units

(Micro) program control unit

t I e

Combinational | 1. |
ALU

AdrB Dan

To M and IO system

Figure 4.34

A generic datapath unit with an ALU and a register file.

Figure 4.35 shows how a 16-bit ALU can be constructed from four 4-bitsequential ALU slices. The data buses and register files of the individual slices areeffectively
juxtaposed to increase their size from 4 to 16 bits. The control lines thatselect and sequence the operations to be performed are connected to every slice sothat all slices
execute the same actions in lockstep with one another. Each slice thusperforms the same operation on a different 4-bit part (slice) of the input operandsand produces only
the corresponding part of the results. The required control sig-nals are derived from an external control unit, which can be hardwired or micro-programmed. Certain
operations require information to be exchanged betweenslices. For example, to implement a shift operation, each slice must be able to senda bit to, and receive a bit from,
its left or right neighbors. Similarly, when perform-ing addition or subtraction, carry bits must be transmitted between neighboringslices. For this purpose horizontal
connections are provided between the slices asshown in Figure 4.35.

A multicycle implementation of the 16-bit ALU of Figure 4.35 would requirethe basic 4-bit ALU to store internally all the information that needs to beexchanged between
slices. Add and shift operations require only modest changeslike extra flip-flops to store the output carry and shift signals, as well as (micro)instructions of the add-with-
carry type that make use of these stored signals. Multi-plication and division require more significant changes.

EXAMPLE 4.5 THE ADVANCED MICRO DEVICES 2901 BIT-SLICED ALU

[MICK AND brick 1980). AMD introduced the 2900 series of ICs for bit-slicedprocessor design in the mid-1970s. Its elegant design has been widely imitated, and its
principal members are included in recent VLSI cell libraries [AT&T Microelectronics1994]. The 2901 IC is the simplest of several 4-bit ALU slices in the 2900 family. Ithas
the internal organization depicted in Figure 4.36 and executes a small set of opera-tions usually specified by microinstructions. A combinational arithmetic-logic circuitC
performs three arithmetic operations (twos-complement addition and subtraction)and five logical operations on 4-bit operands. The particular operation to be carried
outby C is defined by a 9-bit (micro) instruction bus I intended to be driven by an externalcontrol unit. A pair of combinational shifters allow results generated by C to be
left- orright-shifted to facilitate the implementation of multiplication, division, and so on viashift-and-add/subtract algorithms. The 2901 has a general-register organization
withsixteen 4-bit registers organized as a 16 x 4-bit register file R[0:15], referred to as "theRAM." An additional register designated Q is designed to act as the multiplier-
quotientregister when implementing multiplication or division. C obtains its inputs either fromthe RAM, Q, or an external input data bus D; all-0 constant input operands
may also be

261

CHAPTER 4Datapath Design

Data

16,

Shift *Msignals _

Carry outand flags

Slice [15:12]

Register file—I-

Combinational ALU

Controlcircuits

Slice [11:8]

~\

Register file

CombinationalALU

Controlcircuits

Slice [7:4]

Register file

Combinational ALU

Controlcircuits

Slice [3:0]

Register file

Combinational ALU

Controlcircuits

Shiftsignals

Carry in

Control

Figure 4.35

Sixteen-bit ALU composed of four 4-bit slices.

262

SECTION 4.2

Arithmetic-Logic

Units

RAM3 >*-

Q3-

4

AT
RAMaddresses
4B ko

Carry out cout -«-
Carrylookahead
Sign F3 -*-
Overflow OVR -*-
Zero Z -*-

Data in D4/
RAM shifter

4,

B

16 x 4-bitregister file
(RAM)A B

0

Q shifter

4:r

Q register
1111111
Multiplexer

4/

Multiplexer

4/

4-bit
arithmetic-logic
circuit

C

Instruction I 7*-
Decoder

4/

RAMq

Qo

Carry in cn

\ Multiplexer /
Data out Y
Figure 4.36
Organization of the 2901 4-bit ALU slice.

specified. The RAM registers to be used as operand sources or destinations are speci-fied by the 4-bit A and B address buses, which are also derived from an external
micro-instruction. The results generated by C can be stored internally in the 2901 and/orplaced on the external output data bus Y.

A set of k 2901s can be interconnected according to the one-dimensional arraystructure of Figure 4.35 to form a processor with essentially the same properties as the2901
but handling 4/c-bit instead of 4-bit data. The instruction bus I and the RAMaddress buses A and B are the main control lines that are connected in common to allslices.
Direct connections between the shifters on adjacent slices permit shifting to beextended across the entire processor array. Each slice produces a carry-out signal cout

that can be connected to the carry-in line cin of the slice on its left, allowing arithmeticoperations to be extended across the array via the bit-sliced scheme of Figure 4.7.

Ripple-carry connections between slices have the drawback that carry-propagationtime increases rapidly with the number of slices. Consequently, the 2901 and other bit-
sliced ALUs also support the implementation of carry lookahead in the style of Figure4.5. To this end. the 2901 produces (in complemented form) the g and p
signalsrequired for carry lookahead, and an external carry-lookahead circuit generates the cinsignals for the slices (except the right-most one) from the g's and p's of all
precedingslices. The 2900 series has an IC for this purpose, namely, the 2902 4-bit carry-lookahead generator, which is a fast, two-level logic circuit that implements
Equations(4.10). The 2901 also produces three flag signals providing status information on thecurrent result F from the arithmetic-logic circuit C. The zero flag Z indicates
whetherthe all-0 result F = 0000 occurred; the overflow flag OVR indicates whether overflowoccurred during arithmetic operations; and the sign flag F3 is the value of the
left-mostbit of F. A 16-bit ALU composed of four copies of the 2901 appears in Figure 4.37.This circuit employs carry lookahead. and also shows how the flag signals for
the arrayare produced (compare Figure 4.31).

The 2901's 9-bit control bus I contains three 3-bit fields—Is, IF, and ID—whichspecify the operand sources, the ALU function, and the result destinations, respec-tively; see
Figure 4.38. ID is also used to control shifting of the result; this is indicatedby multiplication by 2 (left shift) or division by 2 (right shift) in the figure. The variouspossible

combinations of the three I fields define the 2901's microinstruction set andenable a large number of distinct register-transfer operations to be specified. For exam-ple, the
subtraction

R[6]:=R[7]-R[6]

263

CHAPTER 4Datapath Design

F3 -

OVR **

Z<e

Data in D

2902
carry-lookahead

generator

e

i

&
£
T
1
1
2
£

1
L

¥

‘,
L

3
5,
[a—l ii[of

i\

Data out Y
Figure 4.37
A 16-bit 4-slice array of 2901s employing carry lookahead.
264
SECTION 4.2

Arithmetic-Logic

Units

Inputs If Function Id Outputs
Is R S Y R(B) Q
000 R(A) Q 000 R+S+Cn000F - F
001 R(A) R(B) 001 S-R-Cjn 00'i F - -
010 0 Q 010 R-S-Cin 010 R(A) F -
on 0 R(B) 011 RorS 011F F -
100 0 R(A) 100 RandS 100 F r'F 2'Q
101 D R(A) 101 RandS 101 F 2"F -
110 D Q 110 RxorS 110 F 2F 2Q
111 D 0 111 R xnorS 111 F 2F -
Figure 4.38 performed by the 2901.
Microoperatiom

is specified by the (partial) microinstruction

AB,Is, IFID,Cin = 01! 1'0110,001,010,011,0

This microinstruction applies the contents of registers R[7] and R[6] to the R and Sinputs, respectively, of C and selects the ALU function R - S - C,n (subtract with bor-
row); it also causes the result that appears on F to be stored back into R[6]. Althoughno data-transfer operations are explicitly specified in Figure 4.38, they are
easilyobtained from the specified functions. For instance, the operation

Q:=D

loads register Q from an external data source: it can be realized via the logical ORoperation Q := D or 0 as follows:

A,B,Is,IFID,Cin = = dddd.ddddA 11,011,000, J (4.42)

where d denotes a don't-care value.

Multiplication and division cannot be bit sliced in the same way as addition, sub-traction, or shifting. However, these operations can be performed by a bit-sliced
ALUunder the control of a microprogram that implements one of the shift-and-add/subtractalgorithms described earlier. This topic is discussed further in Chapter 5.

Figure 4.39 gives an example of a more recent ALU chip, the GEC PlesseyPDSP1601, which, for brevity, we call the 1601 [GEC Plessey Semiconductors1990]. This single
IC is housed in an 84-pin PGA package and is designed to pro-cess 16-bit words directly, and bigger words indirectly via either bit slicing or viamulticycle expansion. The
1601 supports 32 arithmetic and logical operations thatare broadly similar to those of the 2901 (Figure 4.38). The arithmetic instructionsinclude various types of add,
subtract, and shift applied to 16-bit twos-complementoperands. The 1601 contains a 16-bit combinational ALU and two small registerfiles. It also has a combinational
"barrel" shifter that can shift a 16-bit operandfrom 1 to 16 places to the left or right. The barrel shifter roughly corresponds to the2901's Q shifter but is much more
powerful. Shifters of this sort are useful whenimplementing the shifts associated with multiplication, division, and floating-pointoperations. For extension via bit slicing,
the 1601 provides carry and shift IO lines

Al6-

T

Register A

B

16-'

II

Register B

265

CHAPTER 4

Datapath

Design

f

Carry out CO @*-Carry in CI —«
cc

Mux A

J\Mux B/

16-bit
combinational
ALU

2 x 16-bit
ALUregister file
\Mux S I
16-bitbarrelshifter
/ » Shift out 50

sC

Shift in SI

2x 16-bit
shifterregister file
\ MuxC /

16-'

Figure 4.39
Organization of GEC Plessey 1601 ALU and barrel shifter.

that allow k copies of the 1601 to be chained to form a 16/c-bit bit-sliced ALU thatcan operate at the same speed as a single 1601 slice. For multicycling, the outputcarry
and shift bits are stored internally in the circuits denoted CC and SC in Fig-ure 4.39.

To perform, say, a 64-bit addition in bit-slice mode (referred to as cascademode in the 1601 manufacturer's literature), a microinstruction APBCI, denoting Aplus B plus CI,
is executed simultaneously by each of four cascaded 1601 slices.The carry-in line CI is set to 0 in the least significant slice; each of the other sliceshas its CI line
connected to its right neighbor's carry-out line CO. To perform thesame 64-bit addition in multicycle mode, a single copy of the 1601 is used. It issupplied with four 16-bit
slices of the input operands at its A and B ports in foursuccessive clock cycles. In the first cycle the microinstruction APBCI is appliedwith CI = 0. In the remaining three
cycles the microinstruction APBCO, denotingA plus B plus CO, is executed, which includes in the sum the output carry bit gen-erated in the preceding clock cycle and
stored in CC.

266 4.3

~N4 3 ADVANCED TOPICS

Advanced Topics

This section studies several additional aspects of datapath design. First we discussthe implementation of floating-point operations. Therf we examine the use of pipe-lining
to increase the throughput of a datapath unit.

4.3.1 Floating-Point Arithmetic

Let (XM, XE) be the floating-point representation of a number X, which thereforehas the numerical value XM x BXe. Recall from section 3.2.3 that the mantissa (sig-
nificand) XM and the exponent XE are fixed-point numbers and that the base B is thesame as the base (radix) of XM. To simplify the discussion, we make the
followingrealistic assumptions:

1. XM is an «M-bit binary (twos-complement or sign-magnitude) fraction.

2. XE is an nE-bit integer in excess-2 E code, implying an exponent biasof 2~"'.

3. B-2.

‘We also assume that the floating-point numbers are stored in normal form only;hence the final result of each floating-point arithmetic operation should be normal-ized.
Basic operations. General formulas for floating-point addition, subtraction, multiplication, and division are given in Figure 4.40. Multiplication and divisionare relatively
simple because the mantissas and exponents can be processed inde-pendently. Floating-point multiplication requires a fixed-point multiplication of themantissas and a
fixed-point addition of the exponents. For example, if X =1.32400111 x 1017 and Y = 1.04799245 x 1021, the product X x Y is given by(1.32400111 x 1.04799245) x 10(17
+ 21) = 1.38758607 x 1038. Floating-point divi-sion requires a fixed-point division involving the mantissas and a fixed-point sub-traction involving the exponents. Thus
multiplication and division are not muchharder to implement than the corresponding fixed-point operations.

Floating-point addition and subtraction are complicated by the fact that theexponents of the two input operands must be made equal before the correspondingmantissas
can be added or subtracted. As suggested by Figure 4.40, this exponentequalization can be done by right-shifting the mantissa XM associated with thesmaller exponent
XE a total of YE - XE digit positions to form a new mantissa

Addition X + Y = (XM2*E ~Ye + Ym) x 2Ye } where XE < K,

Subtraction X- Y= (XM2*E " Ye - Ym) x 2ke

Multiplication X x Y = (XM x YM) x 2*E + Y{L

Division XJY=(XMI YM) x 2*E ~ Ye

'E

Figure 4.40

The four basic arithmetic operations for floating-point numbers.

XM2*E Ye, which can then be combined directly with YM. Thus floating-point addi-tion and subtraction have three main steps:

1. Compute YE-XE, a fixed-point subtraction.

2. Shift XM by YE - XE places to the right to form XM 2*e " Y*.

3. Compute XM 2*E ~Ye + YM, a fixed-point addition or subtraction.

For example, to add the decimal floating-point numbers X = 1.32400111 x 1017and Y= 1.04799245 x 1021, we first compute YE -XE = 21 - 17 = 4, identifying XEas the
smaller exponent. We then right-shift XM by four places to obtain XM2” =0.00013240. Finally, we perform the mantissa addition XM2r" +YM = 0.00013240 +1.04799245
= 1.04812485, so the final result has mantissa 1.04812485 and expo-nent 21.

Each floating-point arithmetic operation needs an extra step in order to nor-malize the result. A number X = (XM, XE) is normalized by left-shifting (right-shifting) XM and
decrementing (incrementing) XE by 1 to compensate for eachone-digit shift of XM. As noted earlier, a twos-complement fraction is normalizedwhen the sign bit xn _,
differs from the bit xn_2 on its right, a fact used to terminatethe normalization process. A sign-magnitude fraction is normalized by left-shiftingthe magnitude part until

there are no leading Os, that is, until xn_2 = 1. (The nor-malization rules are different if the base B is not two.) The left-most bit of themantissa may be hidden, since
normalization fixes its value; see the discussion ofthe IEEE 754 floating-point standard in Example 3.4.

Difficulties. Several minor problems are associated with exponent biasing. Ifbiased exponents are added or subtracted using fixed-point arithmetic in the courseof a
floating-point calculation, the resulting exponent is doubly biased and must becorrected by subtracting the bias. For example, let the exponent length be 4, and letthe bias
be 24"1 = 8. Suppose that exponents XE = 1111 and YE = 0101 denoting +7and -3, respectively, are to be added. If ordinary binary addition is used, we obtainthe sum
XE+ YE= 10100, which denotes 12 = 4 + 8 in excess-8 code. The sum10100 is now corrected by subtracting the bias 1000 to produce 1100, which is thecorrect biased
representation of XE + YE = 4.

Another problem arises from the all-0 representation usually required of zero.If X x Y is computed as (XM x YM) x 2 E + E and either XM or YM is zero, the result-ing
product has an all-0 mantissa but may not have an all-0 exponent. A specialstep is then needed to make the exponent bits 0.

A floating-point operation causes overflow or underflow if the result is toolarge or too small to be represented. Overflow or underflow resulting from man-tissa operations
can usually be corrected by shifting the mantissa of the resultand modifying its exponent; this is done automatically during floating-point pro-cessing. For instance, adding
the normalized decimal numbers X = 5.1049 x 107and Y = 7.9379 x 107 produces the sum 13.0428 x 107. which is normalized to1.3043 x 108 by shifting XM one digit to
the right (and rounding off the result)and incrementing the exponent by one. If, however, the exponent overflows orunderflows, an error signal indicating floating-point
overflow or underflow isgenerated. A floating-point result that has overflowed may sometimes beretained in "denormalized" form, as discussed in Example 3.4.

To preserve accuracy during floating-point calculations, one or more” extrabits called guard bits are temporarily attached to the right end of the mantissa
267

CHAPTER 4

Datapath

Design

268

SECTION 4.3Advanced Topics

Xn-ixn-2---xixo- F°r example, a guard bit jc_, is needed when results are to berounded rather than truncated to n bits. Rounding is accomplished by adding 1to xQ and
truncating the result to n bits. When a mantissa is right-shifted duringthe alignment step of addition or subtraction, the bits shifted from the right endcan be retained as
guard bits. In the case of floati'ng-point multiplication, bitsfrom the right half of the 2/i-bit result of multiplying two Ai-bit (unsigned) man-tissas serve as guard bits.
Suppose, for instance, that XM = 0.1... and YM =0.1... are normalized positive mantissas (fractions). Multiplying them by a stan-dard fixed-point multiplication algorithm
yields an unnormalized double-lengthresult of the form

PM = XMxYM = OM... (4.43)

which contains a leading 0. If PM is now truncated or rounded to n bits, then theprecision of the result is only n - 1 bits. It is clearly desirable to retain an additionalbit
from the double-length product so that when (4.43) is normalized by a left shift,the result contains n significant bits. We therefore employ two guard bits in thiscase, one
to maintain precision during normalization and one for rounding pur-poses.

Floating-point units. Floating-point arithmetic can be implemented by twoloosely connected fixed-point datapath circuits, an exponent unit and a mantissaunit. The
mantissa unit performs all four basic operations on the mantissas; hence ageneric fixed-point arithmetic circuit such as that of Figure 4.32 can be used. Asimpler circuit
capable of only adding, subtracting, and comparing exponents suf-fices for the exponent unit. Exponent comparison can be done by a comparator orby subtracting the
exponents. Figure 4.41 outlines the structure of a floating-pointunit employing the foregoing approach. The exponents of the input operands areput in registers El and E2,
which are connected to an adder that computes El + E2.The exponent comparison required for addition and subtraction is made by com-puting El - E2 and placing it in a
counter register E. The larger exponent is thendetermined from the sign of E. The shifting of one mantissa required before the

Exponent unit

Mantissa unit

AC

MQ

Adder

DR

Data bus

Figure 4.41

Datapath of a floating-point arithmetic unit.
CHAPTER 4

mantissa addition or subtraction can occur is controlled by E. The magnitude of E 269is sequentially decremented to zero. After each decrement, the appropriate man-
tissa (whose location in the mantissa unit varies with the operation being per-formed) is shifted one digit position. Once the mantissas have been aligned, they a apaare
processed in the usual manner. The exponent of the result is also computed andplaced in E.

All computers with floating-point instructions also have fixed-point instruc-tions, so it is sometimes desirable to design a single ALU to execute both fixed-point and
floating-point instructions. This design takes the form of a fixed-pointarithmetic unit in which the registers and the adder can be partitioned into expo-nent and mantissa
parts as in Figure 4.41 when floating-point operations are beingperformed. In recent years it has become more common to implement fixed-point and floating-point
instruction in separate units, a fixed-point or integer unitFXU and a floating-point unit FPU. This separation makes it possible for fixed-point and floating-point instructions
to be executed in parallel.

Addition. We now consider the implementation of floating-point addition inmore detail. Figure 4.42 presents an addition algorithm intended for use with thefloating-point
unit of Figure 4.41; with minor modifications it can also be used forfloating-point subtraction. The mantissa is assumed to be a binary fraction, and theexponent a biased
integer; the base B is 2. The first step of the algorithm is equal-ization of the exponents, which is done by subtracting them and aligning the man-tissas by shifting one of
them until the difference between the exponents has beenreduced to zero. Next the aligned mantissas are added. Finally the result is normal-ized, if necessary, by again
shifting the mantissa and making a compensatingchange in the exponent. The mantissa and exponent of the final result are placed inthe AC and E registers, respectively.
Tests are also performed for floating-pointoverflow and underflow; if either occurs, a flag ERROR is set to 1. A separate testis made for a zero result which, if indicated by
AC = 0, causes E to be set to 0 also.

Several improvements can be made to this algorithm: these are left as an exer-cise (problem 4.29). We can save time by checking to see whether one of the inputoperands
X orY is zero at the start and simply making the nonzero operand theresult. If both X and Y are zero, either operand may be used as the result. If the dif-ference between
exponents is very large (IEI > nM), then the shifting process toalign one of the mantissas, say, XM in AC, will result in AC = 0 after nM steps. Con-tinued shifting to make
E = 0 will not affect the result, which in this case will beYM. Note also that it is more efficient to terminate the shifting after nM steps insteadof IEI steps, as is done in
Figure 4.42.

Figure 4.43 shows the step-by-step application of the addition algorithm ofFigure 4.42 to two 32-bit floating-point numbers. The numbers have the 32-bit for-mat of the
IEEE Standard 754 described in Example 3.4. In this format each num-ber N has a 23-bit fractional mantissa M with a hidden bit. an 8-bit exponent E inexcess-127 code,
and a base B = 2. The value of /Vis therefore given by the formula

The numbers to be added in this instance are

AT =001111111 10000000000000000000000Y=0 10000111 00101011010000000000000

270

SECTION 4.3Advanced Topics

register AC Kf-LO], DR”"m-IiO]. E[/»e-1:0], El[nE-1:0], E2[nE-1:0],

AC_OVERFLOW, ERROR;BEGIN: AC_OVERFLOW := 0, ERROR := 0.

LOAD: El := XE, AC := XM:

E2 :=YE, DR := YM;

{Compare and equalize exponents}

COMPARE: E:=E1-E2;

EQUALIZE: if E < 0 then AC := right-shift(AC), E:= E + 1,

go to EQUALIZE; else

if E > 0 then DR := right-shift(DR), E := E - 1,go to EQUALIZE;

{Add mantissas}

ADD: AC := AC + DR, E := max(ELE2);

{Adjust for mantissa overflow and check for exponent overflow}

OVERFLOW: if AC_OVERFLOW = 1 then begin

if E = EMAX then go to ERROR:AC := right-shift(AC), E := E + 1, go to END; end

{Adjust for zero result}

ZERO: if AC = 0 then E := 0. go to END;

{Normalize result}

NORMALIZE: if AC is normalized then go to END;

UNDERFLOW: if E > EMIN then

AC := left-shift(AC), E := E - 1, go to NORMALIZE;

{Set error flag indicating overflow or underflow}

ERROR: ERROR := 1;

END:

Figure 4.42

Algorithm for floating-point addition.

which denote +1.510and +299.25,0, respectively. The exponent subtraction XE - YEin the COMPARE step is done using excess-127 code and produces 11110111 =-810.
Note that a 0 in the left-most bit position of E always indicates a negativenumber in this code (see Figure 3.25). Now the EQUALIZE step is executed, caus-ing E to be
incremented and AC, which contains the mantissa of X (including itshidden bit), to be right-shifted. After eight shifts, E reaches zero, indicated by itsleft-most bit changing
from O to 1. Then the mantissa addition takes place, and thelarger exponent is transferred from El to E. The sum appearing in AC is normal-ized, so the final result X + Y
= 300.7510 has its exponent in E and its mantissa inAC. The sum is eventually stored in the following standard format.

X+Y=0 10000111 00101100110000000000000

EXAMPLE 4.6 FLOATING-POINT ADD UNIT OF THE IBM SYSTEM/360

model 91 [Anderson et al. 1967]. We now briefly describe the floating-point

271
Exponent registers Mantissa registers
CHAPTER 4
Datapath
El E2 E
Step AC UK
LOAD 01111111 10000111 00000000 11000000000000... 00 10010101101000... 00
=*E ="E =1+M =1-"1 Design
COMPARE 01110111= XEYE
EQUALIZE 01111000 01100000000000... 00
01111001 00110000000000. .00
01111010 00011000000000. .00
01111011 00001100000000. .00
01111100 00000110000000. .00
01111101 00000011000000. .00
01111110 00000001100000. .00
01111111 00000000110000. .00
10000000

10000111

ADD =>E 10010110011000... 00= AC + DR

10010110011000... 00
Result 10000111= (X+50e

= iL.(X+y)M
Figure 4.43
Ilustration of the floating-point addition algorithm of Figure 4.42.
adder of the IBM System/360 Model 91, a mainframe computer of the mid-1960swhose advanced design features, including caches and several types of instruction-level
parallelism, were very influential. Figure 4.44 shows the datapath of the Model91 's add unit. It adds or subtracts 32-bit and 64-bit numbers having the floating-
pointformat specific to the System/360 family and its successors (see section 3.2.3). Thegeneral algorithm of Figure 4.42 is used with some changes to increase speed. In
par-ticular, the shifting needed to align the mantissas and subsequently to normalize theirsum is carried out by combinational logic (barrel shifters) rather than by shift
registers.These shifters allow k hexadecimal digits (recall that the base B is 16) to be shiftedsimultaneously. The corresponding subtraction of k from the exponent
required fornormalization is also done in one clock cycle by using an extra adder (adder 31.
The operation of this floating-point adder unit is as follows. The exponents of theinput operands are placed in registers El and E2, and the corresponding mantissas
areplaced in Ml and M2. Next E2 is subtracted from El using adder 1: the result is used toselect the mantissa to be right-shifted by shifter 1 and also to determine the
length ofthe shift. For example, if E1 > E2 and El - E2 = k, M2 is right-shifted by k digit posi-tions, that is. 4k bit positions. The shifted mantissa is then added to or
subtracted fromthe other mantissa via adder 2, a 56-bit parallel adder with several levels of carry look-ahead. The resulting sum or difference is placed in a temporary
register R where it isexamined by a special combinational circuit, the zero-digit checker. The output z ofthis circuit indicates the number of leading 0 digits (or leading Fs
in the case of nega-tive numbers) of the number in R. The number z is then used to control the final nor-malization step. The contents of R are left-shifted z digits by
shifter 2. and the result isplaced in register M3. The corresponding adjustment is made to the exponent by sub-tracting z using adder 3. In the event that R = 0, adder 3
can be used to set all bits of E3to 0, which denotes an exponent of -64.
272
Data
SECTION 4.3Advanced Topics
El
E2
Ml
M2
"3 r
Adder1
E1-E2
Shifter 1
Adder 2
"\ 11
Adder3
Zero-digitchecker
Shifter 2
E3
Data
Exponent
comparison
and
mantissa
alignment
Mantissaaddition-subtraction
Resultnormalization
M3
Figure 4.44
Floating-point add unit of the IBM System/360 Model 91.
Coprocessors. Complicated arithmetic operations like exponentiation and trig-onometric functions are costly to implement in CPU hardware, while
softwareimplementations of these operations are slow. A design alternative is to use auxil-iary processors called arithmetic coprocessors to provide fast, low-cost
hardwareimplementations of these special functions. In general, a coprocessor is a separateinstruction-set processor that is closely coupled to the CPU and whose
instructionsand registers are direct extensions of the CPU's. Instructions intended for thecoprocessor are fetched by the CPU, jointly decoded by the CPU and the
coproces-sor, and executed by the coprocessor in a manner that is transparent to the pro-grammer. Specialized coprocessors like this are used for tasks such as
managingthe memory system or controlling graphics devices. The MIPS RX000 series, forexample, was designed to allow the CPU to operate with up to four
coprocessors[Kane and Heinrich 1992]. One of these is a conventional floating-point processor,which is implemented on the main CPU chip in later members of the series.
Coprocessor instructions can be included in assembly or machine code justlike any other CPU instructions. A coprocessor requires specialized control logic tolink the CPU

with the coprocessor and to handle the instructions that are executedby the coprocessor. A typical CPU-coprocessor interface is depicted in Figure4.45. The coprocessor is
attached to the CPU by several control lines that allow the

Coprocessoraddressdecoder Select

CPU Coprocessor

Busy

Interrupt request

Synchronization signals

i r System bus

. To main memoryJ and 10 devices
Figure 4.45
Connections between a CPU and a coprocessor.

activities of the two processors to be coordinated. To the CPU, the coprocessor is apassive or slave device whose registers can be read and written into in much thesame
manner as external memory. Communication between the CPU and copro-cessor to initiate and terminate execution of coprocessor instructions occurs auto-matically as
coprocessor instructions are encountered. Even if no coprocessor isactually present, coprocessor instructions can be included in CPU programs,because if the CPU knows
that no coprocessor is present, it can transfer programcontrol to a predetermined memory location where a software routine implement-ing the desired coprocessor
instruction is stored. This type of CPU-generated inter-ruption of normal program flow is termed a coprocessor trap. Thus thecoprocessor approach makes it possible to
provide either hardware or software sup-port for certain instructions without altering the source or object code of the pro-gram being executed.

A coprocessor instruction typically contains the following three fields: anopcode FO that distinguishes coprocessor instructions from other CPU instructions,the address F]
of the particular coprocessor to be used if several coprocessors areallowed, and finally the type F2 of the particular operation to be executed by thecoprocessor. The F2
field can include operand addressing information. By havingthe coprocessor monitor the system bus, it can decode and identify a coprocessorinstruction at the same time
as the CPU; the coprocessor can then proceed to exe-cute the coprocessor instruction directly. This approach is found in some earlycoprocessors but has the major
drawback that the coprocessor, unlike the CPU,does not know the contents of the registers defining the current memory addressingmodes. Consequently, it is common to
have the CPU partially decode every copro-cessor instruction, fetch all required operands, and transfer the opcode and oper-ands directly to the coprocessor for
execution. This is the protocol followed in680X0-based systems employing the 68882 floating-point coprocessor, which isthe topic of the next example.

273

CHAPTER 4

Datapath

Design

EXAMPLE 4.7 THE MOTOROLA 68882 FLOATING-POINT COPROCESSOR
[motorola 1989]. The Motorola 68882 coprocessor extends 680X0-series CPUs

274 Type Opcode Operation specified
SECTION 4.3
Advanced Topics Data transfer =~ FMOVE Move word to/from coprocessor data or control register
FMOVECR Move word to/from ROM storing constants (0.0,7t, e, etc.)
FMOVEM Move multiple words to/from coprocessor
Data processing FADD Add
FCMP Compare
FDIV Divide
FMOD Modulo remainder
FMUL Multiply
FPVEM Remainder (IEEE format)
FSCAJLE Scale exponent
FSGLMUL Single-precision multiply
FSGLDIV Single-precision divide
FSUB Subtract
FABS Absolute value
FACOS Arc cosine
FASIN Arc sine
FATAN Arc tangent
FATANH Hyperbolic arc tangent
FCOs Cosine
FCOSH Hyperbolic cosine

FETOX e to the power of x

FETOXMI (e to the power of x) minus 1

FGETEXP Extract exponent
FGETMAN Extract mantissa
FINT Extract integer part
FINTPvVZ Extract integer part rounded to zero
FLOGN Logarithm of x to the base e
FLOGNP1 Logarithm of x + 1 to the base e
FLOG 10 Logarithm to the base 10
FLOG2 Logarithm to the base 2
FNEG Negate
FSIN Sine
FSINCOS Simultaneous sine and cosine
FSINH Hyperbolic sine
FSQRT Square root
FT AN Tangent
FTANH Hyperbolic tangent
FTENTOX 10 to the power of x
FTWOTOX 2 to the power of x
FLOGN Logarithm of x to the base e
Program control FBcc Branch if condition code (status) ccis 1
FDBcc Test, decrement count, and branch on cc
FNOP No operation
FRESTORE Restore coprocessor state
FSAVE Save coprocessor state
FScc Set (cc = 1) or reset (cc = 0) a specified byte
FTST Set coprocessor condition codes to specified values
FTRAPcc Conditional trap

Figure 4.46
Instruction set of the Motorola 68882 floating-point coprocessor.

like the 68020 (section 3.1.2) with a large set of floating-point instructions. The 68882and the 68020 are physically coupled along the lines indicated by Figure 4.45.
Whiledecoding the instructions it fetches during program execution, the 68020 identifiescoprocessor instructions by their distinctive opcodes. After identifying a
coprocessorinstruction, the 68020 CPU "wakes up" the 68882 by sending it certain control signals.The 68020 then transmits the opcode to a predefined location in the
68882 that servesas an instruction register. The 68882 decodes the instruction and begins its execution,which can proceed in parallel with other instructions executed
within the CPU proper.When the coprocessor needs to load or store operands, it asks the CPU to carry out thenecessary address calculations and data transfers.

The 68882 employs the IEEE 754 floating-point number formats described inExample 3.4 with certain multiple-precision extensions; it also supports a decimalfloating-
point format. From the programmer's perspective, the 68882 adds to the CPUa set of eight 80-bit floating-point data registers FPO:FP7 and several 32-bit controlregisters,
including instruction (opcode) and status registers. Besides implementing awide range of arithmetic operations for floating-point numbers, the 68882 has instruc-tions for
transferring data to and from its registers, and for branching on conditions itencounters during instruction execution. Figure 4.46 summarizes the 68882's instruc-tion set.
These coprocessor instructions are distinguished by the prefix F (floating-point) in their mnemonic opcodes and are used in assembly-language programs justlike regular
680X0-series instructions; see Fig. 3.12. The status or condition codes ccgenerated by the 68882 when executing floating-point instructions include invalidoperation,
overflow, underflow, division by zero, and inexact result. Coprocessor sta-tus is recorded in a control register, which can be read by the host CPU at the end of aset of
calculations, enabling the CPU to initiate the appropriate exception-processingresponse. As some coprocessor instructions have fairly long (multicyle) executiontimes, the
68882 can be interrupted in the middle of instruction execution. Its statemust then be saved and subsequently restored to complete execution of the
interruptedinstruction.

275

CHAPTER 4

Datapath

Design

The appearance of coprocessors stems in part from the fact that until the 19