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PREFACE

This	book	is	about	the	design	of	computers;	it	covers	both	their	overall	design,	orarchitecture,	and	their	internal	details,	or	organization.	It	aims	to	provide	a	compre-
hensive	and	self-contained	view	of	computer	design	at	an	introductory	level,	pri-marily	from	a	hardware	viewpoint.	The	third	edition	of	Computer	Architecture
andOrganization	is	intended	as	a	text	for	computer	science,	computer	engineering,	andelectrical	engineering	courses	at	the	undergraduate	or	beginning	graduate	levels;
itshould	also	be	useful	for	self-study.	This	text	assumes	little	in	the	way	of	prerequi-sites	beyond	some	familiarity	with	computer	programming,	binary	numbers,	anddigital
logic.	Like	the	previous	editions,	the	book	focuses	on	basic	principles	buthas	been	thoroughly	updated	and	has	substantially	more	coverage	of	performance-related	issues.

The	book	is	divided	into	seven	chapters.	Chapter	1	discusses	the	nature	and	lim-itations	of	computation.	This	chapter	surveys	the	historical	evolution	of	computerdesign	to
introduce	and	motivate	the	key	ideas	encountered	later.	Chapter	2	dealswith	computer	design	methodology	and	examines	the	two	major	computer	designlevels,	the
register	(or	register	transfer)	and	processor	levels,	in	detail.	It	alsoreviews	gate-level	logic	design	and	discusses	computer-aided	design	(CAD)	andperformance	evaluation
methods.	Chapter	3	describes	the	central	processing	unit(CPU),	or	microprocessor	that	lies	at	the	heart	of	every	computer,	focusing	oninstruction	set	design	and	data
representation.	The	next	two	chapters	address	CPUdesign	issues:	Chapter	4	covers	the	data-processing	part,	or	datapath,	of	a	proces-sor,	while	Chapter	5	deals	with
control-unit	design.	The	principles	of	arithmetic-logic	unit	(ALU)	design	for	both	fixed-point	and	floating-point	operations	arecovered	in	Chapter	4.	Both	hardwired	and
microprogrammed	control	are	examinedin	Chapter	5,	along	with	the	design	of	pipelined	and	superscalar	processors.	Chap-ter	6	deals	with	a	computer's	memory
subsystem;	the	chapter	discusses	the	princi-pal	memory	technologies	and	their	characteristics	from	a	hierarchical	viewpoint,with	emphasis	on	cache	memories.	Finally,
Chapter	7	addresses	the	overall	organi-zation	of	a	computer	system,	including	inter-	and	intrasystem	communication,input-output	(10)	systems,	and	parallel	processing	to
achieve	very	high	perfor-mance	and	reliability.	Various	representative	computer	systems,	such	as	von	Neu-mann's	classic	IAS	computer,	the	ARM	RISC	microprocessor,
the	Intel	Pentium,the	Motorola	PowerPC,	the	MIPS	RXOOO,	and	the	Tandem	NonStop	fault-tolerantmultiprocessor,	appear	as	examples	throughout	the	book.

The	book	has	been	in	use	for	many	years	at	universities	around	the	world.	It	con-tains	more	than	sufficient	material	for	a	typical	one-semester	(15	week)	course,allowing
the	instructor	some	leeway	in	choosing	the	topics	to	emphasize.	Much	ofthe	background	material	in	Chapter	1	and	the	first	part	of	Chapter	2	can	be	left	as	areading
assignment,	or	omitted	if	the	students	are	suitably	prepared.	The	moreadvanced	material	in	Chapter	7	can	be	covered	briefly	or	skipped	if	desired	withoutloss	of
continuity.	The	Instructor's	Manual	contains	some	representative	courseoutlines.

This	edition	updates	the	contents	of	the	previous	edition	and	responds	to	thesuggestions	of	its	users	while	retaining	the	book's	time-proven	emphasis.on	basic
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concepts.	The	third	edition	is	somewhat	shorter	than	its	predecessors,	and	thematerial	is	more	accessible	to	readers	who	are	less	familiar	with	computers.	Everysection
has	been	rewritten	to	reflect	the	dramatic	changes	that	have	occurred	in	thecomputer	industry	over	the	last	decade.	The	main	structural	changes	are	the	reor-ganization
of	the	two	old	chapters	on	processor	design	and	control	design	intothree	chapters:	the	new	Chapters	3,	4,	and	5;	and	the	consolidation	of	the	two	oldchapters	on	system
organization	and	parallel	processing	in	the	new	Chapter	7.	Thetreatment	of	performance-related	topics	such	as	pipeline	control,	cache	design,	andsuperscalar
architecture	has	been	expanded.	Topics	that	receive	less	space	in	thisedition	include	gate-level	design,	microprogramming,	operating	systems,	and	vec-tor	processing.	The
third	edition	also	includes	many	new	examples	(case	studies)and	end-of-chapter	problems.	There	are	now	more	than	300	problems,	about	80percent	of	which	are	new	to
this	edition.	Course	instructors	can	obtain	an	Instruc-tor's	Manual,	which	contains	solutions	to	all	the	problems,	directly	from	the	pub-lisher.

The	specific	changes	made	in	the	third	edition	are	as	follows:	The	historicalmaterial	in	Chapter	1	has	been	streamlined	and	brought	up	to	date.	Gate-leveldesign	has	been
de-emphasized	in	Chapter	2,	while	the	discussion	of	performanceevaluation	has	been	expanded.	A	new	section	on	programmable	logic	devices(PLDs)	has	been	added,	and
the	role	of	computer-aided	design	(CAD)	has	beenstressed.	The	old	third	chapter	(on	processor	design)	has	been	split	into	Chapter	3,"Processor	Basics,"	and	Chapter	4,
"Datapath	Design."	Chapter	3	contains	anexpanded	treatment	of	RISC	and	CISC	CPUs	and	their	instruction	sets.	It	intro-duces	the	ARM	and	MIPS	RX000	microprocessor
series	as	major	examples;	theMotorola	680X0	series	continues	to	be	used	as	an	example,	however.	The	materialon	computer	arithmetic	and	ALU	design	now	appears	in
Chapter	4.	The	old	chapteron	control	design,	which	is	now	Chapter	5,	has	been	completely	revised	with	amore	practical	treatment	of	hardwired	control	and	a	briefer
treatment	of	micropro-gramming.	A	new	section	on	pipeline	control	includes	some	material	from	the	oldChapter	7,	as	well	as	new	material	on	superscalar	processing.
Chapter	6	presents	anupdated	treatment	of	the	old	fifth	chapter	on	memory	organization.	Chapter	6	con-tinues	to	present	a	systematic,	hierarchical	view	of	computer
memories	but	has	agreatly	expanded	treatment	of	cache	memories.	Chapter	7,	"System	Organization,"merges	material	from	the	old	sixth	and	seventh	chapters.	The
sections	on	operatingsystems	and	parallel	processing	have	been	shortened	and	modernized.

The	material	for	this	book	has	been	developed	primarily	for	courses	on	computerarchitecture	and	organization	that	I	have	taught	over	the	years,	initially	at	the	Uni-versity
of	Southern	California	and	later	at	the	University	of	Michigan.	I	am	gratefulto	my	colleagues	and	students	at	these	and	other	schools	for	their	many	helpfulcomments	and
suggestions.

As	always,	I	owe	a	special	thanks	to	my	wife	Terrie	for	proofreading	assistance,as	well	as	her	never-failing	support	and	love.

John	P.	Hayes

CHAPTER	1

Computing	and	Computers

This	chapter	provides	a	broad	overview	of	digital	computers	while	introducingmany	of	the	concepts	that	are	covered	in	depth	later.	It	first	examines	the	natureand
limitations	of	the	computing	process.	Then	it	briefly	traces	the	historical	devel-opment	of	computing	machines	and	ends	with	a	discussion	of	contemporary	VLSI-based
computer	systems.

1.1

THE	NATURE	OF	COMPUTING

Throughout	history	humans	have	relied	mainly	on	their	brains	to	perform	calcula-tions;	in	other	words,	they	were	the	computers	[Boyer	1989].	As	civilizationadvanced,	a
variety	of	computing	tools	were	invented	that	aided,	but	did	notreplace,	manual	computation.	The	earliest	peoples	used	their	fingers,	pebbles,	ortally	sticks	for	counting
purposes.	The	Latin	words	digitus	meaning	"finger"	andcalculus	meaning	"pebble"	have	given	us	digital	and	calculate	and	indicate	theancient	origins	of	these	computing
concepts.

Two	early	computational	aids	that	were	widely	used	until	quite	recently	are	theabacus	and	the	slide	rule,	both	of	which	are	illustrated	in	Figure	1.1.	The	abacushas
columns	of	pebblelike	beads	mounted	on	rods.	The	beads	are	moved	by	hand	topositions	that	represent	numbers.	Manipulating	the	beads	according	to	certain	sim-ple
rules	enables	people	to	count,	add,	and	perform	the	other	basic	operations	ofarithmetic.	The	slide	rule,	on	the	other	hand,	represents	numbers	by	lengths	markedon
rulerlike	scales	that	can	be	moved	relative	to	one	another.	By	adding	a	length	aon	a	fixed	scale	to	a	length	b	on	a	second,	sliding	scale,	their	combined	length	c	=a	+	b	can
be	read	off	the	fixed	scale.	The	slide	rule's	main	scales	are	logarithmic,so	that	the	process	of	adding	two	lengths	on	these	scales	effectively	multiplies	two
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A	=	1.30

C	=	2.99

(b)

Figure	1.1

(a)	Japanese	abacus	(soroban)	displaying	the	number	0011234567890;

(b)	slide	rule	illustrating	the	multiplication	1.30	x	2.30	=	2.99.

numbers.1	Slide	rules	are	marked	with	various	other	scales	that	allow	ay	experi-enced	user	to	evaluate	complicated	expressions	such	as	2.15	X	17.9_50sin7t	in	sev-eral
steps.

As	the	size	and	complexity	of	the	calculations	being	carried	out	increases,	twoserious	limitations	of	manual	computation	become	apparent.

•	The	speed	at	which	a	human	computer	can	work	is	limited.	A	typical	elementaryoperation	such	as	addition	or	multiplication	takes	several	seconds	or	minutes.Problems
requiring	billions	of	such	operations	could	never	be	solved	manually	ina	reasonable	period	of	time	or	at	reasonable	cost.	Fortunately,	modern	computersroutinely	tackle
and	quickly	solve	such	problems.

•	Humans	are	notoriously	prone	to	error,	so	long	calculations	done	by	hand	areunreliable	unless	elaborate	precautions	are	taken	to	eliminate	mistakes.	Mostsources	of
human	error	(distraction,	fatigue,	and	the	like)	do	not	affect	machines,so	they	can	provide	results	that	are,	within	broad	limits,	free	from	error.

The	English	computer	pioneer	Charles	Babbage	(1792-1871)	often	cited	thefollowing	example	to	justify	construction	of	his	first	automatic	computing

'Logarithms	are	defined	by	the	relation	10°	=	A,	where	a	=	log]0A.	A	length	marked	A	on	a	log	scale	isproportional	to	log10i4	=	a.	When	we	add	two	lengths	marked	A	and
Bona	slide	rule,	we	are	actually	add-ing	a	=	\ogl0A	and	b	=	log10B.	Therefore,	the	result	c	represents	log10A	+	log,0B.	Now	10°	x	10*	=	10***implies	c	=	log10	A	+	log	10
B	=	log	10	(A	x	B),	so	if	we	read	c	from	the	first	scale,	we	will	obtain	the	numberwhose	log	is	c,	that	is.	Ax	B.

machine,	the	Difference	Engine	[Morrison	and	Morrison	1961].	In	1794	the	Frenchgovernment	began	a	project	to	compute	entirely	by	hand	an	enormous	set	of	math-
ematical	tables.	Among	the	many	required	tables	were	the	logs	of	the	numbersfrom	1	to	200,000	calculated	to	19	decimal	places.	The	entire	project	took	twoyears	to
complete	and	employed	about	100	people.	The	mathematical	abilities	ofmost	of	these	human	computers	were	limited	to	addition	and	subtraction,	and	theyperformed	their
calculations	using	pen	and	paper.	A	few	skilled	mathematiciansprovided	the	instructions.	To	minimize	errors,	each	number	was	calculated	inde-pendently	by	two	human
calculators.	The	final	set	of	tables	occupied	17	large	vol-umes.	The	log	table	alone	contained	about	8	million	digits.
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Every	computer,	human	or	artificial,	contains	the	following	components:	a	proces-sor	able	to	interpret	and	execute	programs;	a	memory	for	storing	the	programs	andthe
data	they	process;	and	input-output	equipment	for	transferring	informationbetween	the	computer	and	the	outside	world.

The	brain	versus	the	computer.	Consider	the	actions	involved	in	a	manual	cal-culation	using	pencil	and	paper—for	example,	filling	out	an	income	tax	return.	Thepurpose	of
the	paper	is	information	storage.	The	information	stored	can	include	alist	of	instructions—more	formally	called	a	program,	algorithm,	ox	procedure—tobe	followed	in
carrying	out	the	calculation,	as	well	as	the	numbers	or	data	to	beused.	During	the	calculation	intermediate	results	and	ultimately	the	final	results	arerecorded	on	the
paper.	The	data	processing	takes	place	in	the	human	brain,	whichserves	as	the	{central)	processor.	The	brain	performs	two	distinct	functions:	a	con-trol	function	that
interprets	the	instructions	and	ensures	that	they	are	performed	inthe	proper	sequence	and	an	execution	function	that	performs	specific	steps	such	asaddition,	subtraction,
multiplication,	and	division.	A	pocket	calculator	often	servesas	an	aid	to	the	brain.	Figure	1.2a	illustrates	this	view	of	human	computation.

A	computer	has	several	key	components	that	roughly	correspond	to	those	justmentioned;	see	Figure	\.2b.	The	main	memory	corresponds	to	the	paper	used	in	themanual
calculation.	Its	purpose	is	to	store	instructions	and	data.	The	computer'sbrain	is	its	central	processing	unit	(CPU).	It	contains	a	program	control	unit	(alsoknown	as	an
instruction	unit)	whose	function	is	to	fetch	instructions	from	memoryand	interpret	them.	An	arithmetic-logic	unit	(ALU),	which	is	part	of	the	CPU'sdata-processing	or
execution	unit,	carries	out	the	instructions.	The	ALU	is	so	calledbecause	many	instructions	specify	either	arithmetic	(numerical)	operations	or	vari-ous	forms	of
nonnumerical	operations	that	loosely	correspond	to	logical	reasoningor	decision	making.

There	are	important	similarities	and	differences	between	human	beings	andartificial	computers	in	the	way	in	which	they	represent	information.	In	both	casesinformation
is	usually	in	digital	or	discrete	form.	This	is	contrasted	with	analog	orcontinuous	information	as	used,	for	example,	in	the	slide	rule	of	Figure	\.\b.	Dis-tance	is	a	continuous
quantity,	and	on	a	slide-rule	scale	it	represents,	or	sen	es	as	ananalog	for,	a	continuous	sequence	of	numbers.	The	problem	is	that	such	analogquantities	have	very	limited
accuracy.	The	numbers	on	a	slide	rule,	for	example.

SECTION	1.1The	Nature	ofComputing

(«)

Centralprocessing Instructions

unit Mainmemory Input-outputequipment

Programcontrol

' r

Arithmetic-logic	unit

Data



(b)

Figure	1.2

Main	components	of	(a)	human	computation	and	(b)	machine	computation.

cannot	be	read	to	more	than	three	decimal	places.	On	the	other	hand,	a	digitaldevice	can	easily	handle	a	large	number	of	digits.	Even	the	simple	abacus	of	Figure1.1a	can
display	a	number—admittedly	just	one—to	13	places	of	accuracy.	Thisadvantage	of	digital	data	representation	over	analog	is	also	seen	in	the	higher	fidel-ity	of	the	sound
recorded	on	a	compact	disc	(CD),	a	digital	device,	compared	to	anold-fashioned	record	(LP),	which	is	an	analog	device.

Humans	employ	languages	with	a	wide	range	of	digital	symbols,	and	they	usu-ally	represent	numbers	in	decimal	(base	10)	form.	It	is	not	practical	to	build	com-puters	to
handle	symbolic	or	decimal	data	directly.	Instead,	computers	process	datain	binary	form,	that	is,	using	the	two	symbols	0	and	1	called	bits	(binary	digits).Computers	are
built	from	electronic	switches	that	have	two	natural	states:	off	(0)and	on	(1).	Hence	the	internal	"language"	of	computers	comprises	forbidding-looking	strings	of	bits	such
as	10010011	11011001.	To	provide	communication

Read-write	head

I

\

Memory	tapeM

Figure	1.3

A	Turing	machine.

between	a	computer	and	its	human	users,	a	means	of	translating	informationbetween	human	and	machine	(binary)	formats	is	necessary.	The	input-outputequipment
shown	in	Figure	1.2b	performs	this	task.

An	abstract	computer.	We	are	interested	in	the	computational	abilities	of	gen-eral-purpose	digital	computers.	One	might	raise	the	following	question	at	the	out-set:	Are
there	any	computations	that	a	"reasonable"	computer	can	never	perform?Three	notions	of	reasonableness	are	widely	accepted.

•	The	computer	should	not	store	the	answers	to	all	possible	problems.

•	The	computer	should	only	be	required	to	solve	problems	for	which	a	solutionprocedure	or	program	can	be	given.

•	The	computer	should	process	information	at	a	finite	speed.

A	reasonable	computer	can	therefore	solve	a	particular	problem	only	if	it	is	sup-plied	with	a	program	that	can	generate	the	answer	in	a	finite	amount	of	time.

In	the	1930s	the	English	mathematician	Alan	M.	Turing	(1912-54)	introducedan	abstract	model	of	a	computer	that	satisfies	all	the	foregoing	criteria	[Barwiseand
Etchemendy	1993].	This	model,	now	called	a	Turing	machine,	has	the	struc-ture	shown	in	Figure	1.3.	As	we	noted	earlier	two	essential	elements	of	any	com-puter	are	a
memory	and	a	processor.	The	memory	of	a	Turing	machine	is	a	tape	Mwhich	resembles	that	of	a	tape	recorder.	Unlike	the	tape	recorder,	however,	theTuring	machine's
tape	is	of	unbounded	length	and	is	divided	lengthwise	intosquares.	Each	square	can	be	blank,	or	it	can	contain	one	of	a	small	set	of	symbols.The	Turing	machine's
processor	P	is	a	simple	device	with	a	small	number	of	inter-nal	configurations	or	states.	It	is	linked	to	M	by	a	read-write	head	that	can	read	thecontents	of	one	square	Q
and	write	a	new	symbol	into	Q	to	replace	the	old	one	in	asingle	time	step.	Instead	of	writing	on	the	tape,	the	processor	can	also	just	read	thecurrent	symbol	and	move	the
tape	one	square	to	the	left	or	right	of	the	currentsquare	Q.

We	can	view	the	Turing	machine	as	having	a	set	of	instructions	that	we	willwrite	in	the	compact,	four-part	format

Sh	Tt	Oj	Sk

This	instruction	is	interpreted	in	the	following	way:	If	the	present	state	of	the	pro-cessor	P	is	Sh	and	the	symbol	it	reads	on	the	square	of	M	under	the	read-writehead	is	T,,
then	perform	the	action	(such	as	write	a	new	symbol	or	move	the	tape)
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specified	by	Oy	and	change	the	state	of	P	to	Sk.	Another	way	of	expressing	thisinstruction,	which	is	more	in	tune	with	the	style	of	a	modern	computer	program-ming
language,	is

if	oldstate	=	Sh	and	input	-	Tt	then	output	=	0}	and	newstate	=	Sk;

The	output	operation	indicated	by	0}	can	be	any	one	of	the	following:

1.	Oj=	Tp	meaning	write	the	symbol	T	on	the	tape	to	replace	the	symbol	Tt.

2.	Oj	=	R,	meaning	move	the	tape	so	that	the	read-write	head	is	over	the	square	tothe	right	of	the	current	square.	(The	tape	is	moved	one	square	to	the	left.)

3.	Oj	=	L,	meaning	move	the	tape	so	that	the	read-write	head	is	over	the	square	tothe	left	of	the	current	square.	(The	tape	is	moved	one	square	to	the	right.)

4.	Oj	=	H,	meaning	halt	the	computation.

The	foregoing	apparently	restricted	form	of	instruction,	with	just	a	few	differ-ent	symbols	to	write	on	M	and	a	few	different	states	for	P,	turns	out	to	be	sufficientto	define
programs	that	can	perform	all	reasonable	computations.	To	determine	thevalue	of	Z	=	F(X)	via	a	Turing	machine,	where	F	is	some	function	of	interest,	weproceed	as
follows:	The	input	data	X	is	placed	in	a	suitably	coded	form	on	an	other-wise	blank	tape	M.	The	processor	P	is	supplied	with	a	program	that	specifies	asequence	of	steps
that	are	designed	to	compute	F.	The	Turing	machine	is	thenstarted	and	executes	instruction	after	instruction,	moving	the	tape	M	and	writingintermediate	results	on	it.
Eventually,	the	Turing	machine	should	halt,	and	the	finalresult	Z	should	be	found	on	the	tape.

EXAMPLE	1.1	A	TURING	MACHINE	TO	ADD	TWO	UNARY	NUMBERS.	Any

natural	number	n,	that	is,	a	positive	integer	selected	from	the	set	we	usually	write	as	0,1,	2,	3,	4,	5,...,	can	be	written	in	the	unary	form	consisting	of	a	sequence	of	n	Is.
Forexample,	5	can	be	written	as	11111	and	13	as	1111111111111.	When	we	record	num-bers	using	tally	or	check	marks	only,	we	are	using	a	unary	notation.
(Surprisingly,unary	numbers	still	have	a	small	place	in	computer	design	[Poppelbaum	et	al.	1985].)

We	will	now	show	how	to	program	a	Turing	machine	to	compute	the	sum	of	twounary	numbers	n]	and	n2.	The	tape	symbols	needed	are	1	and	b,	where	b	denotes	ablank.
We	start	with	a	blank	tape	(one	containing	b	in	every	square)	and	write	the	twoinput	numbers	in	the	following	format:

...bbbl	1	1	...	lbl	1	1	...	lbbb...

We	position	the	read-write	head	over	the	blank	square	(underlined	above)	to	the	left	ofthe	left-most	1.	Our	Turing	machine	then	computes	nx	+	n2	by	the	simple	expedient
offinding	the	single	blank	that	separates	«,	and	n2	and	replacing	it	with	1.	The	machinethen	finds	and	deletes	the	left-most	1	of	«,.	The	resulting	pattern	of	Is	and	bs

...bbbbl	1	...	1	1	1	1	1	...	lbbb.

n,	+	Hi

appearing	on	the	tape	is	the	required	answer	in	the	same	unary	format	as	the	input	data.The	behavior	of	a	seven-instruction	Turing	machine	that	implements	this
procedure	isgiven	with	explanatory	comments	in	Figure	1.4.	Observe	that	although	the	tape	M	canhave	an	arbitrarily	large	number	of	states,	the	processor	P	has	only	the
four	states	S0,5,,	S2,	and	53.

Instruction



Comment

SB

b	R	5,	Move	read-write	head	one	square	to	right.1	R	Sj	Move	read-write	head	rightward	across	nx.b	1	S2	Replace	blank	between	«,	and	n2	by	1.

L	S2	Move	read-write	head	leftward	across	«,.

R	53	Blank	square	reached;	move	one	square	to	right.

b	S3	Replace	left-most	1	by	blank.

H	53	Halt;	the	result	nx	+	n2	is	now	on	the	tape.

Figure	1.4

Turing	machine	program	to	add	two	unary	numbers.

One	of	Turing's	most	remarkable	achievements	was	to	prove	that	a	universalTuring	machine	(not	unlike	the	above	unary	adding	machine)	can	by	itself	performevery
reasonable	computation.	A	universal	Turing	machine	is	essentially	a	simula-tor	of	Turing	machines.	If	given	a	description	of	some	particular	Turing	machineTM—a
program	description	like	that	of	Figure	1.4	will	do—the	universal	machinesimulates	all	the	operations	performed	by	TM.	A	universal	Turing	machine	needsonly	t	different
tape	symbols	and	s	different	processor	states,	where	ts	<	30,	imply-ing	that	it	can	have	a	very	small	instruction	set.	Nevertheless,	such	a	machine	canperform	any
reasonable	computation.	It	can	therefore	do	anything	that	any	real	com-puter	can	do	and	so	serves	as	an	abstract	model	of	the	modern	general-purpose	com-puter.	The
universal	Turing	machine	also	captures	a	little	of	the	flavor	of	reducedinstruction	set	computers	(RISCs),	which,	despite	having	relatively	few	instructiontypes,	are	among
the	most	powerful	computing	machines	available	today.
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We	turn	next	to	the	question	of	what	problems	computers	can	and	cannot	solve,either	in	principle	or	in	practice	[Barwise	and	Etchemendy	1993;	Cormen	and	Leis-erson
1990;	Garey	and	Johnson	1979].

Unsolvable	problems.	Problems	exist	that	no	Turing	machine	and	therefore	nopractical	computer	can	solve.	There	are	well-defined	problems,	some	quite	famous,for	which
no	solutions	or	solution	procedures	are	known.	An	example	from	puremathematics	is	Goldbach's	conjecture,	formulated	by	the	mathematician	ChristianGoldbach	(1690-
1764),	winch	states	that	every	even	integer	greater	than	2	is	thesum	of	exactly	two	prime	numbers.	For	instance,	8	=	3	+	5	and	108	=	37	+	71.	Gold-bach's	conjecture	has
been	tested	for	an	enormous	number	of	even	integers	and	istrue	in	all	test	cases.	Nevertheless,	it	is	not	yet	known	if	the	conjecture	is	true	forevery	even	integer,	nor	is
any	reasonable	procedure	known	to	determine	whether	theconjecture	is	true.	The	number	of	even	integers	is	infinite,	so	a	complete	or	exhaus-tive	examination	of	all	even
integers	and	their	prime	factors	is	not	feasible.	„

Goldbach's	conjecture	is	an	example	of	an	unsolved	problem	that	may	eventu-ally	be	solved—we	just	don't	have	a	suitable	solution	procedure	yet.	Turing
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machines	have	proven	another	class	of	problems	to	be	unsolvable,	so	there	is	nohope	of	ever	solving	them;	such	problems	are	said	to	be	undecidable.	An	exampleof	an
undecidable	problem	is	to	determine	if	an	arbitrary	polynomial	equation	of	theform

a0	+	axx	+	a^x2	+	•"	+	an_xx"~x	+	a^	=	b

has	a	solution	consisting	entirely	of	integers.	This	problem	may	be	answerable	forspecific	equations,	but	a	general	procedure	or	program	can	never	be	constructed
thatcan	analyze	any	possible	polynomial	equation	and	decide	if	it	has	an	integer	solution.

Turing	identified	an	undecidable	problem	that	involves	the	basic	nature	of	Tur-ing	machines.	Does	a	procedure	exist	to	determine	if	an	arbitrary	Turing	machinewith
arbitrary	input	data	will	ever	halt	once	it	has	been	set	in	motion?	Turingproved	that	the	answer	is	no,	so	the	Turing	machine	halting	problem	as	this	partic-ular	problem	is
called,	is	also	undecidable.	This	result	has	some	practical	implica-tions.	A	common	and	costly	error	made	by	inexperienced	computer	programmersis	to	write	programs
that	contain	infinite	loops	and	therefore	fail	to	halt	under	cer-tain	input	conditions.	It	would	be	useful	to	have	a	debugging	program	that	coulddetermine	whether	any
given	program	contains	an	infinite	loop.	The	undecidabilityof	the	Turing	machine	halting	problem	implies	that	no	such	infinite-loop-detectingtool	can	ever	be	realized.

The	Turing	machine	model	of	a	computer	has	one	unrealistic,	if	not	unreason-able,	aspect:	The	length	of	the	tape	memory,	and	hence	the	total	number	of	states	inthe
Turing	machine,	is	infinite.	Real	computers	have	a	finite	amount	of	memoryand	are	therefore	referred	to	as	finite-state	machines.	Therefore,	Turing	machinescan	perform
some	computations	that,	in	principle,	finite-state	machines	cannot	per-form.	For	example,	a	finite-state	machine	cannot	multiply	two	arbitrarily	largenumbers	because	it
eventually	runs	out	of	the	states	needed	to	compute	the	product.The	number	of	states	of	a	typical	computer	is	enormous,	so	this	finiteness	limita-tion	has	little
significance.	A	typical	general-purpose	computer	has	billions	ofstates	and	can	quickly	multiply	numbers	of	any	practical	length.

Intractable	problems.	Real	(finite-state)	computers	can	solve	most	computa-tional	problems	to	an	acceptable	degree	of	accuracy.	The	question	then	becomes:Can	a
computer	of	reasonable	size	and	cost	solve	a	given	problem	in	a	reasonableamount	of	time?	If	so,	the	problem	is	said	to	be	tractable;	otherwise,	it	is	intracta-ble.	Whether
a	given	problem	is	tractable	depends	on	several	factors:	the	nature	ofthe	problem	itself,	the	solution	method	or	program	used,	and	the	computing	speedor	performance	of
the	computer	available	to	solve	it.	Figure	1.5	gives	an	indicationof	the	speed	of	modern	computers.	It	shows	how	the	number	of	basic	operations,such	as	the	addition	of
two	numbers,	that	a	CPU	can	perform	has	been	evolvingwith	advances	in	computer	hardware.

Example	1.2	illustrates	the	impact	of	the	solution	method	on	problem	diffi-culty.

EXAMPLE	1.2	FINDING	AN	EULER	CIRCUIT	IN	A	GRAPH.	A	well-known

problem	associated	with	the	Swiss	mathematician	Leonhard	Euler	(1707-1783)	is	thefollowing:	Given	a	set	of	connected	paths	such	as	the	aisles	in	an	exhibition	hall	(Fig-
ure	1.6a),	is	it	possible	to	make	a	tour	of	the	hall	so	that	one	walks	along	every	aisleexactly	once	and	ends	up	at	the	starting	point?	The	problem	can	be
representedabstractly	by	means	of	a	graph,	as	shown	in	Figure	\.6b.	Each	aisle	is	modeled	by	a

Component	technology

Date

Number	of	basicoperations	per	second

Electromechanical:	relays	1940	10

3

Electronic:	vacuum	tubes	(valves)	1945	10

4

Electronic:	transistors	1950	10

Small-scale	integrated	circuits	1960	10

Medium-scale	integrated	circuits	1980	10

Very	large-scale	integrated	circuits	2000	10

Figure	1.5

Influence	of	hardware	technology	on	computing	speed.
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line	called	an	edge,	and	the	junction	of	two	or	more	aisles	by	a	point	called	a	node.The	graph	of	Figure	\.6b	has	five	nodes	A,	B,	C,	D,	and	E	and	eight	edges	a,	b,	c,	d,	e,f,
g,	and	h.	Restated	in	graph	terms,	the	walking-tour	problem	becomes	that	of	findinga	closed	path	around	the	graph	that	contains	every	edge	exactly	once;	such	a	path
isknown	as	an	Euler	circuit.	We	consider	two	possible	ways	to	determine	whether	agraph	contains	an	Euler	circuit.

A	"brute	force"	or	exhaustive	approach	is	to	generate	a	list	of	the	possible	order-ings	ox	permutations	of	the	edges	of	the	graph.	Each	permutation	then	corresponds	to
apotential	tour	of	the	exhibition	hall.	The	list	of	permutations	can	be	written	in	the	form

abcdefgh,	acbdefgh,	adbcefgh,	aebcdfgh,	afbcdegh,



(1.1)

We	can	search	the	permutation	list	and	check	each	entry	to	see	if	it	specifies	an	Eulercircuit.	Clearly,	the	list	is	huge,	and	most	of	its	entries	do	not	represent	Euler
circuits.For	example,	the	first	permutation	abcdefgh	does	not	represent	an	Euler	circuit,because	while	it	is	possible	to	go	from	a	to	b	and	from	b	to	c,	it	is	not	possible	to
godirectly	from	c	to	d.	A	tour	starting	at	node	A	that	traverses	a,	b,	and	c	must	continuealong	g,	at	which	point/or	h	may	be	followed.	The	permutation	abcgfdhe	appearing

(a)

(b)

Figure	1.6

{a)	Plan	of	the	aisles	in	an	exhibition	hall	and	(b)	the	corresponding	graphmodel.
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somewhere	down	the	list	represents	a	circuit	of	the	desired	kind,	as	can	be	quickly	ver-ified.	Thus	we	conclude	that	the	graph	of	Figure	1.6b	does	indeed	contain	an	Euler
cir-cuit.

The	main	drawback	of	this	brute-force	method	is	the	length	the	permutation	list;the	time	needed	to	generate,	store,	and	check	it	is	enqrmous.	Most	of	the	list's	entriesdo
not	represent	Euler	circuits,	but	in	the	worst	case,	we	might	have	to	search	the	entirelist	to	find	an	Euler	circuit	or	prove	that	none	exists.	The	number	of	possible
permuta-tions	of	the	eight	edges	in	our	example	is	8!,	which	denotes	eight	factorial.	Therefore

81	=	8X7X6X5X4X3X2X1=	40,320

is	the	length	of	list	(1.1).	When	q,	the	number	of	edges	present,	is	large,	the	size	of	thepermutation	list	q\	is	approximated	by

which	shows	that	the	size	of	the	brute-force	procedure	in	terms	of	storage	requirementsand	computing	speed	increases	exponentially	with	q.	If	q	were	80	instead	of	8,
then	wewould	have	q\	=	80!	=	7.16	x	10118.	This	huge	number	exceeds	the	estimated	number(1010)	of	neurons	in	the	human	brain.	A	very	fast	computer	capable	of
processing	a	tril-lion	(1012)	permutations	per	second	would	spend	2.27	x	10"	years	dealing	with	80!permutations.	We	can	therefore	conclude	with	some	confidence	that
the	problem	offinding	an	Euler	circuit	is	intractable	via	the	brute-force	approach.

An	alternative	but	very	tractable	solution	procedure	for	the	same	problem	dependson	Euler's	discovery	that	a	graph	has	the	desired	circuit	if	and	only	if	every	node	is
thejunction	of	an	even	number	of	edges.	Intuitively,	this	result	follows	from	the	fact	thatevery	edge	used	to	enter	a	node	must	be	paired	with	an	edge	used	to	exit	the
node.	Nowthe	task	of	determining	whether	a	graph	contains	an	Euler	cycle	reduces	to	checkingeach	node	in	turn	and	counting	the	edges	that	it	connects.	In	the	example
of	Fig-ure	\.6b,	nodes	A,	B,	C,	D,	and	E	form	the	junctions	of	4,	4,	4,	2,	and	2	edges,	respec-tively.	It	follows	immediately	that	the	graph	has	an	Euler	circuit.	While	the
brute-forcemethod	requires	a	computation	time	and	a	storage	capacity	that	grow	exponentiallywith	the	number	of	edges	q.	the	second	method	has	a	computational
complexity	that	isproportional	to	q.	The	second	method	can	easily	solve	problems	with	80	or	more	edges.

Because	the	problem	of	finding	an	Euler	circuit	has	an	efficient	and	practicalsolution	procedure,	as	shown	in	Example	1.2,	we	regard	the	problem	itself	asinherently
tractable.	We	usually	regard	a	problem	as	intractable	if	all	its	knownsolution	methods	grow	exponentially	with	the	size	of	the	problem.	Many	problems,some	of	great
practical	importance,	are	inherently	intractable	in	this	way.	Onlysmall	versions	of	such	intractable	problems	can	be	solved	in	practice,	where	small-ness	is	measured	by
some	problem-dependent	parameter	such	as	the	number	ofinput	variables	present.

An	example	of	an	intractable	problem	related	to	Example	1.2	is	the	Travelingsalesman	problem.	Here	the	goal	is	also	to	make	a	tour,	this	time	by	car	or	planethrough	a
given	set	of	n	cities,	and	eventually	return	to	the	starting	point.	The	dis-tance	between	each	pair	of	cities	is	known,	and	the	problem	is	to	determine	a	tourthat	minimizes
the	total	distance	traveled.	Again	it	is	convenient	to	use	a	graphmodel	with	nodes	denoting	cities	and	edges	denoting	intercity	highways	with	dis-tances	marked	on	them—
the	graph	is	tantamount	to	a	roadmap.	The	best	solutionprocedures	known	for	this	problem,	although	better	than	the	brute-force	approach

of	listing	all	possible	tours	through	the	n	cities,	are	exponential	in	n.	Quite	a	fewpractical	problems	are	closely	related	to	the	traveling	salesman	problem:	Thescheduling
of	airline	flights,	the	routing	of	wires	in	an	electronic	circuit,	and	thesequencing	of	steps	in	a	factory	assembly	line	are	examples.	Such	difficult	comput-ing	problems	are	a
major	motivation	for	the	design	and	construction	of	bigger	andfaster	computers.

An	intractable	problem	can	be	solved	exactly	in	a	reasonable	amount	of	timeonly	when	its	size	n	is	below	some	maximum	value	nMAX.	The	value	of	«MAXdepends	both	on
the	problem	itself	and	on	the	speed	of	the	computers	available	tosolve	it.	It	might	be	expected	that	computer	speeds	could	be	increased	to	make"max	any	desired	value.
We	now	present	arguments	to	indicate	that	this	is	highlyunlikely.
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Speed	limitations.	An	algorithm	A	has	time	complexity	of	order	/(«),	denoted0(f(n)),	if	the	number	of	basic	operations—the	precise	nature	of	these	operationsis	not
important—A	uses	to	solve	a	problem	of	size	n	is	at	most	cj\n),	where	j{n)	issome	function	of	n	and	c	is	a	constant.	The	function	j\n)	therefore	indicates	the	rateat	which
the	computing	time	that	A	needs	to	obtain	a	solution	grows	with	the	prob-lem	size	n.

To	gauge	the	impact	of	computing	speed	on	the	size	nMAX	of	the	largest	solv-able	problem,	we	consider	four	algorithms	Ax,	A2,	A3,	and	A4	of	varying	degrees	ofdifficulty.
Let	the	time	complexities	of	Ax,	A2,	A3,	and	A4	be	0(n),	0(n2),	0(nm),and	0(2"),	respectively.	Because	A4	has	a	time	complexity	that	is	exponential	in	n,it	is	the	only
obviously	intractable	procedure.	Suppose	that	all	four	algorithms	areprogrammed	on	a	computer	M	having	a	speed	of	S	basic	operations	per	second.	Letn{	denote	the	size
of	the	largest	problem	that	algorithm	A,	can	solve	in	a	fixed	timeperiod	of	T	seconds.	Let	n{	denote	the	size	of	the	largest	problem	that	the	samealgorithm	A,	can	solve	in
T	seconds	on	a	new	computer	M'	that	is	100	times	fasterthan	M;	the	speed	of	M'	is	therefore	100S	operations	per	second.	M'	could	beimplemented	by	a	different	and
faster	hardware	technology	than	M.	It	could	also—at	least	in	principle—be	implemented	by	a	"supercomputer"	consisting	of	100	cop-ies	of	M	all	working	in	parallel	on	the
same	problem,	a	technique	referred	to	asparallel	processing.

Figure	1.7	shows	the	values	of	n{	relative	to	ni	for	the	four	algorithms.	In	thecase	of	the	intractable	algorithm	A4,	the	increase	in	the	size	of	the	largest	problemthat	can
be	handled	on	moving	from	M	to	M'	is	insignificant.	This	is	also	true	forA3,	even	though	it	does	not	fall	within	the	strict	definition	of	intractability.	Toincrease	the	size	of
the	maximum	problem	that	A}	and	A4	can	solve	in	the	given

Time

Maximum	problem	size

Algorithm	complexity	Computer	M	Computer	M'

O(n) "i

0(n2) "2

0(nm) "3

0(2") "4



B,'a	100/1,

n2'	=	10n2Bj'=	1.047n,n4	=	w4	+	6.644

Figure	1.7

Effect	of	computer	speedupby	100	on	four	algorithms.
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time	period	by	a	factor	of	100,	we	would	need	computers	with	speeds	of	10	5	and10	°"4S,	respectively.	It	is	reasonable	to	expect	that	problems	of	these	magnitudescan
never	be	solved	by	the	given	algorithms	on	realistic	computers.

Because	so	many	important	problems	are	intractable,	we	often	devise	approxi-mate	or	inexact	methods	to	solve	them.	Two	major	techniques	follow.

1.	We	replace	the	intractable	problem	Q	with	a	tractable	problem	Q'	whose	solu-tion	approximates	that	of	Q.

2.	We	examine	a	relatively	small	set	of	possible	solutions	to	Q	using	reasonable,intuitive,	and	often	poorly	understood	selection	criteria	and	take	the	"best"	ofthese	as	the
solution	to	Q.	Methods	that	are	designed	to	produce	acceptable,	ifnot	optimal,	answers	using	a	reasonable	amount	of	computing	time	are	some-times	called	heuristic
procedures.

To	illustrate	the	heuristic	approach,	consider	again	the	traveling	salesman	prob-lem.	The	salesman	must	visit	n	cities	and	return	to	his	starting	point.	All	intercitydistances
are	specified,	and	the	objective	of	the	problem	is	to	find	a	tour	that	mini-mizes	the	total	distance	traveled	by	the	salesman.	We	can	represent	the	problem	ona	graph
similar	to	that	of	Figure	1.6b,	whose	nodes	denote	cities	and	whose	edgesdenote	intercity	links.	A	brute-force	approach	of	the	kind	discussed	in	Example	1.2,which
involves	listing	all	n\	possible	tours	and	their	distances,	is	intractable,	and	noobviously	tractable	method	to	obtain	a	minimum-distance	tour	is	known.

Real	traveling	salesmen	often	use	the	following	simple	heuristic:	Qo	to	the	pre-viously	unvisited	city	that	is	closest	to	the	current	city	and	return	to	the	start	in	thefinal	leg
of	the	tour.	Hence	for	each	of	the	n	legs,	the	only	computation	needed	is	tocompare	the	distances	between	the	current	city	and	each	of	at	most	n	-	1	other	cities.The	city
that	is	the	shortest	distance	away	(if	there	are	several	such	cities,	select	anyone	of	them)	is	visited	next.	Because	this	heuristic	makes	decisions	that	are	optimalon	a	local
basis	only,	it	will	not	always	find	an	overall	optimum.	Nevertheless,	formost	practical	problems	this	heuristic	provides	a	solution	of	minimum	or	near-min-imum	length,	but
there	is	no	guarantee	that	it	will	do	so	in	any	particular	case.

Computers	are	continually	being	applied	to	new	problems	whose	computa-tional	requirements	far	exceed	those	of	older	problems.	For	example,	the	process-ing	of	high-
quality	speech	and	visual	images	for	multimedia	applications	canrequire	speeds	measured	in	trillions	of	basic	operations	per	second.-To	meet	theever-increasing	demand
for	high-performance	computation,	we	need	better	algo-rithms	and	heuristics,	as	well	as	faster	computers.	Although	computers	continue	toincrease	in	speed	because	of
advances	in	hardware	technology,	the	rate	of	increase(see	Figure	1.5)	has	not	kept	pace	with	demand.	As	a	result,	we	still	need	to	findnew	ways	to	improve	the
performance	of	computers	at	reasonable	cost—which	isthe	basic	rationale	for	the	study	of	computer	architecture	and	organization.

1.2

THE	EVOLUTION	OF	COMPUTERS

Calculating	machines	capable	of	performing	the	elementary	operations	of	arith-metic	(addition,	subtraction,	multiplication,	and	division)	appeared	in	the	16thcentury,	and
perhaps	earlier	[Randell	1982;	Augarten	1984].	These	were	clever

mechanical	devices	constructed	from	gears,	levers,	and	the	like.	The	French	philos-opher	Blaise	Pascal	(1623-62)	invented	an	early	and	influential	mechanical	calcu-lator
that	could	add	and	subtract	decimal	numbers.	Decimal	numerals	wereengraved	on	counter	wheels	much	like	those	in	a	car's	odometer.	Pascal's	maintechnical	innovation
was	a	ratchet	device	for	automatically	transferring	a	carryfrom	a	digit	di	to	the	digit	di+l	on	its	left	whenever	dt	passed	from	9	to	0.	In	Ger-many,	Gottfried	Leibniz	(1646-
1716)	extended	Pascal's	design	to	one	that	couldalso	perform	multiplication	and	division.	Mechanical	computing	devices	such	asthese	remained	academic	curiosities	until
the	19th	century,	when	the	commercialproduction	of	mechanical	four-function	calculators	began.
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1.2.1	The	Mechanical	Era

Various	attempts	were	made	to	build	general-purpose	programmable	computersfrom	the	same	mechanical	devices	used	in	calculators.	This	technology	posed
somedaunting	problems,	and	they	were	not	satisfactorily	solved	until	the	introduction	ofelectronic	computing	techniques	in	the	mid-20th	century.

Babbage's	Difference	Engine.	In	the	19th	century	Charles	Babbage	designedthe	first	computers	to	perform	multistep	operations	automatically,	that	is,	without	ahuman
intervening	in	every	step	[Morrison	and	Morrison	1961].	Again	the	technol-ogies	were	entirely	mechanical.	Babbage"s	first	computing	machine,	which	hecalled	the
Difference	Engine,	was	intended	to	compute	and	print	mathematicaltables	automatically,	thereby	avoiding	the	many	errors	occurring	in	tables	that	arecomputed	and
typeset	by	hand.	The	Difference	Engine	performed	only	one	arith-metic	operation:	addition.	However,	the	method	of	(finite)	differences	embodied	inthe	Difference	Engine
can	calculate	many	complex	and	useful	functions	by	meansof	addition	alone.

EXAMPLE	1.3	COMPUTING	X2	BY	THE	METHOD	OF	DIFFERENCES.	Con-sider	the	task	of	calculating	a	table	of	the	squares	y-	=	xK	for	Xj	=	1,2,3,...	using	themethod	of
differences.	To	understand	the	underlying	concept,	suppose	we	alreadyhave	the	list	of	squares	given	in	Figure	1.8<a.	Subtract	each	square	y,	=	xf	from	thenext	value	y;+1
=	(xj	+	l)2	in	the	list.	The	result	(x-	+	l)2	-xf	=	2Xj	+	1	is	called	the	firstdifference	of	y	and	is	denoted	by	A1	y	;	die	corresponding	list	of	values	in	Figure	1.8ais	3,	5,	7,	...	If
we	subtract	two	consecutive	first-difference	values,	we	obtain	2(xj	+	1)+	1	-	(2xj	+	1)	=	2,	which	is	the	second	difference	A.2y;	of	y.	Note	that	die	second	dif-ference	is
constant	for	ally.

The	Difference	Engine	evaluates	xr	by	taking	the	constant	second	difference	A~and	adding	it	to	the	first	difference	A1	y-.	The	result	is

aVj+i	=	aVj+a2^

(1.2)

which	is	the	next	value	of	the	first	difference.	At	the	same	time,	the	engine	calculates

r;+i

=	v,	+	A

(1.3)

which	is	the	next	value	of	x2.	By	repeatedly	executing	the	two	addition	steps	(1.2)	and(1.3),	the	Difference	Engine	can	generate	any	desired	sequence	of
consecutivesquares.	It	must	be	"primed"	by	manually	inserting	the	initial	values	y,	=	1.	A	y,	=	3,
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yj	=	xj:	1	4	9	16	25	36

Initial	values

y,=	i—«C

y,-	register

+	~1	Adder

A'y,	=	3

]	A1	^register

First	difference	A1	yy.	3	5	7	9	11	13

+	I	Adder

Second	difference	A2y:	2	2	2	2	2	2	A2y,	=	2—M	]	A2y;	register

(a)



(b)

Figure	1.8

Computing	jt	by	the	method	of	differences:	(a)	a	representative	computation	and(b)	the	corresponding	Difference	Engine	configuration.

2

and	A	y,	=	2	for	j;	=	1,	which	appear	at	the	left	end	of	the	corresponding	lists	in	Fig-ure	1.8a.	Then	the	Difference	Engine	computes	A	y2	=3	+	2	=	5	according	to	(1.2)and
y2	=	1	+	3	=4	according	to	(1.3).	It	never	has	to	recompute	A~y	,	which	remainsunchanged	at	2	for	all	j.	Once	the	values	for	j	=	2	are	known,	the	Difference	Enginecan
calculate	A	y3	and	y3,	and	so	on	indefinitely.	At	the	end	of	the	computation	illus-trated	in	Figure	1.8a,	we	have	y6	=	36,	A	y6	=	13,	and	A	y6	=	2.	One	more	iterationyields
A	y1	=	13	+	2=	15	and	y7	=	36	+	13	=	49,	which	is,	of	course,	72.

Figure	1.8&	outlines	the	essential	features	of	a	small	Difference	Engine	that	exe-cutes	the	foregoing	procedure.	It	contains	several	registers;	these	are	memory
devices,each	of	which	stores	a	single	number.	Here	we	need	three	registers	to	store	the	threenumbers	y-,	A	y	•,	and	A	y	.	The	engine	employs	a	pair	of	processing	units
calledadders	to	perform	the	addition	steps	specified	by	(1.2)	and	(1.3).	Each	adder	takes	thecontents	of	two	registers,	calculates	their	sum,	and	returns	it	to	one	of	the
registers	sothat	the	sum	becomes	that	register's	new	contents.	The	arrows	in	Figure	l.Sb	indicatethe	manner	in	which	information	flows	through	the	Difference	Engine
during	operation.

We	can	easily	show	that	the	«th	difference	of	;c"	is	always	a	constant,	fromwhich	it	follows	the	nth	difference	of	any	mh-order	polynomial	of	the	form

y(x)	=	a0	+	axx	+	a-jjc2	+	•••	+	a^x"'1	+	aj?	(1.4)

is	also	a	constant	K.	A	Difference	Engine	can	therefore	calculate	y(x)	by	evaluatinga	set	of	n	difference	equations	of	the	form

A	'	A	'	A	'	+	1

A))	=	Ay;_,	+	A	yj_j

where	0	<	i	<	n	—	1,	A0y	=	y.„	and	A"y	=	K.	Many	useful	functions	encountered	inscience	and	engineering	are	expressible	as	polynomials	like	(1.4)	and	therefore	canbe
evaluated	by	the	method	of	differences.	The	trigonometric	sine	function,	forinstance,	can	be	written	as

3	5	7	9	11

sinx	=	x-^	+	X--X-	+	X--X—	+

(1.5)

The	first	k	terms	of	(1.5)	form	a	(2k	-	l)th-order	polynomial	that	approximatessin*.	A	higher-order	polynomial	will	produce	more	accurate	results.

Babbage	constructed	a	small	portion	of	his	first	Difference	Engine	in	1832,which	served	as	a	demonstration	prototype.	He	later	designed	an	improved	version(Difference
Engine	No.	2),	which	was	to	handle	seventh-order	polynomials	andhave	31	decimal	digits	of	accuracy.	Like	some	of	his	modern	successors,	Babbageconceived	his
computers	on	a	grand	scale	that	strained	the	limits	of	the	technol-ogy—and	funds—available	to	build	them.	He	never	completed	Difference	EngineNo.	2,	mainly	because	of
the	difficulty	of	fabricating	its	4000	or	so	high-precisionmechanical	parts.	The	complexity	of	this	3-ton	machine	can	be	appreciated	fromFigure	1.9,	which	is	based	on	one
of	Babbage's	own	drawings.	The	vertical	"fig-ure-wheel	columns"	constitute	the	registers	for	storing	31-digit	numbers,	while	theadders	are	implemented	by	the	rack-and-
lever	mechanism	underneath.	It	was	notuntil	1991	that	a	working	version	of	Difference	Engine	No.	2	was	actually	con-structed	(at	a	cost	of	around	$500,000)	by	the
Science	Museum	in	London	to	cele-brate	the	bicentennial	of	Babbage's	birth	[Swade	1993].
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The	Analytical	Engine.	Another	reason	for	Babbage's	failure	to	complete	hisDifference	Engine	was	that	he	conceived	of	a	much	more	powerful	computingmachine	that	he
called	the	Analytical	Engine.	This	machine	is	considered	to	be	thefirst	general-purpose	programmable	computer	ever	designed.

The	overall	organization	of	the	Analytical	Engine	is	outlined	in	Figure	1.10.	Itcontains	in	rudimentary	form	many	of	the	basic	features	found	in	all	subsequentcomputers—
compare	Figure	1.10	to	Figure	1.2.	The	main	components	of	the

HANDLE

PRINTER

Figure	1.9

Diagram	by	Babbage	of	Difference	Engine	No.	2	[Courtesy	of	the	National	Science	Museum/Science	&	SocietyPicture	Library].
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Input-outputequipment(printerand	card	*punch)

Arithmetic-logic	unit(the	mill) Data Mainmemory(the	store)

n Instructions ii

Operationcards Variablecards

Proj jam	control unit

Figure	1.10

Structure	of	Babbage's	Analytical	Engine.

Analytical	Engine	are	a	memory	called	the	store	and	an	ALU	called	the	mill;	thelatter	was	designed	to	perform	the	four	basic	arithmetic	operations.	To	control
theoperation	of	the	machine,	Babbage	proposed	to	use	punched	cards	of	a	typedeveloped	earlier	for	controlling	the	Jacquard	loom.	A	program	for	the	AnalyticalEngine
was	composed	of	two	sequences	of	punched	cards:	operation	cards	used	toselect	the	operation	to	be	performed	by	the	mill,	and	variable	cards	to	specify	thelocations	in
the	store	from	which	inputs	were	to	be	taken	or	results	sent.	An	actionsuch	as	a	x	b	=	c	would	be	specified	by	an	instruction	consisting	of	an	operation	carddenoting
multiply	and	variable	cards	specifying	the	store	locations	assigned	to	a,	b,and	c.	Babbage	intended	the	results	to	be	printed	on	paper	or	punched	on	cards.



One	of	Babbage's	key	innovations	was	a	mechanism	to	enable	a	program	toalter	the	sequence	of	its	operations	automatically.	In	modern	terms	he	conceived	ofconditional-
branch	or	if-then-else	instructions.	They	were	to	be	implemented	bytesting	the	sign	of	a	computed	number;	one	course	of	action	was	taken	if	the	signwere	positive,
another	if	negative.	Babbage	also	designed	a	device	to	advance	orreverse	the	flow	of	punched	cards	to	permit	branching	to	any	desired	instructionwithin	a	program.	This
type	of	conditional	branching	distinguishes	the	AnalyticalEngine	from	the	Difference	Engine:	a	program	for	the	latter	could	only	execute	afixed	set	of	instructions	in	a
fixed	order.	Conditional	branching	is	the	source	ofmuch	of	the	power	of	the	Analytical	Engine	and	subsequent	computers;	it	is	thefeature	that	makes	them	truly	general
purpose.

Again	Babbage	proposed	to	build	the	Analytical	Engine	on	a	grand	scale	usingthe	same	mechanical	technology	as	his	Difference	Engines.	The	store,	for	instance,was	to
have	a	capacity	of	a	thousand	50-digit	numbers.	He	estimated	that	the	addi-tion	of	two	numbers	would	take	a	second,	and	multiplication,	a	minute.	Babbagespent	much	of
the	latter	half	of	his	life	refining	the	design	of	the	Analytical	Engine,but	only	a	small	part	of	it	was	ever	constructed.

Later	developments.	Many	improvements	were	made	to	the	design	of	four-function	mechanical	calculators	in	the	19th	century,	which	led	to	their	widespread
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use.	The	Comptometer,	designed	by	the	American	Dorr	E.	Felt	(1862-1930)	in	171885,	was	one	of	the	earliest	calculators	to	use	depressible	keys	for	entering	dataand
commands;	it	also	printed	its	results	on	paper.	A	later	innovation	was	the	use
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of	electric	motors	to	drive	the	mechanical	components,	thus	making	calculators	Com	UIers"electromechanical"	and	greatly	increasing	their	speed.	Another	important
devel-opment	was	the	use	of	punched	cards	to	sort	and	tabulate	large	amounts	of	data.The	punched-card	tabulating	machine	was	invented	by	Herman	Hollerith	(1860—
1929)	and	used	to	process	the	data	collected	in	the	1880	United	States	census.	In1896	Hollerith	formed	a	company	to	manufacture	his	electromechanical	equip-ment.	This
company	subsequently	merged	with	several	others	and	in	1924	wasrenamed	the	International	Business	Machines	Corp.	(IBM).

No	significant	attempts	to	build	general-purpose,	program-controlled	comput-ers	were	made	after	Babbage's	death	until	the	1930s	[Randell	1982].	In	Germany,Konrad
Zuse	built	a	small	mechanical	computer,	the	Zl,	in	1938,	apparentlyunaware	of	Babbage's	work.	Unlike	previous	computers,	the	Zl	used	binary,instead	of	decimal,
arithmetic.	A	subsequent	Zuse	machine,	the	Z3,	which	wascompleted	in	1941,	is	believed	to	have	been	the	first	operational	general-purposecomputer.	Zuse's	work	was
interrupted	by	the	Second	World	War	and	had	littleinfluence	on	the	subsequent	development	of	computers.	Of	great	influence,	how-ever,	was	a	general-purpose
electromechanical	computer	proposed	in	1937	byHoward	Aiken	(1900-73),	a	physicist	at	Harvard	University.	Aiken	arranged	tohave	IBM	construct	this	computer
according	to	his	basic	design.	Work	began	onAiken's	Automatic	Sequence	Controlled	Calculator,	later	called	the	Harvard	MarkI,	in	1939;	it	became	operational	in	1944.
Like	Babbage's	machines,	the	Mark	Iemployed	decimal	counter	wheels	for	its	main	memory.	It	could	store	seventy-two23-digit	numbers.	The	computer	was	controlled	by	a
punched	paper	tape,	whichcombined	the	functions	of	Babbage's	operation	and	variable	cards.	Although	lessambitious	than	the	Analytical	Engine,	the	Mark	I	was	in	many
ways	the	realizationof	Babbage's	dream.

1.2.2	Electronic	Computers

A	mechanical	computer	has	two	serious	drawbacks:	Its	computing	speed	is	limitedby	the	inertia	of	its	moving	parts,	and	the	transmission	of	digital	information
bymechanical	means	is	quite	unreliable.	In	an	electronic	computer,	on	the	other	hand,the	"moving	parts"	are	electrons,	which	can	be	transmitted	and	processed	reliablyat
speeds	approaching	that	of	light	(300,000	km/s).	Electronic	devices	such	as	thevacuum	tube	or	electronic	valve,	which	was	developed	in	the	early	1900s,	permitthe
processing	and	storage	of	digital	signals	at	speeds	far	exceeding	those	of	anymechanical	device.

The	first	generation.	The	earliest	attempt	to	construct	an	electronic	computerusing	vacuum	tubes	appears	to	have	been	made	in	the	late	1930s	by	John	V.	Atana-soff
(1903-95)	at	Iowa	State	University	[Randell	1982].	This	special-purposemachine	was	intended	for	solving	linear	equations,	but	it	was	never	completed.	Thefirst	widely
known	general-purpose	electronic	computer	was	the	Electronic	Numer-ical	Integrator	and	Calculator	(ENIAC)	that	John	W.	Mauchly	(1907-80)	and	J.
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Presper	Eckert	(1919-95)	built	at	the	University	of	Pennsylvania.	Like	Babbage'sDifference	Engine,	a	motivation	for	the	ENIAC	was	the	need	to	construct	mathe-matical
tables	automatically—this	time	ballistic	tables	for	the	U.S.	Army.	Work	onthe	ENIAC	began	in	1943	and	was	completed	in	1946.	It	was	an	enormous	machineweighing
about	30	tons	and	containing	more	than	18,000	vacuum	tubes.	It	was	alsosubstantially	faster	than	any	previous	computer.	While	the	Harvard	Mark	I	requiredabout	3	s	to
perform	a	10-digit	multiplication,	the	ENIAC	required	only	3	ms.

The	ENIAC	had	a	set	of	electronic	memory	units	called	accumulators	with	acombined	capacity	of	twenty	10-digit	decimal	numbers.	Each	digit	was	stored	in	a10-bit	ring
counter,	where	the	binary	pattern	1000000000	denoted	the	decimal	digit0,	0100000000	denoted	1,	0010000000	denoted	2,	and	so	on.	The	ring	counter	wasthe	electronic
equivalent	of	the	decimal	counter	wheel	of	earlier	mechanical	calcu-lators.	Like	counter	wheels,	the	ENIAC's	accumulators	combined	the	function	ofstorage	with	addition
and	subtraction.	Additional	units	performed	multiplication,division,	and	the	extraction	of	square	roots.	The	ENIAC	was	programmed	by	thecumbersome	process	of
plugging	and	unplugging	cables	and	by	manually	setting	amaster	programming	unit	to	specify	multistep	operations.	Results	were	punched	oncards	or	printed	on	an
electric	typewriter.	In	computing	ability,	the	ENIAC	isroughly	comparable	to	a	modern	pocket	calculator!

Like	the	Analytical	Engine,	the	Harvard	Mark	I	and	the	ENIAC	stored	theirprograms	and	data	in	separate	memories.	Entering	or	altering	the	programs	was	atedious	task.
The	idea	of	storing	programs	and	their	data	in	the	same	high-speedmemory—the	stored-program	concept—is	attributed	to	the	ENIAC's	designers,notably	the	Hungarian-
born	mathematician	John	von	Neumann	(1903-57)	whowas	a	consultant	to	the	ENIAC	project.	The	concept	was	first	published	in	a	1945proposal	by	von	Neumann	for	a
new	computer,	the	Electronic	Discrete	VariableComputer	(EDVAC).	Besides	facilitating	the	programming	process,	the	stored-program	concept	enables	a	program	to
modify	its	own	instructions.	(Such	self-modifying	programs	have	undesirable	aspects,	however,	and	are	rarely	used.)

The	EDVAC	differed	from	most	of	its	predecessors	in	that	it	stored	and	pro-cessed	numbers	in	true	binary	or	base	2	form.	To	minimize	hardware	costs,	datawas	processed
serially,	or	bit	by	bit.	The	EDVAC	had	two	kinds	of	memory:	a	fastmain	memory	with	a	capacity	of	1024	or	IK	words	(numbers	or	instructions)	and	aslower	secondary
memory	with	a	capacity	of	20K	words.	Prior	to	their	execution,	aset	of	instructions	forming	a	program	was	placed	in	the	EDVAC	s	main	memory.The	instructions	were	then
transferred	one	at	a	time	from	the	main	memory	to	theCPU	for	execution.	Each	instruction	had	a	well-defined	structure	of	the	form

A,	A2	A3	A4	OP

(1.6)

meaning:	Perform	the	operation	OP	(addition,	multiplication,	etc.)	on	the	contentsof	main	memory	locations	or	"addresses"	A,	and	A2	and	then	place	the	result	inmemory
location	A3.	The	fourth	address	A4	specifies	the	location	of	the	nextinstruction	to	be	executed.	A	variant	of	this	instruction	format	implements	condi-tional	branching,
where	the	next	instruction	address	is	either	A3	or	A4,	dependingon	the	relative	sizes	of	the	numbers	stored	in	A,	and	A2.	Yet	another	instructiontype	specifies	input-output
operations	that	transfer	words	between	main	memoryand	secondary	memory	or	between	secondary	memory	and	a	printer.	The	EDVACbecame	operational	in	1951.

Mainmemory

(Programsand	data	forexecution)
Instructions Central	processingunit	(CPU) Programs,	data,operator	commands

Input-outputequipment

Secondary	memory,

keyboard,	printer,

etc.

Programcontrol

I

Dataprocessing

Data

Figure	1.11

Organization	of	a	first-generation	computer.
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In	1947	von	Neumann	and	his	colleagues	began	to	design	a	new	stored-pro-gram	electronic	computer,	now	referred	to	as	the	IAS	computer,	at	the	Institute	forAdvanced
Studies	in	Princeton.	Like	the	EDVAC,	it	had	the	general	structuredepicted	in	Figure	1.11,	with	a	CPU	for	executing	instructions,	a	main	memory	forstoring	active
programs,	a	secondary	memory	for	backup	storage,	and	miscella-neous	input-output	equipment.	Unlike	the	EDVAC,	however,	the	IAS	machine	wasdesigned	to	process	all
bits	of	a	binary	number	simultaneously	or	in	parallel.	Sev-eral	reports	describing	the	IAS	computer~were	published	[Burks.	Goldstine,	andvon	Neumann	1946]	and	had
far-reaching	influence.	In	its	overall	design	the	IAS	isquite	modern,	and	it	can	be	regarded	as	the	prototype	of	most	subsequent	general-purpose	computers.	Because	of	its
pervasive	influence,	we	will	examine	the	IAScomputer	in	more	detail	below.

In	the	late	1940s	and	1950s,	the	number	of	vacuum-tube	computers	grew	rap-idly.	We	usually	refer	to	computers	of	this	period	as	first	generation,	reflecting	asomewhat
narrow	view	of	computer	history	[Randell	1982].	Besides	those	men-tioned	already,	important	early	computers	included	the	Whirlwind	I	constructed	atthe	Massachusetts
Institute	of	Technology	and	a	series	of	machines	designed	atManchester	University	[Siewiorek,	Bell,	and	Newell	1982],	In	1947	Eckert	andMauchly	formed	Eckert-
Mauchly	Corp.	to	manufacture	computers	commercially.Their	first	successful	product	was	the	Universal	Automatic	Computer	(UNIVAC)delivered	in	1951.	IBM,	which	had
earlier	constructed	the	Harvard	Mark	I.	intro-duced	its	first	electronic	stored-program	computer,	the	701,	in	1953.	Besides	theiruse	of	vacuum	tubes	in	the	CPU,	first-
generation	computers	experimented	withvarious	technologies	for	main	and	secondary	memory.	The	Whirlwind	introducedthe	ferrite-core	memory	in	which	a	bit	of
information	was	stored	in	magnetic	formon	a	tiny	ring	of	magnetic	material.	Ferrite	cores	remained	the	principal	technologyfor	main	memories	until	the	1970s.

The	earliest	computers	had	their	instructions	written	in	a	binary	code	know	n	asmachine	language	that	could	be	executed	directly.	An	instruction	in	machine	lan-guage
meaning	"add	the	contents	of	two	memory	locations"	might	take	the	form

00111011000000001001100100000111

Machine-language	programs	are	extremely	difficult	for	humans	to	write	and	soare	very	error-prone.	A	substantial	improvement	is	obtained	b\	allowing	opera-tions	and
operand	addresses	to	be	expressed	in	an	easily	understood	symbolic
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form	such	as

ADD	XI,	X2

This	symbolic	format,	which	is	referred	to	as	an	assembly	language,	came	into	usein	the	1950s,	as	computer	programs	were	growing	jn	size	and	complexity.	Anassembly
language	requires	a	special	"system"	program	(an	assembler)	to	translateit	into	machine	language	before	it	can	be	executed.	First-generation	computers	weresupplied
with	almost	no	system	software;	often	little	more	than	an	assembler	wasavailable	to	the	user.	Moreover,	assembly	and	machine	languages	varied	widelyfrom	computer	to
computer	so	first-generation	software	was	far	from	portable.

The	IAS	computer.	It	is	instructive	to	examine	the	design	of	the	Princeton	IAScomputer.	Because	of	the	size	and	high	cost	of	the	CPU's	electronic	hardware,	thedesigners
made	every	effort	to	keep	the	CPU,	and	therefore	its	instruction	set,small	and	simple.	Cost	also	heavily	influenced	the	design	of	the	memory	sub-system.	Because	fast
memories	were	expensive,	the	size	of	the	main	memory	(ini-tially	IK	words	but	expandable	to	4K)	was	less	than	most	users	would	havewished.	Consequently,	a	larger	(16K
words)	but	cheaper	secondary	memory	basedon	an	electromechanical	magnetic	drum	technology	was	provided	for	bulk	storage.Essentially	similar	cost-performance
considerations	remain	central	to	computerdesign	today,	despite	vast	changes	over	the	years	in	the	available	technologies	andtheir	actual	costs.

The	basic	unit	of	information	in	the	IAS	computer	is	a	40-bit	word,	which	isthe	standard	packet	of	information	stored	in	a	memory	location	or	transferred	inone	step
between	the	CPU	and	the	main	memory	M.	Each	location	in	M	can	beused	to	store	either	a	single	40-bit	number	or	else	a	pair	of	20-bit	instructions.	TheIAS's	number
format	is	fixed-point,	meaning	that	it	contains	an	implicit	binarypoint	in	some	fixed	position.	Numbers	are	usually	treated	as	signed	binary	frac-tions	lying	between	-1	and
+1,	but	they	can	also	be	interpreted	as	integers.	Exam-ples	of	the	IAS's	binary	number	format	are

01101000000	0000000000	0000000000	0000000000	=	+.8125

10011000000	0000000000	0000000000	0000000000	=	-0.8125

Numbers	that	lie	outside	the	range	±1	must	be	suitably	scaled	for	processing	byIAS.

An	IAS	instruction	consists	of	an	8-bit	opcode	(operation	code)	OP	followedby	a	12-bit	address	A	that	identifies	one	of	up	to	212	=	4K	40-bit	words	stored	inM.	The	IAS
computer	thus	has	a	one-address	instruction	format,	which	we	repre-sent	symbolically	as

OP	A

This	format	may	appear	very	restrictive	compared	with	the	EDVAC's	four-addressinstruction	format	(1.6).	The	IAS's	shorter	format	clearly	saves	memory	space.The	fact
that	it	does	not	restrict	the	machine's	computational	capabilities	followsfrom	two	key	aspects	of	the	IAS's	design	that	have	been	incorporated	into	all	latercomputers:

1.	The	CPU	contains	a	small	set	of	high-speed	storage	devices	called	registers,which	serve	as	implicit	storage	locations	for	operands	and	results.	For	example,
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Figure	1.12

Organization	of	the	CPU	and	main	memory	of	the	IAS	computer.
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an	instruction	of	the	form

ADD	X

(1.7)

fetches	the	contents	of	the	memory	location	X	from	main	memory	and	adds	it	tothe	contents	of	a	CPU	register	known	as	the	accumulator	register	AC.	Theresulting	sum	is
then	placed	in	AC.	Hence	X	and	AC	play	the	role	of	the	threememory	addresses	A,,	A2,	and	A3	appearing	in	(1.6).2.	A	program's	instructions	are	stored	in	M	in
approximately	the	sequence	inwhich	they	are	executed.	Hence	the	address	of	the	next	instruction	word	is	usu-ally	that	of	the	current	instruction	plus	one.	Therefore,	the
EDVAC's	next-instruction	address	A4	can	be	replaced	by	a	CPU	register	(the	program	counterPC),	which	stores	the	address	of	the	current	instruction	word	and	is
incrementedby	one	when	the	CPU	needs	a	new	instruction	word.	Branch	instructions	areprovided	to	permit	the	instruction	execution	sequence	to	be	varied.

Figure	1.12	gives	a	programmer's	perspective	of	the	IAS,	using	modern	nota-tion	and	terminology.	One	of	the	two	main	parts	of	the	CPU	is	responsible	forfetching
instructions	from	main	memory	and	interpreting	them;	this	part	is	vari-ously	known	as	the	program	control	unit	(PCU)	or	the	I-unit	(instruction	unit).	Thesecond	major
part	of	the	CPU	is	responsible	for	executing	instructions	and	isknown	as	the	data	processing	unit	(DPU),	the	datapath,	or	the	E-unit	(executionunit).

The	major	components	of	the	PCU	are	the	instruction	register	IR,	which	storesthe	opcode	that	is	currently	being	executed,	and	the	program	counter	PC-
whichautomatically	stores	and	keeps	track	of	the	address	of	the	next	instruction	to	be
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fetched.	The	PCU	has	circuits	to	interpret	opcodes	and	to	issue	control	signals	tothe	DPU,	M,	and	other	circuits	involved	in	executing	instructions.	The	PCU	canmodify	the
instruction	execution	sequence	when	required	to	do	so	by	branchinstructions.	There	is	also	a	12-bit	address	register	AR	in	the	PCU	that	holds	theaddress	of	a	data
operand	to	be	fetched	from	or	sent	fo	main	memory.	Because	theIAS	has	the	unusual	feature	of	fetching	two	instructions	at	a	time	from	M,	it	con-tains	a	second	register,
the	instruction	buffer	register	(IBR),	for	holding	a	secondinstruction.

The	main	components	of	the	DPU	are	the	ALU,	which	contains	the	circuitsthat	perform	addition,	multiplication,	etc.,	as	required	by	the	possible	opcodes,	andseveral	data
registers	to	store	data	words	temporarily	during	program	execution.The	IAS	has	two	general-purpose	40-bit	data	registers:	AC	(accumulator)	and	DR(data	register).	It
also	has	a	third,	special-purpose	data	register	MQ	(multiplier-quotient)	intended	for	use	by	multiply	and	divide	instructions.

Main	memory	M	is	a	4096	word	or	4096	x	40-bit	array	of	storage	cells.	Eachstorage	location	in	M	is	associated	with	a	unique	12-bit	number	called	its	address,which	the
CPU	uses	to	refer	to	that	location.	To	read	data	from	a	particular	mem-ory	location,	the	CPU	must	have	its	address	X	(which	it	can	store	in	PC	or	AR).The	CPU
accomplishes	the	read	operation	by	sending	the	address	X	to	M	accompa-nied	by	control	signals	that	specify	"read."	M	responds	by	transferring	a	copy	ofM(X),	the	word
stored	at	address	X,	to	the	CPU,	where	it	is	loaded	into	DR.	In	asimilar	way	the	CPU	writes	new	data	into	main	memory	by	sending	to	M	the	desti-nation	address	X,	a	data
word	D	to	be	stored,	and	control	signals	that	specify"write."

Instruction	set.	The	IAS	machine	had	around	30	types	of	instructions.	Thesewere	chosen	to	provide	a	balance	between	application	needs—the	machine's	focuswas	on
numerical	computation	for	scientific	applications—and	computer	hardwarecosts	as	they	existed	at	the	time.	To	represent	instructions,	we	will	use	a	notationcalled	a
hardware	description	language	(HDL)	or	register-transfer	language(RTL)	that	approximates	the	assembly	language	used	to	prepare	programs	for	thecomputer;	the
designers	of	the	IAS	computer	also	used	such	a	descriptive	language[Burks,	Goldstine,	and	von	Neumann	1946].	The	HDL	introduced	here	and	usedthroughout	this	book
is	largely	self-explanatory.	Storage	locations	in	M	or	the	CPUare	referred	to	by	acronym.	The	transfer	of	information	is	denoted	by	the	assign-ment	symbol	:=,	which
suggests	the	left-going	arrow	<—.	Hence,	AC	:=	MQ	meanstransfer	(copy)	the	contents	of	register	MQ	to	register	AC	without	altering	the	con-tents	of	MQ.	Elements	of
main	memory	M	are	denoted	by	appending	to	M	anaddress	in	parentheses.	For	example,	M(X)	denotes	the	40-bit	memory	word	withaddress	X,	while	M(X,0:19)	denotes
the	half-word	consisting	of	bits	0	through	19ofM(X).

Figure	1.13	illustrates	our	descriptive	notation	for	a	simple	three-instructionIAS	program	that	adds	two	numbers.	The	numbers	to	be	added	are	stored	in	themain	memory
locations	with	addresses	100	and	101;	their	sum	is	placed	in	memorylocation	102.	Note	the	role	played	by	the	accumulator	AC	as	an	intermediatesource	and	destination	of
data.

The	set	of	instructions	defined	for	the	IAS	computer	is	given	in	Figure	1.14[Burks.	Goldstine,	and	von	Neumann	1946],	omitting	only	those	intended	for

Instruction

Comment

AC	:=	M(100)	Load	the	contents	of	memory	location	100	into	the	accumulator.

AC	:=	AC	+	M(101)	Add	the	contents	of	memory	location	101	to	the	accumulator.M(102)	:=	AC	Store	the	contents	of	the	accumulator	in	memory	location	102.

Figure	1.13

An	IAS	program	to	add	two	numbers	stored	in	main	memory.

23

CHAPTER	1Computing	andComputers

input-output	operations.	We	have	divided	them	into	three	categories:	data-transfer,data-processing,	and	program-control	instructions.	Observe	that	some	instructionshave
all	their	operands	in	CPU	registers;	others	have	one	operand	in	memory	loca-tion	M(X).	The	data-processing	instructions	do	most	of	the	"real"	work;	all	theothers	play
supporting	roles.	Because	only	one	memory	address	X	can	be	speci-fied	at	a	time,	multioperand	instructions	such	as	add	and	multiply	must	use	CPUregisters	to	store
some	of	their	operands.	Consequently,	it	is	necessary	to	precedeor	follow	a	typical	data-processing	instruction	by	data-transfer	instructions	thatload	input	operands	into
CPU	registers	or	transfer	results	from	the	CPU	to	mem-ory.	This	requirement	is	illustrated	by	the	add	operation	in	Figure	1.13,	where	twodata-transfer	instructions	and
one	add	instruction	are	needed	to	accomplish	a	sin-gle	addition	operation.	Hence	the	IAS	like	many	of	its	successors	contains	quite	afew	data-transfer	instructions	whose
purpose	is	to	shuttle	information	unchanged(except	possibly	in	sign)	between	CPU	registers	and	memory.	The	IAS's	data-pro-cessing	instructions	perform	all	the	basic
operations	of	arithmetic	on	signed	40-bitnumbers.	The	IAS	can	also	perform	nonnumerical	operations,	but	with	some	diffi-culty,	because	it	treats	all	its	operands	as
numbers.

The	group	of	instructions	called	program-control	or	branch	instructions	deter-mine	the	sequence	in	which	instructions	are	executed.	Recall	that	the	programcounter	PC
specifies	the	address	of	the	next	instruction	to	be	executed.	Instructionsare	normally	executed	in	a	fixed	order	determined	by	incrementing	the	programcounter	PC.	The
program-control	instructions	are	designed	to	change	this	order.The	IAS	has	two	unconditional	branch	instructions	(also	called	"jump"	or	"go	to"instructions),	which	load
part	of	X	into	PC	and	cause	the	next	instruction	to	betaken	from	the	left	half	or	right	half	of	M(X).	The	two	conditional	branch	instruc-tions	permit	a	program	branch	to
occur	if	and	only	if	AC	contains	a	nonnegativenumber.	These	instructions	allow	the	results	of	a	computation	to	alter	the	instruc-tion	execution	sequence	and	so	are	of



great	importance.

The	last	two	instructions	listed	in	Figure	1.14	are	"address-modify"	instruc-tions	that	permit	12-bit	addresses	to	be	computed	in	the	CPU	and	then	inserteddirectly	into
instructions	stored	in	M.	Address-modify	instructions	allow	a	programto	alter	itself,	enabling,	for	example,	the	same	data-processing	instruction	to	referto	different
operands	at	different	times.	Modifying	programs	during	their	executionis	now	considered	obsolete	and	undesirable,	but	it	was	an	important	feature	of	earlycomputers	like
IAS.

Instruction	execution.	The	IAS	fetches	and	executes	instructions	in	severalsteps	that	form	an	instruction	cycle.	Since	two	instructions	are	packed	into	a	40-bit
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Instruction	type	Instruction

Description

Data	transfer

AC	:=	MQ

AC	:=	M(X)M(X)	:=	ACMQ	:=	M(X)AC	:=	-M(X)AC:=	|M(X)IAC:=-|M(X)I

Transfer	contents	of	register	MQ	to	register	AC.

Transfer	contents	of	memory	location	X	to	AC.

Transfer	contents	of	AC	to	memory	location	X.

Transfer	M(X)	to	MQ.

Transfer	minus	M(X)	to	AC.

Transfer	absolute	value	of	M(X)	to	AC.

Transfer	minus	I	M(X)	I	to	AC.

Data	processing	AC	:=	AC	+	M(X)AC	:=	AC	+	|M(X)|AC	:=	AC	-	M(X)AC:=AC-	|M(X)|AC.MQ	:=	MQ	x	M(X)

MQ.AC	:=	AC	-	M(X)

AC	:=	AC	x	2AC	:=	AC	-	2

Add	M(X)	to	AC	putting	the	result	in	AC.

Add	absolute	value	of	M(X)	to	AC.

Subtract	M(X)	from	AC.

Subtract	|M(X)I	from	AC.

Multiply	MQ	by	M(X)	putting	the	double-wordproduct	in	AC	and	MQ.

Divide	AC	by	M(X)	putting	the	quotient	in	AC	andthe	remainder	in	MQ.

Multiply	AC	by	two	(1-bit	left	shift).

Divide	AC	by	two	(1-bit	right	shift).

Program	control	go	to	M(X,	0:19)go	to	M(X,	20:39)

if	AC	>0	then

gotoM(X,	0:19)

if	AC	>	0	thengo	to	M(X,	20:39)

M(X,	8:19):=	AC	(28:39)M(X,	28:39)	:=	AC(28:39)

Take	next	instruction	from	left	half	of	M(X)

Take	next	instruction	from	right	half	of	M(X).

If	AC	contains	a	nonnegative	number,	then	take	nextinstruction	from	left	half	of	M(X).

If	AC	contains	a	nonnegative	number,	then	take	nextinstruction	from	right	half	of	M(X).

Replace	left	instruction	address	field	in	M(X)	by	12right-most	bits	of	AC.

Replace	right	instruction	address	field	in	M(X)	by12	right-most	bits	of	AC.

Figure	1.14

Instruction	set	of	the	IAS	computer.

word,	the	IAS	fetches	two	instructions	in	each	instruction	cycle.	One	instructionhas	its	opcode	placed	in	the	instruction	register	IR	and	its	address	field	(if	any)placed	in
the	address	register	AR.	The	other	instruction	is	transferred	to	the	IBRregister	for	possible	later	execution.	Whenever	the	next	instruction	needed	by	theCPU	is	not	in	IBR,
the	program	counter	PC	is	incremented	to	generate	the	nextinstruction	address.

Once	the	desired	instruction	has	been	loaded	into	the	CPU,	its	execution	phasebegins.	The	PCU	decodes	the	instruction's	opcode,	and	the	PCU's	subsequentactions
depend	on	the	opcode's	bit	pattern.	Typically,	these	actions	involve	one	ortwo	register-transfer	(micro)	operations	of	the	form	S	^/(S^Sj,	...,Sk),	where	the

5,'s	are	the	locations	of	operands	and/is	a	data-transfer	or	arithmetic	operation.For	example,	the	add	instruction	AC	:=	AC	+	M(X)	is	executed	by	the	followingtwo
register-transfer	operations:

DR	:=	M(AR);

AC	:=	AC	+	DR

First,	the	contents	of	the	memory	location	M(AR)	specified	by	the	address	registerAR	are	transferred	to	the	data	register	DR.	Then	the	contents	of	DR	and	the	accu-
mulator	AC	are	added	via	the	DPU's	arithmetic-logic	unit,	and	the	result	is	placedin	AC.	The	unconditional	branch	instruction	go	to	M(X.0:19)	has	an	address
fieldcontaining	some	address	X:	after	fetching	this	instruction,	X	is	placed	in	AR.	Thisinstruction	is	then	executed	via	the	single	register-transfer	operation	PC	:=	AR.which
makes	PC	point	to	the	desired	next	instruction	stored	in	the	half-wordM(X,0:19).
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EXAMPLE	1.4	AN	IAS	PROGRAM	TO	PERFORM	VECTOR	ADDITION.	Let

A	=	A(l),	A(2),	...,	A(1000)	and	B	=	B(l),	B(2)	B(IOOO)	be	two	vectors,	that	is.

one-dimensional	arrays,	of	numbers	to	be	added.	The	desired	vector	sum	C	-	A	+	B	isdefined	by

C(l),	C(2),	...,	C(1000)	=	A(l)	+	B(l),	A(2)	+B(2),	....	A(1000)	+	B(1000)

For	simplicity	we	will	assume	that	the	numbers	processed	by	the	IAS,	including	thevector	elements	A(I).	B(I),	and	C(I)	are	40-bit	integers,	and	that	the	input	vectors
areprestored	in	the	IAS"s	main	memory	M.	We	need	to	perform	the	add	operation



C(I)	:=	A(I)	+	B(I)

1000	times,	specifically	for	I	=	1,	2,	...,	1000.	Using	the	operations	available	in	the	IASinstruction	set.	the	basic	addition	step	above	can	be	realized	by	the	following	three-
instruction	sequence	(compare	Figure	1.13):

AC	:=	A(I)

AC	:=	AC	+	B(I)C(I):=AC

(1.8)

Clearly,	a	program	with	1000	copies	of	these	three	instructions,	each	with	a	differentindex	I.	would	implement	the	vector	addition.	However,	such	a	program,	besides
beingvery	inconvenient	to	write,	would	not	fit	in	M	along	with	the	three	vectors	A.	B.	and	C.We	need	some	type	of	loop	or	iterative	program	that	contains	one	copy	of	(1.8)
but	canmodify	the	index	I	to	step	through	all	elements	of	the	vectors.

Figure	1.15	shows	such	a	program.	The	vectors	A.	B.	and	C	are	assumed	to	bestored	sequentially,	beginning	at	locations	1001,	2001,	and	3001.	respectively.	Thesymbol	to
the	left	of	each	instruction	in	Figure	1.15	is	its	location	in	M.	For	instance.2L	(2R)	denotes	the	left	(right)	halt"	of	M(2).	The	first	location	M(0>	is	used	to	store	acounting
variable	N	and	is	initially	set	to	999.	N	is	systematically	decremented	by	oneafter	each	addition	step:	when	it	reaches	-1,	the	program	halts.	The	conditional
branchinstruction	in	5R	performs	this	termination	test.	The	three	instructions	in	locations	3L.3R.	and	4L	are	the	key	ones	that	implement	(1.8).	The	address-modify
instructions	in8L.	9L.	and	10L	decrement	the	address	parts	of	the	three	instructions	in	3L.-3R.	and

zo Location Instruction	or	data Comment

SECTION	1.2The	Evolution	of 0 999 Constant	(count	N).

Computers 1 1
Constant.

•

2 1000 Constant.

3L AC	:=	M(2000) Load	A(I)	into	AC.

3R AC	:=	AC	+	M(3000) Compute	A(I)	+	B(I).

4L M(4000)	:=	AC Store	sum	C(I).

4R AC	:=	M(0) Load	count	N	into	AC.

5L AC:=AC-M(1) Decrement	count	N	by	one.

5R if	AC	>	0	then	go	to	M(6,	20:39) Test	N	and	branch	to	6R	if	nonnegative.

6L gotoM(6,	0:19) Halt.

6R M(0)	:=	AC Update	count	N.

7L AC	:=	AC	+	Mf	1) Increment	AC	by	one.

7R AC	:=	AC	+	M(2) Modify	address	in	3L.

8L M(3.	8:19):=AC(28:39)

8R AC	:=	AC	+	M(2) Modify	address	in	3R.

9L M(3,	28:39)	:=AC(28:39)

9R AC	:=	AC	+	M(2) Modify	address	in	4L.

10L M(4,	8:19):=AC(28:39)

10R gotoM(3,0:19) Branch	to	3L.

Figure	1.15

An	IAS	program	for	vector	addition.

4L,	respectively.	Thus	the	program	continuously	modifies	itself	during	execution.	Fig-ure	1.15	shows	the	program	before	execution	commences.	At	the	end	of	the	computa-
tion,	the	first	three	instructions	will	have	changed	to	the	following:

3L	AC:=M(1001)

3R	AC:=AC	+	M(2001)

4L	M(3001):=AC

Critique.	In	the	years	that	have	elapsed	since	the	IAS	computer	was	com-pleted,	numerous	improvements	in	computer	design	have	appeared.	Hindsightenables	us	to	point
out	some	of	the	IAS's	shortcomings.

1.	The	program	self-modification	process	illustrated	in	the	preceding	example	fordecrementing	the	index	I	is	inefficient.	In	general,	writing	and	debugging	a	pro-gram
whose	instructions	change	themselves	is	difficult	and	error-prone.	Further,before	every	execution	of	the	program,	the	original	version	must	be	reloadedinto	M.	Later
computers	employ	special	instruction	types	and	registers	for	indexcontrol,	which	eliminates	the	need	for	address-modify	instructions.

2.	The	small	amount	of	storage	space	in	the	CPU	results	in	a	great	deal	of	unpro-ductive	data-transfer	traffic	between	the	CPU	and	main	memory	M;	it	also	addsto
program	length.	Later	computers	have	more	CPU	registers	and	a	specialmemory	called	a	cache	that	acts	as	a	buffer	between	the	CPU	register?	and	M.

3.	No	facilities	were	provided	for	structuring	programs.	For	example,	the	IAS	hasno	procedure	call	or	return	instructions	to	link	different	programs.

4.	The	instruction	set	is	biased	toward	numerical	computation.	Programs	for	non-numerical	tasks	such	as	text	processing	were	difficult	to	write	and	executedslowly.

5.	Input-output	(10)	instructions	were	considered	of	minor	importance—in	fact,they	are	not	mentioned	in	Burks,	Goldstine,	and	von	Neumann	[1946]	beyondnoting	that
they	are	necessary.	IAS	had	two	basic	and	rather	inefficient	10instruction	types	[Estrin	1953].	The	input	instruction	INPUT(X,	N)	transferredN	words	from	an	input	device
to	the	CPU	and	then	to	N	consecutive	main	mem-ory	locations,	starting	at	address	X.	The	OUTPUT(X,	N)	instruction	transferredN	consecutive	words	from	the	memory



region	with	starting	address	X	to	an	out-put	device.
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1.2.3	The	Later	Generations

In	spite	of	their	design	deficiencies	and	the	limitations	on	size	and	speed	imposedby	early	electronic	technology,	the	IAS	and	other	first-generation	computers	intro-duced
many	features	that	are	central	to	later	computers:	the	use	of	a	CPU	with	asmall	set	of	registers,	a	separate	main	memory	for	instruction	and	data	storage,	andan
instruction	set	with	a	limited	range	of	operations	and	addressing	capabilities.Indeed	the	term	von	Neumann	computer	has	become	synonymous	with	a	computerof
conventional	design.

The	second	generation.	Computer	hardware	and	software	evolved	rapidlyafter	the	introduction	of	the	first	commercial	computers	around	1950.	The	vacuumtube	quickly
gave	way	to	the	transistor,	which	was	invented	at	Bell	Laboratories	in1947,	and	a	second	generation	of	computers	based	on	transistors	superseded	thefirst	generation	of
vacuum	tube-based	machines.	Like	a	vacuum	tube,	a	transistorserves	as	a	high-speed	electronic	switch	for	binary	signals,	but	it	is	smaller,cheaper,	sturdier,	and	requires
much	less	power	than	a	vacuum	tube.	Similarprogress	occurred	in	the	field	of	memory	technology,	with	ferrite	cores	becomingthe	dominant	technology	for	main	memories
until	superseded	by	all-transistormemories	in	the	1970s.	Magnetic	disks	became	the	principal	technology	for	sec-ondary	memories,	a	position	that	they	continue	to	hold.

Besides	better	electronic	circuits,	the	second	generation,	which	spans	thedecade	1954-64.	introduced	some	important	changes	in	the	design	of	CPUs	andtheir	instruction
sets.	The	IAS	computer	still	served	as	the	basic	model,	but	moreregisters	were	added	to	the	CPU	to	facilitate	data	and	address	manipulation.	Forexample,	index	registers
were	introduced	to	store	an	index	variable	I	of	the	kindappearing	in	the	statement

C(I):=A(I)	+	B(I)

(1.9)
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Index	registers	make	it	possible	to	have	indexed	instructions,	which	increment	ordecrement	a	designated	index	I	before	(or	after)	they	execute	their	main
operation.Consequently,	repeated	execution	of	an	indexed	operation	like	(1.9)	allows	it	tostep	automatically	through	a	large	array	of	data.	The	index	value	I	is	stored	in
aCPU	register	and	not	in	the	program,	so	the	program	Itself	does	not	change	duringexecution.	Another	innovation	was	the	introduction	of	two	program-
controlinstructions,	now	referred	to	as	call	and	return,	to	facilitate	the	linking	of	pro-grams;	see	also	Example	1.5.

"Scientific"	computers	of	the	second	generation,	such	as	the	IBM	7094	whichappeared	in	1962,	introduced	floating-point	number	formats	and	supportinginstructions	to
facilitate	numerical	processing.	Floating	point	is	a	type	of	scientificnotation	where	a	number	such	as	0.0000000709	is	denoted	by	7.09	X	10"8.	Afloating-point	number
consists	of	a	pair	of	fixed-point	numbers,	a	mantissa	Mand	an	exponent	E,	and	has	the	value	M	X	B~E.	In	the	preceding	example	M	=7.09,	E	=	-8,	and	B	=	10.	In	their
computer	representation	M	and	E	are	encoded	inbinary	and	embedded	in	a	word	of	suitable	size;	the	base	B	is	implicit.	Floating-point	numbers	eliminate	the	need	for
number	scaling;	floating-point	numbers	areautomatically	scaled	as	they	are	processed.	The	hardware	needed	to	implementfloating-point	arithmetic	instructions	directly	is
relatively	expensive.	Conse-quently,	many	computers	(then	and	now)	rely	on	software	subroutines	to	imple-ment	floating-point	operations	via	fixed-point	arithmetic.

Input-output	operations.	Computer	designers	soon	realized	that	IO	operations,that	is,	the	transfer	of	information	to	and	from	peripheral	devices	like	printers
andsecondary	memory,	can	severely	degrade	overall	computer	performance	if	doneinefficiently.	Most	IO	transfers	have	main	memory	as	their	final	source	or	destina-tion
and	involve	the	transfer	of	large	blocks	of	information,	for	instance,	moving	aprogram	from	secondary	to	main	memory	for	execution.	Such	a	transfer	can	takeplace	via	the
CPU,	as	in	the	following	fragment	of	a	hypothetical	IO	program:

Location	Instruction

Comment

LOOP	AC	:=	D(I)

M(I)	:=	ACI:=I+1if	I	<	MAX	go	to	LOOP

Input	word	from	IO	device	D	into	AC.Output	word	from	AC	to	main	memory.Increment	index	I.Test	for	end	of	loop.

Clearly,	the	IO	operation	ties	up	the	CPU	with	a	trivial	data-transfer	task.Moreover,	many	IO	devices	transfer	data	at	low	speeds	compared	to	that	of	theCPU	because	of
their	inherent	reliance	on	electromechanical	rather	than	electronictechnology.	Thus	the	CPU	is	idle	most	of	the	time	when	executing	an	IO	programdirected	at	a	relatively
slow	device	such	as	a	printer.	To	eliminate	this	bottleneck,computers	such	as	the	IBM	7094	introduced	input-output	processors	(IOPs),	orchannels	in	IBM	parlance,	which
are	special-purpose	processing	units	designedexclusively	to	control	IO	operations.	They	do	so	by	executing	IO	programs	(seepreceding	sample),	but	channeling	the	data
through	registers	in	the	IO	processor,rather	than	through	the	CPU.	Hence	IO	data	transfers	can	take	place	independently

of	the	CPU,	permitting	the	CPU	to	execute	user	programs	while	10	operations	aretaking	place.

Programming	languages.	An	important	development	of	the	mid-1950s	wasthe	introduction	of	"high	level"	programming	languages,	which	are	far	easier	touse	than
assembly	languages	because	they	permit	programs	to	be	written	in	a	formmuch	closer	to	a	computer	user's	problem	specification.	A	high-level	language	isintended	to	be
usable	on	many	different	computers.	A	special	program	called	acompiler	translates	a	user	program	from	the	high-level	language	in	which	it	is	writ-ten	into	the	machine
language	of	the	particular	computer	on	which	the	program	isto	be	executed.

The	first	successful	high-level	programming	language	was	FORTRAN	(fromFORmula	TRANslation),	developed	by	an	IBM	group	under	the	direction	of	JohnBackus	from
1954	to	1957.	FORTRAN	permits	the	specification	of	numericalalgorithms	in	a	form	approximating	normal	algebraic	notation.	For	example,	thevector	addition	task	in
Figure	1.16	can	be	expressed	by	the	following	two-line	pro-gram	in	the	original	version	of	FORTRAN:

DO	5	1=1,	1000

5	C(I)	=	A(I)	+	B(I)

FORTRAN	has	continued	to	be	widely	used	for	scientific	programming	and,	likenatural	languages,	it	has	changed	over	the	years.	The	version	of	FORTRAN	knownas
FORTRAN90	introduced	in	1990	replaces	the	preceding	DO	loop	with	the	sin-gle	vector	statement

C(1:1000)	=	A(1:1000)	+	B(1:1000)

(1.10)

High-level	languages	were	also	developed	in	the	1950s	for	business	applica-tions.	These	are	characterized	by	instructions	that	resemble	English	statements	andoperate	on
textual	as	well	as	numerical	data.	One	of	the	earliest	such	languages	wasCommon	Business	Oriented	Language	(COBOL),	which	was	defined	in	1959	by	agroup
representing	computer	users	and	manufacturers	and	sponsored	by	the	U.S.Department	of	Defense.	Like	FORTRAN.	COBOL	has	continued	(in	variousrevised	forms)	to	be
among	the	most	widely	used	programming	languages.	FOR-TRAN	and	COBOL	are	the	forerunners	of	other	important	high-level	languages,including	Basic,	Pascal,	C,	and
Java,	the	latter	dating	from	the	mid-1990s.

EXAMPLE	1.5	A	NONSTANDARD	ARCHITECTURE:	STACK	COMPUTERS.

Although	most	computers	follow	the	von	Neumann	model,	a	few	alternatives	wereexplored	quite	early	in	the	electronic	era.	In	the	stack	organization	illustrated	in	Fig-ure
1.16a	a	stack	memory	replaces	the	accumulator	and	other	CPU	registers	used	fortemporary	data	storage.	A	stack	resembles	the	array	of	contiguous	storage
locationsfound	in	main	memory,	but	it	has	a	very	different	mode	of	access.	Stack	locations	haveno	external	addresses;	all	read	and	write	operations	refer	to	one	end	of	the
stack	calledthe	top	of	the	stack	TOS.	A	push	operation	writes	a	word	into	the	next	unused	locationTOS	+	1	and	causes	this	location	to	become	the	new	TOS.	A	pop
operation	reads	theword	stored	in	the	current	TOS	and	causes	the	location	TOS	-	1	below	TOS	to	becomethe	new	TOS.	Hence	TOS	serves	as	a	dynamic	entry	point	to	the
stack,	which	expandsand	contracts	in	response	to	push	and	pop	operations,	respectively.	The	region	abovethe	stack	(shaded	in	Figure	1.16a)	is	unused,	but	it	is	available
for	future	use.	Among
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(a)	Essentials	of	a	stack	processor;	(b)	stack	states	during	the	execution	ofz	:=	w	+	3	x	(x-y).

the	earliest	stack	computers	was	the	Burroughs	B5000,	first	delivered	in	1963[Siewiorek.	Bell,	and	Newell	1982];	a	recent	example	is	the	Sun	picoJava	micropro-cessor
designed	for	fast	execution	of	compiled	Java	code	[O'Connor	and	Tremblay1997].

In	a	stack	machine	an	instruction's	operands	are	stored	at	the	top	of	the	stack,	sodata-processing	instructions	do	not	need	to	contain	addresses	as	they	do	in	a	conven-

tional,	von	Neumann	computer.	The	add	operation	x	+	y	is	specified	for	a	stackmachine	by	the	following	sequence	of	three	instructions:

PUSH*PUSHyADD

The	first	PUSH	instruction	loads	x	into	TOS.	Execution	of	PUSH	y	causes	x's	locationto	become	TOS	-	1	and	places	y	in	the	new	TOS	immediately	above	x.	To	execute
ADD.the	top	two	words	of	the	stack	are	popped	into	the	ALU	where	they	are	added,	and	thesum	is	pushed	back	into	the	stack.	Hence	in	the	preceding	program	fragment,
ADDcomputes	x	+	y,	which	replaces	x	and	y	at	the	top	of	the	stack.	The	electronic	circuits	thatcarry	out	these	actions	can	be	complicated,	but	they	are	hidden	from	the
programmer.	Akey	component	is	a	register	called	the	stack	pointer	SP	which	stores	the	internal	addressof	TOS,	and	automatically	adjusts	the	TOS	for	every	push	and	pop
operation.	A	pro-gram	counter	PC	keeps	track	of	instruction	addresses	in	the	usual	manner.

A	stack	computer	evaluates	arithmetic	and	other	expressions	using	a	formatknown	as	Polish	notation,	named	after	the	Polish	logician	Jan	Lukasiewicz	(1878-1956).
Instead	of	placing	an	operator	between	its	operands	as	in	x	+	y,	the	operator	isplaced	to	the	right	of	its	operands	as	in	x	y	+.	A	more	complex	expression	such	as	z	:=w	+	3
x	(x	-	y)	becomes



w	3	x	y

x	+	:=

(1-11)

in	Polish	notation,	and	the	expression	is	evaluated	from	left	to	right.	Note	that	Polishnotation	eliminates	the	need	for	parentheses.	The	Polish	expression	(1.11)
leadsdirectly	to	the	eight-instruction	stack	program	shown	in	Figure	1.16a.	The	step-by-stepexecution	of	this	code	fragment	is	illustrated	in	Figure	1.16b.	Here	it	is
assumed	thatw,x,y,z	represent	the	values	of	operands	stored	at	the	memory	addresses	W,X,Y,	and	Z.respectively.

Stack	computers	such	as	the	B5000	employ	a	main	memory	M	to	store	programsand	data	in	much	the	same	way	as	a	conventional	computer.	For	cost	reasons,	the
CPUcontains	only	a	small	stack—a	two-word	stack	in	the	B5000	case—-implemented	byhigh-speed	registers.	However,	the	stack	expands	automatically	into	M	by
treatingsome	main	memory	locations	as	if	they	were	stack	registers	and	coupling	them	withthose	in	the	CPU.	While	stack	processors	can	evaluate	complex	expressions
such	as(1.11)	efficiently,	they	are	generally	slower	than	von	Neumann	machines,	especiallywhen	executing	vector	operations	such	as	(1.10).	Large	stack	computers	were
success-fully	marketed	for	many	years,	notably	by	Burroughs	Corp.	However,	the	stack	con-cept	eventually	became	widely	used	in	only	two	specialized	applications:

Pocket	calculators	sometimes	employ	a	stack	organization	to	take	advantage	of	theconciseness	of	Polish	notation	when	entering	data	and	commands	manually	via
akeypad.

Stacks	are	included	in	most	conventional	computers	to	implement	subroutine	calland	return	instructions.	In	its	basic	form,	a	call-subroutine	instruction	takes	the
formCALL	SUB.	It	first	saves	the	current	contents	of	PC—the	calling	routine's	returnaddress—by	pushing	it	into	a	stack	region	of	M	that	is	under	the	control	of	a
stackpointer	SP.	Then	SUB.	the	start	address	of	the	subroutine	being	called,	is	loadedinto	PC,	and	its	execution	begins.	Control	is	returned	to	the	calling	program	whenthe
subroutine	executes	a	RETURN	instruction,	whose	function	is	to	pop	the	returnaddress	from	the	top	of	the	stack	and	load	it	back	into	PC.

1.

2.

31

CHAPTER	1Computing	andComputers

32

SECTION	1.2The	Evolution	ofComputers

System	management.	In	the	early	days,	all	programs	or	jobs	were	run	sepa-rately,	and	the	computer	had	to	be	halted	and	prepared	manually	for	each	new	pro-gram	to	be
executed.	With	the	improvements	in	10	equipment	and	programmingmethodology	that	came	with	the	second-generation	machines,	it	became	feasible	toprepare	a	batch	of
jobs	in	advance,	store	them	on	magnetic	tape,	and	then	have	thecomputer	process	the	jobs	in	one	continuous	sequence,	placing	the	results	onanother	magnetic	tape.	This
mode	of	system	management	is	termed	batch	process-ing.	Batch	processing	requires	the	use	of	a	supervisory	program	called	a	batchmonitor,	which	is	permanently
resident	in	main	memory.	A	batch	monitor	is	a	rudi-mentary	version	of	an	operating	system,	a	system	program	(as	opposed	to	a	user	orapplication	program)	designed	to
manage	a	computer's	resources	efficiently	andprovide	a	set	of	common	services	to	its	users.

Later	operating	systems	were	designed	to	enable	a	single	CPU	to	process	aset	of	independent	user	programs	concurrently,	a	technique	called	multiprogram-ming.	It
recognizes	that	a	typical	program	alternates	between	program	executionwhen	it	requires	use	of	the	CPU,	and	IO	operations	when	it	requires	use	of	anIOP.
Multiprogramming	is	accomplished	by	the	CPU	temporarily	suspending	exe-cution	of	its	current	program,	beginning	execution	of	a	second	program,	andreturning	to	the
first	program	later.	Whenever	possible,	a	suspended	program	isassigned	an	IOP,	which	performs	any	needed	10	functions.	Consequently,	multi-programming	attempts	to
keep	a	CPU	(usually	viewed	as	the	computer's	mostprecious	resource)	and	any	available	IOPs	busy	by	overlapping	CPU	and	10	oper-ations.	Multiprogrammed	computers
that	process	many	user	programs	concurrentlyand	support	users	at	interactive	terminals	or	workstations	are	sometimes	calledtime-sharing	systems.

The	third	generation.	This	generation	is	traditionally	associated	with	the	intro-duction	of	integrated	circuits	(ICs),	which	first	appeared	commercially	in	1961,	toreplace
the	discrete	electronic	circuits	used	in	second-generation	computers.	Thetransistor	continued	as	the	basic	switching	device,	but	ICs	allowed	large	numbersof	transistors
and	associated	components	to	be	combined	on	a	tiny	piece	of	semi-conductor	material,	usually	silicon.	IC	technology	initiated	a	long-term	trend	incomputer	design	toward
smaller	size,	higher	speed,	and	lower	hardware	cost.

Perhaps	the	most	significant	event	of	the	third-generation	period	(which	beganaround	1965)	was	recognition	of	the	need	to	standardize	computers	in	order	toallow
software	to	be	developed	and	used	more	efficiently.	By	the	mid-1960s	a	fewdozen	manufacturers	of	computers	around	the	world	were	each	producingmachines	that	were
incompatible	with	those	of	other	manufacturers.	The	cost	ofwriting	and	maintaining	programs	for	a	particular	computer—the	software	cost—began	to	exceed	that	of	the
computer's	hardware.	At	the	same	time	many	big	usersof	computers,	such	as	banks	and	insurance	companies,	were	creating	huge	amountsof	application	software	on
which	their	business	operations	were	becoming	verydependent.	Switching	to	a	different	computer	and	making	one's	old	software	obso-lete	was	thus	an	increasingly
unattractive	proposition.

Influenced	by	these	considerations,	IBM	developed	(at	a	cost	of	about	$5	bil-lion)	what	was	to	be	the	most	influential	third-generation	computer,	the	System/360,	which	it
announced	in	1964	and	delivered	the	following	year;	see	Figure	1.17.System/360	was	actually	a	series	of	computers	distinguished	by	model	numbers
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and	intended	to	cover	a	wide	range	of	computing	performance	[Siewiorek,	Bell,and	Newell	1982;	Prasad	1989].	The	various	System/360	models	were	designed	tobe
software	compatible	with	one	another,	meaning	that	all	models	in	the	seriesshared	a	common	instruction	set.	Programs	written	for	one	model	could	be	runwithout
modification	on	any	other;	only	the	execution	time,	memory	usage,	and	thelike	would	change.	Software	compatibility	enabled	computer	owners	to	upgradetheir	systems
without	having	to	rewrite	large	amounts	of	software.	The	System/360models	also	used	a	common	operating	system.	OS/360,	and	the	manufacturer	sup-plied	specialized
software	to	support	such	widely	used	applications	as	transactionprocessing	and	database	management.	In	addition,	the	System/360	models	hadmany	hardware
characteristics	in	common,	including	the	same	interface	for	attach-ing	10	devices.

While	the	System/360	standardized	much	of	IBM's	own	product	line,	it	alsobecame	a	de	facto	standard	for	large	computers,	now	referred	to	as	mainframecomputers,
produced	by	other	manufacturers.	The	long	list	of	makers	of	System/360-compatible	machines	includes	such	companies	as	Amdahl	in	the	I	oiled	Statesand	Hitachi	in
Japan.	The	System/360	series	was	also	remarkably	long-lived.	Itevolved	into	various	newer	mainframe	computer	series	introduced	by	IBM	over	theyears,	all	of	which
maintained	software	compatibility	with	the	original	System/
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360;	for	example,	the	System/370	introduced	in	1970,	the	4300	introduced	in	1979,and	the	System/390	introduced	in	1990.

The	System/360	added	only	modestly	to	the	basic	principles	of	the	von	Neu-mann	computer,	but	it	established	a	number	of	widely	followed	conventions	anddesign	styles.
It	had	about	200	distinct	instruction'types	(opcodes)	with	manyaddressing	modes	and	data	types,	including	fixed-point	and	floating-point	numbersof	various	sizes.	It
replaced	the	small	and	unstructured	set	of	data	registers	(AC,MQ,	etc.)	found	in	earlier	computers	with	a	set	of	16	identical	general-purpose	reg-isters,	all	individually
addressable.	This	is	called	the	general-register	organization.The	System/360	had	separate	arithmetic-logic	units	for	processing	various	datatypes;	the	fixed-point	ALU	was
used	for	address	computations	including	indexing.The	8-bit	unit	byte	was	defined	as	the	smallest	unit	of	information	for	data	trans-mission	and	storage	purposes.	The
System/360	also	made	32	bits	(4	bytes)	themain	CPU	word	size,	so	that	32	bits	and	"word"	have	become	synonymous	in	thecontext	of	large	computers.

The	CPU	had	two	major	control	states:	a	supervisor	state	for	use	by	the	operat-ing	system	and	a	user	state	for	executing	application	programs.	Certain	program-control
instructions	were	"privileged"	in	that	they	could	be	executed	only	when	theCPU	was	in	supervisor	state.	These	and	other	special	control	states	gave	rise	to	theconcept	of	a
program	status	word	(PS	W)	which	was	stored	in	a	special	CPU	regis-ter,	now	generally	referred	to	as	a	status	register	(SR).	The	SR	register	encapsu-lated	the	key
information	used	by	the	CPU	to	record	exceptional	conditions	such	asCPU-detected	errors	(an	instruction	attempting	to	divide	by	zero,	for	example),hardware	faults
detected	by	error-checking	circuits,	and	urgent	service	requests	orinterrupts	generated	by	IO	devices.

Architecture	versus	implementation.	With	the	advent	of	the	third	generation,	adistinction	between	a	computer's	overall	design	and	its	implementation	detailsbecame
apparent.	As	defined	by	System/360's	designers	[Prasad	1989],	the	archi-tecture	of	a	computer	is	its	structure	and	behavior	as	seen	by	a	programmer	work-ing	at	the
assembly-language	level.	The	architecture	includes	the	computer'sinstruction	set,	data	formats,	and	addressing	modes,	as	well	as	the	general	design	ofits	CPU,	main
memory,	and	IO	subsystems.	The	architecture	therefore	defines	aconceptual	model	of	a	computer	at	a	particular	level	of	abstraction.	A	computer'simplementation,	on	the
other	hand,	refers	to	the	logical	and	physical	design	tech-niques	used	to	realize	the	architecture	in	any	specific	instance.	The	term	computerorganization	also	refers	to	the
logical	aspects	of	the	implementation,	but	theboundary	between	the	terms	architecture	and	organization	is	vague.

Hence	we	can	say	that	the	models	of	the	IBM	System/360	series	have	a	com-mon	architecture	but	different	implementations.	These	differences	reflect	the	exist-ence	of
physical	circuit	technologies	with	different	cost/performance	ratios	forconstructing	processing	circuits	and	memories.	To	achieve	instruction-set	compati-bility	across
many	models,	the	System/360	also	used	an	implementation	techniquecalled	microprogramming.	Originally	proposed	in	the	early	1950s	by	Maurice	V.Wilkes	at	Cambridge
University,	microprogramming	allows	a	CPU's	programcontrol	unit	PCU	to	be	designed	in	a	systematic	and	flexible	way	[Wilkes	andStringer	1953].	Low-level	control
sequences	known	as	microprograms	are	placedin	a	special	control	memory	in	the	PCU	so	that	an	instruction	from	the	CPU's	main

instruction	set	is	executed	by	invoking	and	executing	the	corresponding	micropro-gram.	A	CPU	with	no	floating-point	arithmetic	circuits	can	execute	floating-
pointinstructions	(albeit	slowly)	if	microprograms	are	written	to	perform	the	desiredfloating-point	operations	by	means	of	fixed-point	arithmetic	circuits.	Micropro-
gramming	allowed	the	smaller	System/360	models	to	implement	the	full	System/360	instruction	set	with	less	hardware	than	the	larger,	faster	models,	some	of	whichwere
not	microprogrammed.

Other	developments.	The	System/360	was	typical	of	commercial	computersaimed	at	both	business	and	scientific	applications.	Efforts	were	also	directed	byvarious
manufacturers	towards	the	design	of	extremely	powerful	(and	expensive)scientific	computers,	loosely	termed	supercomputers.	Control	Data	Corp.,	forinstance,	produced
a	series	of	commercially	successful	supercomputers	beginningwith	the	CDC	6660	in	1964,	and	continuing	into	the	1980s	with	the	subsequentCYBER	series.	These	early
supercomputers	experimented	with	various	types	ofparallel	processing	to	improve	their	performance.	One	such	technique	called	pipe-lining	involves	overlapping	the
execution	of	instructions	from	the	same	programwithin	a	specially	designed	CPU.	Another	technique,	which	allows	instructionsfrom	different	programs	to	be	executed
simultaneously,	employs	a	computer	withmore	than	one	CPU;	such	a	computer	is	called	a	multiprocessor.

A	contrasting	development	of	this	period	was	the	mass	production	of	small,low-cost	computers	called	minicomputers.	Their	origins	can	be	traced	to	theLINC	(Laboratory
Instrument	Computer)	developed	at	MIT	in	the	early	1960s[Siewiorek,	Bell,	and	Newell	1982].	This	machine	influenced	the	design	of	thePDP	(Programmed	Data
Processor)	series	of	small	computers	introduced	by	Dig-ital	Equipment	Corp.	(Digital)	in	1965,	which	did	much	to	establish	the	mini-computer	market.	Minicomputers	are
characterized	by	short	word	size—CPUword	sizes	of	8	and	16	bits	were	typical—limited	hardware	and	software	facili-ties,	and	small	physical	size.	Most	important,	their
low	cost	made	them	suitablefor	many	new	applications,	such	as	the	industrial	process	control	where	a	com-puter	is	permanently	assigned	to	one	particular	application.
The	Digital	VAXseries	of	minicomputers	introduced	in	1978	brought	general-purpose	computingto	many	small	organizations	that	could	not	afford	the	high	cost	of	a
mainframecomputer.
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1.3

THE	VLSI	ERA

Since	the	1960s	the	dominant	technology	for	manufacturing	computer	logic	andmemory	circuits	has	been	the	integrated	circuit	or	IC.	This	technology	has	evolvedsteadily
from	ICs	containing	just	a	few	transistors	to	those	containing	thousands	ormillions	of	transistors;	the	latter	case	is	termed	very	large-scale	integration	orVLSI.	The	impact



of	VLSI	on	computer	design	and	application	has	been	profound.VLSI	allows	manufacturers	to	fabricate	a	CPU.	main	memory,	or	even	all	the	elec-tronic	circuits	of	a
computer,	on	a	single	IC	that	can	be	mass-produced	at	\ery	lowcost.	This	has	resulted	in	new	classes	of	machines	ranging	from	portable	personalcomputers	to
supercomputers	that	contain	thousands	of	CPUs.
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Figure	1.18

Some	representative	IC	packages:	(a)	32-pin	small-outline	J-lead	(SOJ);	(b)	132-pin	plasticquad	flatpack	(PQFP);	(c)	84-pin	pin-grid	array	(PGA).	[Courtesy	of	Sharp
ElectronicsCorp.]

1.3.1	Integrated	Circuits

The	integrated	circuit	was	invented	in	1959	at	Texas	Instruments	and	FairchildCorporations	[Braun	and	McDonald	1982].	It	quickly	became	the	basic	buildingblock	for
computers	of	the	third	and	subsequent	generations.	(The	designation	ofcomputers	by	generation	largely	fell	into	disuse	after	the	third	generation.)	An	IC	isan	electronic
circuit	composed	mainly	of	transistors	that	is	manufactured	in	a	tiny-rectangle	or	chip	of	semiconductor	material.	The	IC	is	mounted	into	a	protectiveplastic	or	ceramic
package,	which	provides	electrical	connection	points	called	pinsor	leads	that	allow	the	IC	to	be	connected	to	other	ICs,	to	input-output	devices	likea	keypad	or	screen,	or
to	a	power	supply.	Figure	1.18	depicts	several	representativeIC	packages.	Typical	chip	dimensions	are	10	X	10	mm,	while	a	package	like	that	ofFigure	1.18b	is
approximately	30	X	30	X	4	mm.	The	IC	package	is	often	consider-ably	bigger	than	the	chip	it	contains	because	of	the	space	taken	by	the	pins.	ThePGA	package	of	Figure
1.18c	has	an	array	of	pins	(as	many	as	300	or	more)	pro-jecting	from	its	underside.	A	multichip	module	is	a	package	containing	several	ICchips	attached	to	a	substrate
that	provides	mechanical	support,	as	well	as	electricalconnections	between	the	chips.	Packaged	ICs	are	often	mounted	on	a	printed	cir-cuit	board	that	serves	to	support
and	interconnect	the	ICs.	A	contemporary	com-puter	consists	of	a	set	of	ICs,	a	set	of	IO	devices,	and	a	power	supply.	The	numberof	ICs	can	range	from	one	IC	to	several
thousand,	depending	on	the	computer'ssize	and	the	IC	types	it	uses.

IC	density.	An	integrated	circuit	is	roughly	characterized	by	its	density,defined	as	the	number	of	transistors	contained	in	the	chip.	As	manufacturing	tech-niques	improved
over	the	years,	the	size	of	the	transistors	in	an	IC	and	their	inter-connecting	wires	shrank,	eventually	reaching	dimensions	below	a	micron	or	1	pm.(By	comparison,	the
width	of	a	human	hair	is	about	75	ujn.)	Consequently,	IC	den-sities	have	increased	steadily,	while	chip	size	has	varied	very	little.

The	earliest	ICs—the	first	commercial	IC	appeared	in	1961—contained	fewerthan	100	transistors	and	employed	small-scale	integration	or	SSI.	The	termsmedium-scale,
large-scale,	and	very-large-scale	integration	(MSI,	LSI	and	VLSI.
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Evolution	of	the	density	of	commercial	ICs.
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respectively)	are	applied	to	ICs	containing	hundreds,	thousands,	and	millions	oftransistors,	respectively.	The	boundaries	between	these	IC	classes	are	loose,	andVLSI	often
serves	as	a	catchall	term	for	very	dense	circuits.	Because	their	manu-facture	is	highly	automated—it	resembles	a	printing	process—ICs	can	be	manufac-tured	in	high
volume	at	low	cost	per	circuit.	Indeed,	except	for	the	latest	anddensest	circuits,	the	cost	of	an	IC	has	stayed	fairly	constant	over	the	years,	imply-ing	that	newer
generations	of	ICs	deliver	far	greater	value	(measured	by	computingperformance	or	storage	capacity)	per	unit	cost	than	their	predecessors	did.

Figure	1.19	shows	the	evolution	of	IC	density	as	measured	by	two	of	the	dens-est	chip	types:	the	dynamic	random-access	memory	(DRAM),	a	basic	componentof	main
memories,	and	the	single-chip	CPU	or	microprocessor.	Around	1970	itbecame	possible	to	manufacture	all	the	electronic	circuits	for	a	pocket	calculator	ona	single	IC	chip.
This	development	was	quickly	followed	by	single-chip	DRAMsand	microprocessors.	As	Figure	1.19	shows,	the	capacity	of	the	largest	availableDRAM	chip	was	IK	=	210
bits	in	1970	and	has	been	growing	steadily	since	then,reaching	1M	=	220	bits	around	1985.	A	similar	growth	has	occurred	in	the	com-plexity	of	microprocessors.	The	first
microprocessor,	Intel's	4004,	which	wasintroduced	in	1971,	was	designed	to	process	4-bit	words.	The	Japanese	calculatormanufacturer	Busicom	commissioned	the	4004
microprocessor,	but	after	Busi-com's	early	demise,	Intel	successfully	marketed	the	4004	as	a	programmable	con-troller	to	replace	standard,	nonprogrammable	logic



circuits.	As	IC	technologyimproved	and	chip	density	increased,	the	complexity	and	performance	of	one-chipmicroprocessors	increased	steadily,	as	reflected	in	the	increase
in	CPU	word	size	to8	and	then	16	bits	by	the	mid-1980s.	By	1990	manufacturers	could	fabricate	theentire	CPU	of	a	System/360-class	computer,	along	with	part	of	its	main
memory,on	a	single	IC.	The	combination	of	a	CPU,	memory,	and	IO	circuits	in	one	IC	(or	asmall	number	of	ICs)	is	called	a	microcomputer.

SECTION	1.3The	VLSI	Era

IC	families.	Within	IC	technology	several	subtechnologies	exist	that	are	dis-tinguished	by	the	transistor	and	circuit	types	they	employ.	Two	of	the	most	impor-tant	of	these
technologies	are	bipolar	and	unipolar;	the	latter	is	normally	referred	toas	MOS	(metal-oxide-semiconductor)	after	its	physical	structure.	Both	bipolar	andMOS	circuits
have	transistors	as	their	basic	elements!	They	differ,	however,	in	thepolarities	of	the	electric	charges	associated	with	the	primary	carriers	of	electricalsignals	within	their
transistors.	Bipolar	circuits	use	both	negative	carriers	(elec-trons)	and	positive	carriers	(holes).	MOS	circuits,	on	the	other	hand,	use	only	onetype	of	charge	carrier:
positive	in	the	case	of	P-type	MOS	(PMOS)	and	negative	inthe	case	of	N-type	MOS	(NMOS).	Various	bipolar	and	MOS	IC	circuit	types	or	ICfamilies	have	been	developed
that	provide	trade-offs	among	density,	operatingspeed,	power	consumption,	and	manufacturing	cost.	An	MOS	family	that	effi-ciently	combines	PMOS	and	NMOS
transistors	in	the	same	IC	is	complementaryMOS	or	CMOS.	This	technology	came	into	widespread	use	in	the	1980s	and	hasbeen	the	technology	of	choice	for
microprocessors	and	other	VLSI	ICs	since	thenbecause	of	its	combination	of	high	density,	high	speed,	and	very	low	power	con-sumption	[Weste	and	Eshragian	1992].

EXAMPLE	1.6	A	ZERO-DETECTION	CIRCUIT	EMPLOYING	CMOS	TECH-NOLOGY.	To	illustrate	the	role	of	transistors	in	computing,	we	examine	a	smallCMOS	circuit
whose	function	is	to	detect	when	a	4-bit	word	x0xlx2xi	becomes	zero.The	circuit's	output	z	should	be	1	when	x0x]x2xi	=	0000;	it	should	be	0	for	the	other	15combinations
of	input	values.	Zero	detection	is	quite	a	common	operation	in	data	pro-cessing.	For	example,	it	is	used	to	determine	when	a	program	loop	terminates,	as	in	theif
statement	(location	5R)	appearing	in	the	IAS	program	of	Figure	1.15.

Figure	1.20	shows	a	particular	implementation	ZD	of	zero	detection	using	a	repre-sentative	CMOS	subfamily	known	as	static	CMOS.	The	circuit	is	shown	in
standardsymbolic	form	in	Figure	1.20a.	It	consists	of	equal	numbers	of	PMOS	transistorsdenoted	5,:57	and	NMOS	transistors	denoted	SS:SU.	Each	transistor	acts	as	an
on-offswitch	with	three	terminals,	where	the	center	terminal	c	controls	the	switch's	state.When	turned	on,	a	signal	propagation	path	is	created	between	the	transistor's
upper	andlower	terminals;	when	turned	off,	that	path	is	broken.	An	NMOS	transistor	is	turned	onby	applying	1	to	its	control	terminal	c;	it	is	turned	off	by	applying	0	to	c.
A	PMOS	tran-sistor,	on	the	other	hand,	is	turned	on	by	c	-	0	and	turned	off	by	c	=	1.

Each	set	of	input	signals	applied	to	ZD	causes	some	transistors	to	switch	on	andothers	to	switch	off,	which	creates	various	signal	paths	through	the	circuit.	In	Figure1.20
the	constant	signals	0	and	1	are	applied	at	various	points	in	ZD.	(These	signals	arederived	from	ZD's	electrical	power	supply.)	The	0/1	signals	"flow"	through	the
circuitalong	the	paths	created	by	the	transistors	and	determine	various	internal	signal	values,as	well	as	the	value	applied	to	the	main	output	line	z.	Figure	1.20b	shows	the
signalsand	signal	transmission	paths	produced	by	x0xix2x3	-	0001.	The	first	input	signal	x0	=	0is	applied	to	PMOS	transistor	5,	and	NMOS	transistor	5g;	hence	S,	is
turned	on	and	5gis	turned	off.	Similarly,	x,	=	0	turns	S2	on	and	S9	off.	A	path	is	created	through	S,	andS2,	which	applies	1	to	the	internal	line	y,,	as	shown	by	the	left-most
heavy	arrow	in	Fig-ure	1.20b.	In	the	same	way	the	remaining	input	combinations	make	y2	=	0	and	y3	=	1.The	latter	signal	is	applied	to	the	two	right-most	transistors
turning	S7	off	and	514	on,which	creates	a	path	from	the	zero	source	to	the	primary	output	line	via	514,	so	z	=	0	asrequired.

If	we	change	input	x3	from	1	to	0	in	Figure	1.20b,	the	following	chain	of	eventsoccurs:	54	turns	on	and	5,,	turns	off,	changing	y2	to	1.	Then	5I3	turns	on	and	S6	turnsoff,
making	y3	=	0.	Finally,	the	new	value	of	y3	turns	57	on	and	S]4	off,	so	z	becomes	1.

Output

Inputs

PMOS	transistor	NMOS	transistor

(a)

;	=	0

xQ	=	0	xl	=	0	x2	-	0	*3	=	1	Transistor	switched	on	Transistor	switched	off

(b)

Figure	1.20

(a)	CMOS	circuit	ZD	for	zero	detection;	(b)	state	of	ZD	with	input	combination

xQxlx2x}	=	0001	making	z	=	0.

Hence	the	zero	input	combination	x0xlx2x3	=	0000	makes	c	=	1	as	required.	It	canreadily	be	verified	that	no	other	input	combination	does	this.
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A	transistor	circuit	like	that	of	Figure	1.20	models	the	behavior	of	a	digitalcircuit	at	a	low	level	of	abstraction	called	the	switch	level.	Because	many	of	theICs	of	interest
contain	huge	numbers	of	transistors,	it	is	rarely	practical	to	analyzetheir	computing	functions	at	the	switch	level.	Instead,	we	move	to	higher	abstrac-tion	levels,	two	of
which	are	illustrated	in	Figure	1.21.	At	the	gate	or	logicAexe\illustrated	by	Figure	1.21a.	we	represent	certain	common	subcircuits	by	symbolic

40

SECTION	1.3The	VLSI	Era

NOR	gates

NAND	gate

(a)

NOT	gate(inverter)

Zerodetector

00

Figure	1.21

The	zero-detection	circuit	of	Figure	1.20	modeled	at	(a)	the	gate	level	and	(b)	the	regis-ter	level	of	abstraction.



components	called	(logic)	gates.	This	particular	logic	circuit	comprises	four	gatesA,	B,	C,	and	D	of	three	different	types	as	indicated;	note	that	each	gate	type	has	adistinct
graphic	symbol.	In	moving	from	the	switch	level,	we	collapse	a	multi-transistor	circuit	into	a	single	gate	and	discard	all	its	internal	details.	A	key	advan-tage	of	the	logic
level	is	that	it	is	technology	independent,	so	it	can	be	used	equallywell	to	describe	the	behavior	of	any	IC	family.	In	dealing	with	computer	design,we	also	use	an	even
higher	level	of	abstraction	known	as	the	register	or	register-transfer	level.	It	treats	the	entire	zero-detection	circuit	as	a	primitive	or	indivisiblecomponent,	as	in	Figure
1.21b.	The	register	level	is	the	level	at	which	we	describethe	internal	workings	of	a	CPU	or	other	processor	as,	for	example,	in	Figures	1.2and	1.17.	Observe	that	the
primitive	components	(represented	by	boxes)	in	thesediagrams	include	registers,	ALUs,	and	the	like.	When	we	treat	an	entire	CPU,memory,	or	computer	as	a	primitive
component,	we	have	moved	to	the	highestlevel	of	abstraction,	which	is	called	the	processor	or	system	level.

1.3.2	Processor	Architecture

By	1980	computers	were	classified	into	three	main	types:	mainframe	computers,minicomputers,	and	microcomputers.	The	term	mainframe	was	applied	to	the	tradi-tional
"large"	computer	system,	often	containing	thousands	of	ICs	and	costing	mil-lions	of	dollars.	It	typically	served	as	the	central	computing	facility	for	anorganization	such	as
a	university,	a	factory,	or	a	bank.	Mainframes	were	thenroom-sized	machines	placed	in	special	computer	centers	and	not	directly	accessibleto	the	average	user.	The
minicomputer	was	a	smaller	(desk	size)	and	slower	ver-sion	of	the	mainframe,	but	its	relatively	low	cost	(hundreds	of	thousands	of	dollars)made	it	suitable	as	a
"departmental"	computer	to	be	shared	by	a	group	of	users—ina	small	business,	for	example.	The	microcomputer	was	even	smaller,	slower,	andcheaper	(a	few	thousand
dollars),	packing	all	the	electronics	of	a	computer	into	ahandful	of	ICs,	including	microprocessor	(CPU),	memory,	and	IO	chips.

Personal	computers.	Microcomputer	technology	gave	rise	to	a	new	class	ofgeneral-purpose	machines	called	personal	computers	(PCs),	which	are	intended	fora	single
user.	These	small,	inexpensive	computers	are	designed	to	sit	on	an	officedesk	or	fold	into	a	compact	form	to	be	carried.	The	more	powerful	desktop	com-puters	intended
for	scientific	computing	are	referred	to	as	workstations.	A	typical

PC	has	the	von	Neumann	organization,	with	a	microprocessor,	a	multimegabytemain	memory,	and	an	assortment	of	10	devices:	a	keyboard,	a	video	monitor	orscreen,	a
magnetic	or	optical	disk	drive	unit	for	high-capacity	secondary	memory,and	interface	circuits	for	connecting	the	PC	to	printers	and	to	other	computers.	Per-sonal
computers	have	proliferated	to	the	point	that,	in	the	more	developed	societ-ies,	they	are	present	in	most	offices	and	many	homes.	Two	of	the	main	applicationsof	PCs	are
word	processing,	where	personal	computers	have	assumed	and	greatlyexpanded	all	the	functions	of	the	typewriter,	and	data-processing	tasks	like	finan-cial	record
keeping.	They	are	also	used	for	entertainment,	education,	and	increas-ingly,	communication	with	other	computers	via	the	World	Wide	Web.

Personal	computers	were	introduced	in	the	mid-1970s	by	a	small	electronicskit	maker,	MITS	Inc.	[Augarten	1984].	The	MITS	Altair	computer	was	builtaround	the	Intel
8008,	an	early	8-bit	microprocessor,	and	cost	only	$395	in	kitform.	The	most	successful	personal	computer	family	was	the	IBM	PC	series	intro-duced	in	1981.	Following
the	precedent	set	by	earlier	IBM	computers,	it	quicklybecome	the	de	facto	standard	for	this	class	of	machine.	A	new	factor	also	aided	thestandardization	process—namely,
IBM's	decision	to	give	the	PC	what	came	to	becalled	an	open	architecture,	by	making	its	design	specifications	available	to	othermanufacturers	of	computer	hardware	and
software.	As	a	result,	the	IBM	PCbecame	very	popular,	and	many	versions	of	it—the	so-called	PC	clones—wereproduced	by	others,	including	startup	companies	that	made
the	manufacture	oflow-cost	PC	clones	their	main	business.	The	PC's	open	architecture	also	providedan	incentive	for	the	development	of	a	vast	amount	of	application-
specific	softwarefrom	many	sources.	Indeed	a	new	software	industry	emerged	aimed	at	the	mass-production	of	low-cost,	self-contained	programs	aimed	at	specific
applications	ofthe	IBM	PC	and	a	few	other	widely	used	computer	families.

The	IBM	PC	series	is	based	on	Intel	Corp.'s	80X86	family	of	microprocessors,which	began	with	the	8086	microprocessor	introduced	in	1978	and	was	followedby	the	80286
(1983),	the	80386	(1986),	the	80486	(1989),	and	the	Pentium2	(1993)[Albert	and	Avnon	1993];	the	Pentium	II	appeared	in	1997.	The	IBM	PC	series	isalso	distinguished	by
its	use	of	the	MS/DOS	operating	system	and	the	Windowsgraphical	user	interface,	both	developed	by	Microsoft	Corp.	Another	popular	per-sonal	computer	series	is	Apple
Computer's	Macintosh,	introduced	in	1984	andbuilt	around	the	Motorola	680X0	microprocessor	family,	whose	evolution	from	the68000	microprocessor	(1979)	parallels
that	of	the	80X86/Pentium	[Farrell	1984|.In	1994	the	Macintosh	CPU	was	changed	to	a	new	microprocessor	known	as	thePowerPC.

Figure	1.22	shows	the	organization	of	a	typical	personal	computer	from	themid-1990s.	Its	legacy	from	earlier	von	Neumann	computers	is	apparent—compareFigure	1.22
to	Figure	1.17.	At	the	core	of	this	computer	is	a	single-chip	micropro-cessor	such	as	the	Pentium	or	PowerPC.	As	we	will	see,	the	microprocessor's	inter-nal	(micro)
architecture	usually	contains	a	number	of	speedup	features	not	found	inits	predecessors.	A	system	bus	connects	the	microprocessui	to	a	main	memor)based	on
semiconductor	DRAM	technology	and	to	an	IO	subsystem.	A	separate	IObus,	such	as	the	industry	standard	PCI	(peripheral	component	interconnect)	"'local'"
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2A	legal	ruling	that	microprocessor	names	that	are	numbers	cannot	have	trademark	protection,	resulted	in	the80486	being	followed	by	a	microprocessor	called	the
Pentium	rather	than	the	80586.
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A	typical	personal	computer	system.

bus,	connects	directly	to	the	IO	devices	and	their	individual	controllers.	The	IO	busis	linked	to	the	system	bus,	to	which	the	microprocessor	and	memory	are	attachedvia	a
special	bus-to-bus	control	unit	sometimes	referred	to	as	a	bridge.	The	IOdevices	of	a	personal	computer	include	the	traditional	keyboard,	a	CRT-based	orflat-panel	video
monitor,	and	disk	drive	units	for	the	hard	and	flexible	(floppy)	diskstorage	devices	that	constitute	secondary	memory.	More	recent	additions	to	the	IOdevice	repertoire
include	drive	units	for	CD-ROMs	(compact	disc	read-only	mem-ories),	which	have	extremely	high	capacity	and	allow	sound	and	video	images	tobe	stored	and	retrieved
efficiently.	Other	common	audiovisual	IO	devices	in	per-sonal	computers	are	microphones,	loudspeakers,	video	scanners,	and	the	like,which	are	referred	to	as	multimedia
equipment.

Performance	considerations.	As	processor	hardware	became	much	less	expen-sive	in	the	1970s,	thanks	mainly	to	advances	in	VLSI	technology	(Figure	1.19),computer
designers	increased	the	use	of	complex,	multistep	instructions.	Thisreduces	N,	the	total	number	of	instructions	that	must	be	executed	for	a	given	task,since	a	single
complex	instruction	can	replace	several	simpler	ones.	For	example,	amultiply	instruction	can	replace	a	multiinstruction	subroutine	that	implements	mul-tiplication	by
repeated	execution	of	add	instructions.	Reducing	N	in	this	way	tendsto	reduce	overall	program	execution	time	T,	as	well	as	the	time	that	the	CPUspends	fetching
instructions	and	their	operands	from	memory.	The	same	advancesin	VLSI	made	it	possible	to	add	new	features	to	old	microprocessors,	such	as	newinstructions,	data
types,	instruction	sets,	and	addressing	modes,	while	retaining	theability	to	execute	programs	written	for	the	older	machines.

The	Intel	80X86/Pentium	series	illustrates	the	trend	toward	more	complexinstruction	sets.	The	1978-vintage	8086	microprocessor	chip,	which	contained	amere	20,000
transistors,	was	designed	to	process	16-bit	data	words	and	had	noinstructions	for	operating	on	floating-point	numbers	[Morse	et	al.	1978].	Twenty-five	years	later,	its
direct	descendant,	the	Pentium,	contained	over	3	million	transis-tors,	processed	32-bit	and	64-bit	words	directly,	and	executed	a	comprehensive	setof	floating-point
instructions	[Albert	and	Avnon	1993].	The	Pentium	accumulated

most	of	the	architectural	features	of	its	various	predecessors	in	order	to	enable	it	toexecute,	with	little	or	no	modification,	programs	written	for	earlier	80X86-
seriesmachines.	Reflecting	these	characteristics,	the	80X86,	680X0,	and	most	older	com-puter	series	have	been	called	complex	instruction	set	computers	(CISCs).3

By	the	1980s	it	became	apparent	that	complex	instructions	have	certain	disad-vantages	and	that	execution	of	even	a	small	percentage	of	such	instructions	cansometimes
reduce	a	computer's	overall	performance.	To	illustrate	this	condition,suppose	that	a	particular	microprocessor	has	only	fast,	simple	instructions,	each	ofwhich	requires	k
time	units,	to	execute.	Thus	the	microprocessor	can	execute	100instructions	in	100k	time	units.	Now	suppose	that	5	percent	of	the	instructions	areslow,	complex
instructions	requiring	2lk	time	units	each.	To	execute	an	averageset	of	100	instructions	therefore	requires	(5x21+	95)k	=	200k	time	units,	assum-ing	no	other	factors	are
involved.	Consequently,	the	5	percent	of	complex	instruc-tions	can,	as	in	this	particular	example,	double	the	overall	program	execution	time.

Thus	while	complex	instructions	reduce	program	size,	this	technology	does	notnecessarily	translate	into	faster	program	execution.	Moreover,	complex	instructionsrequire
relatively	complex	processing	circuits,	which	tend	to	put	CISCs	in	the	larg-est	and	most	expensive	IC	category.	These	drawbacks	were	first	recognized	by	JohnCocke	and
his	colleagues	at	IBM	in	the	mid-1970s,	who	developed	an	experimentalcomputer	called	801	that	aimed	to	achieve	very	fast	overall	performance	via	astreamlined
instruction	set	that	could	be	executed	extremely	fast	[Cocke	and	Mark-stein	1990].	The	801	and	subsequent	machines	with	a	similar	design	philosophyhave	been	called
reduced	instruction	set	computers	(RISCs).	A	number	of	commer-cially	successful	RISC	microprocessors	were	introduced	in	the	1980s,	including	theIBM	RISC
System/6000	and	SPARC,	an	"open"	microprocessor	developed	by	SunMicrosystems	and	based	on	RISC	research	at	the	University	of	California,	Berkeley[Patterson	1985].
Many	of	the	speedup	features	of	RISC	machines	have	found	theirway	into	other	new	computers,	including	such	CISC	microprocessors	as	the	Pen-tium.	Indeed,	the	term
RISC	is	often	used	to	refer	to	any	computer	with	an	instruc-tion	set	and	an	associated	CPU	organization	designed	for	very	high	performance:the	actual	size	of	the
instruction	set	is	relatively	unimportant.

A	computer's	performance	is	also	strongly	affected	by	other	factors	besidesits	instruction	set,	especially	the	time	required	to	move	instructions	and	databetween	the	CPU
and	main	memory	M	and,	to	a	lesser	extent,	the	time	required	tomove	information	between	M	and	IO	devices.	It	typically	takes	the	CPU	aboutfive	times	longer	to	obtain	a
word	from	M	than	from	one	of	its	internal	registers.This	difference	in	speed	has	existed	since	the	first	electronic	computers,	despitestrenuous	efforts	by	circuit	designers
to	develop	memory	devices	and	processor-memory	interface	circuits	that	are	fast	enough	to	keep	up	with	the	fastest	micro-processors.	Indeed	the	CPU-M	speed	disparity
has	become	such	a	feature	of	stan-dard	(von	Neumann)	computers	that	is	sometimes	referred	to	as	the	von	Neumannbottleneck.	RISC	computers	usually	limit	access	to
main	memory	to	a	few	loadand	store	instructions;	other	instructions,	including	all	data-processing	and	pro-gram-control	instructions,	must	have	their	operands	in	CPU
registers.	This	so-
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3The	public	became	aware	of	CISC	complexity	when	a	design	flaw	affecting	the	floating-point	divisioninstruction	of	the	Pentium	was	discovered	in	1994.	The	cost	to	Intel
of	this	bug.	including	the	replacementcost	of	Pentium	chips	already	installed	in	PCs.	was	about	$475	million.

44	called	load-store	architecture	is	intended	to	reduce	the	impact	of	the	von	Neu-

section	3	mann	bottleneck	by	reducing	the	total	number	of	the	memory	accesses	made	by

The	VLSI	Era

the	CPU.

Performance	measures.	A	rough	indication	of	CPU	speed	is	the	number	of"basic"	operations	that	it	can	perform	per	unit	of	time.	A	typical	basic	operation	isthe	fixed-point
addition	of	the	contents	of	two	registers	Rl	and	R2,	as	in	the	sym-bolic	instruction

Rl	:=R1	+R2

Such	operations	are	timed	by	a	regular	stream	of	signals	(ticks	or	beats)	issued	by	acentral	timing	signal,	the	system	clock.	The	speed	of	the	clock	is	its	frequency
/measured	in	millions	of	ticks	per	second;	the	units	for	this	are	megahertz	(MHz).Each	tick	of	the	clock	triggers	a	basic	operation;	hence	the	time	required	to	executethe
operation	is	1//microseconds	((is).	This	value	is	called	the	clock	cycle	or	clockperiod	Tdock.	For	example,	a	computer	clocked	at	250	MHz	can	perform	one	basicoperation
in	the	clock	period	Tdock	=	1/250	=	0.004	(is.	Complicated	operationssuch	as	division	or	operations	on	floating-point	numbers	can	require	more	than	oneclock	cycle	to
complete	their	execution.

Generally	speaking,	smaller	electronic	devices	operate	faster	than	larger	ones,so	the	increase	in	IC	chip	density	discussed	above	has	been	accompanied	by	asteady,	but
less	dramatic,	increase	in	clock	speed.	For	example,	from	1981	to	1995microprocessor	clock	speeds	increased	from	about	10	MHz	to	100	MHz.	Clockspeeds	of	1	gigahertz
(1	GHz	or	1000	MHz)	and	beyond	are	feasible	using	fasterversions	of	current	CMOS	technology.	It	might	therefore	seem	possible	to	achieveany	desired	processor	speed
simply	by	increasing	the	CPU	clock	frequency.	How-ever,	the	rate	at	which	clock	frequency	is	increasing	due	to	IC	technology	improve-ments	is	relatively	slow	and	may	be
approaching	limits	determined	by	the	speed	oflight,	power	dissipation,	and	similar	physical	considerations.	Extremely	fast	cir-cuits	also	tend	to	be	very	expensive	to
manufacture.

The	CPU's	processing	of	an	instruction	involves	several	steps,	each	of	whichrequires	at	least	one	clock	cycle:

1.	Fetch	the	instruction	from	main	memory	M.

2.	Decode	the	instruction's	opcode.

3.	Load	(read)	from	M	any	operands	needed	unless	they	are	already	in	CPU	regis-ters.

4.	Execute	the	instruction	via	a	register-to-register	operation	using	an	appropriatefunctional	unit	of	the	CPU,	such	as	a	fixed-point	adder.

5.	Store	(write)	the	results	in	M	unless	they	are	to	be	retained	in	CPU	registers.

The	fastest	instructions	have	all	their	operands	in	CPU	registers	and	can	be	exe-cuted	by	the	CPU	in	a	single	clock	cycle,	so	steps	1	to	3	all	take	one	clock	cycle.The
slowest	instructions	require	multiple	memory	accesses	and	multiple	register-to-register	operations	to	complete	their	execution.	Consequently,	measures	ofinstruction
execution	performance	are	based	on	average	figures,	which	are	usuallydetermined	experimentally	by	measuring	the	run	times	of	representative	or	bench-mark	programs.
The	more	representative	the	programs	are,	that	is,	the	more	accu-rately	they	reflect	real	applications,	the	better	the	performance	figures	they	provide.

Suppose	that	execution	of	a	particular	benchmark	program	or	set	(suite)	ofsuch	programs	Q	on	a	given	CPU	takes	T	seconds	and	involves	the	execution	of	atotal	of	N
machine	(object)	instructions.	Here	N	is	the	actual	number	of	instructionsexecuted,	including	repeated	executions	of	the	same	instruction;	it	is	not	the	num-ber	of
instructions	appearing	in	Q.	As	far	as	the	typical	computer	user	is	concerned,the	key	performance	goal	is	to	minimize	the	total	program	execution	time	T.	WhileT	can	be
determined	accurately	only	by	measurement	of	<2's	run	time	in	actual	orsimulated	execution,	we	can	relate	T	to	some	basic	parameters	of	the	computer'sarchitecture	and
implementation.	One	such	parameter	is	the	(average)	number	ofinstructions	executed	per	second,	which	we	denote	by	IPS.	Clearly,	T	=	N/IPS	s.Another	common	measure
of	the	performance	of	a	CPU	is	the	average	number	ofcycles	per	instruction	or	CPI	needed	to	execute	Q.	Now	CPI	=	(/	X	\06)/IPS,where/is	the	CPU's	clock	frequency	in
MHz.	Hence,	the	program	execution	timeT	is	given	by

T	=

NxCPI/xlO6



(1.12)

It	is	also	common	to	measure	CPU	performance	in	terms	of	millions	of	instruc-tions	executed	per	second,	denoted	MIPS,	where	MIPS	=	IPS	X	106.	ClearlyMIPS	=f/CPI.

Equation	(1.12)	indicates	how	the	three	separate	factors	software,	architecture,and	hardware	technology	jointly	determine	a	computer's	performance.

1.	Software:	The	efficiency	with	which	the	programs	are	written	and	compiled	intoobject	code	influences	N,	the	number	of	instructions	executed.	Other	factorsbeing
equal,	reducing	N	tends	to	reduce	the	overall	execution	time	T.

2.	Architecture:	The	efficiency	with	which	individual	instructions	are	processeddirectly	affects	CPI,	the	number	of	cycles	per	instruction	executed.	ReducingCPI	also	tends
to	reduce	T.

3.	Hardware:	The	raw	speed	of	the	processor	circuits	determines/,	the	clock	fre-quency.	Increasing/tends	to	reduce	T.

In	general,	the	complex	instruction	sets	of	CISC	processors	aim	to	reduce	N	at	theexpense	of	CPI,	whereas	RISC	processors	aim	to	reduce	CPI	at	the	expense	of
N.Advances	in	VLSI	technology	affecting	all	types	of	computers	tend	to	increase/

Speedup	techniques.	A	number	of	speed-enhancing	features	have	been	incor-porated	into	the	design	of	computers	in	recent	years	[Hwang	1993];	they	are	sum-marized	in
Figure	1.23.	These	methods	were	defined	as	far	back	as	the	1960s	and1970s	for	use	in	mainframe	computers.	A	cache	is	a	memory	unit	placed	betweenthe	CPU	and	main
memory	M	and	used	to	store	instructions,	data,	or	both.	It	hasmuch	smaller	storage	capacity	than	M,	but	it	can	be	accessed	(read	from	or	writteninto)	more	rapidly	and	is
often	placed	(at	least	partly)	on	the	same	chip	as	the	CPU.The	cache's	effect	is	to	reduce	the	average	time	required	to	access	an	instruction	ordata	word,	typically	to	just	a
single	clock	cycle.	Special	hardware	and	softwaretechniques	support	the	complex	flow	of	information	among	M,	the	cache,	and	theregisters	of	the	CPU.

Another	important	speedup	technique	known	as	pipelining	allows	the	process-ing	of	several	instructions	to	be	partially	overlapped	Pipelining	is	most	easily	done
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The	VLSI	Era	Cache	To	provide	the	CPU	with	faster	A	cache	is	a	memory	unit	inserted	between

memory	access	to	instructions	and	data.	the	CPU	and	main	memory	M.	It	is	faster

than	Mtmt	has	less	storage	capacity.

Pipehned	To	increase	performance	by	allowing	The	CPU	is	constructed	from	independentprocessing	the	processing	of	several	instructions	subunits	(stages),	which	can
hold	several

to	be	partially	overlapped.	instructions	in	different	stages	of	execution.

Superscalar	To	increase	performance	by	allowing	Multiple	(pipelined)	units	are	provided	forprocessing	several	instructions	to	be	processed	instruction	processing.
Instructions	can	bein	parallel	(full	overlapping).	issued	simultaneously	to	each	unit.

Figure	1.23

Some	important	speedup	features	of	modern	computers.

for	a	sequence	of	instructions	of	the	same	or	similar	types	that	employ	a	single	E-unit,	such	as	a	floating-point	processor.	However,	all	the	common	steps	involved
ininstruction	processing	by	the	CPU	can	be	pipelined:	instruction	fetching	(IF),instruction	decoding	(ID),	operand	loading	(OL),	execution	(EX),	and	operandstoring	(OS).	A
pipelined	system	is	often	compared	to	an	assembly	line	on	whichmany	products	are	in	various	stages	of	manufacture	at	the	same	time.	In	a	nonpipe-lined	CPU,
instructions	are	executed	in	strict	sequence,	as	depicted	in	Figure	1.24a.Pipelining	permits	the	situation	shown	in	Figure	1.24/?,	where	each	major	step	of

Instruction	/[	Instruction	A	Instruction	/

^i	r

Instruction	fetch	IF:	|lF,|	|lF:|	|lF?|

Instruction	decode	ID:	[id7|	flDTI	flD^

Operand	load	OL:	|OL,|	|OL:|	|OL3

Execution	EX:	Ex]	|EX,|

Operand	store	OS:	|OS,[

Time	(clock	cycles):	12	3	4	5	6	7	8	9	10	11	12	13	14	15

(a)

Instruction	fetch	IF:	[JfT|[7f~]|1f7]\^I\|	||	IF?	|[1f7||	IF7	||	||	||	|[TF^[rr~]|JF^[JF^]Instruction	decode	ID:[	|[roj]|lD:||lD,	|[idT1|	I["^1	["^1	[">]	1	II	II	1	["^1	["^1HOperand
load	OL:	|	||	|[OL^[5C|\6u\|OL4||	^|qLT|[qL7|[qlT]|	||	||	||OLg|[OL^|Execution	EX:	|	||	||	^[E^[E^|EX;||Exl1[E3q[E^[eq[E)ri|	||	||	|fEX^

Operand	store	OS:	|	|j	[|	\[	[|OS,	|[qS^[p"s311	|[osl][qsT][oS^|	||	||	||	|

Time	(clock	cycles):	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Figure	1.24

Instruction	processing:	(a)	sequential	or	nonpipelined	and	(b)	pipelined.

instruction	processing	is	assigned	to,	and	handled	independently	by,	a	separate	sub-unit	(stage)	of	the	CPU	pipeline.	In	this	example,	up	to	five	instructions	can
beoverlapped,	provided	the	necessary	pipeline	stages	are	available.	Note	that	perfor-mance-reducing	delays	occur,	as	in	the	case	of	instruction	74	(shaded),	which
mustuse	the	EX	stage	for	two	consecutive	cycles.	A	similar	problem	occurs	in	the	caseof	branch	instructions	like	77	in	Figure	1.24b,	where	the	outcome	of	77's	EX
stepmust	be	known	before	the	location	of	the	next	instruction	(78)	to	be	processed	canbe	identified.

A	microprocessor's	effective	MIPS	rate	can	also	be	increased	by	replicatingvarious	instruction-processing	circuits	so	that	several	instructions	can	be	in	thesame
processing	phase	at	the	same	time.	This	makes	it	possible	to	start	the	process-ing	of,	or	issue,	two	or	more	instructions	simultaneously	or	in	parallel;	in	otherwords,	the
instructions	can	be	completely	overlapped.	CPUs	with	this	capability	aresaid	to	be	superscalar.	(Note	that	two	instructions	in	the	same	pipeline	must	beissued	sequentially
rather	than	in	parallel.)	For	example,	if	the	logic	needed	for	theIF,	ID,	OL,	EX,	and	OS	steps	is	duplicated	(with	or	without	pipelining),	then	twoinstructions	can	be	issued
simultaneously.	However,	if	the	instructions	are	not	inde-pendent,	for	example,	if	they	share	the	same	operands	or	one	takes	as	input	a	resultcomputed	by	the	other,	then
delays	not	unlike	those	illustrated	in	Figure	1.247?	canoccur.	Pipelining	and	superscalar	design	are	both	instances	of	instruction-level	par-allelism.	The	logic	circuits
needed	to	deal	with	parallelism	of	this	kind	add	consid-erable	complexity	to	the	CPU's	program	control	and	execution	units.

EXAMPLE	1.7	THE	POWERPC	MICROPROCESSOR	SERIES	[MOTOROLA

19	93].	In	the	early	1990s	Apple,	IBM,	and	Motorola	jointly	developed	the	PowerPC.It	is	a	family	of	single-chip	microprocessors,	including	the	601,	603,	and	other
models,which	share	a	common	architecture	derived	from	the	POWER	architecture	used	inIBM's	RISC	System/6000	[Diefendorf,	Oehler,	and	Hochsprung	1994;	Weiss
andSmith	1994].	Although	it	is	also	designated	a	RISC,	the	PowerPC	has	a	large	numberof	instructions—more	than	200	distinct	types,	in	fact—and	its	design	is	far	from
sim-ple.	Nevertheless,	it	exhibits	the	following	features	that	are	typical	of	contemporaryRISC-style	designs:

1.	Instructions	have	a	fixed	length	(32	bits	or	one	word)	and	employ	just	a	few	opcodeformats	and	addressing	modes.

2.	Only	load	and	store	instructions	can	access	main	memory;	all	other	instructionsmust	have	their	operands	in	CPU	registers.	This	load/store	architecture	reduces	thetime
devoted	to	accessing	memory.	This	time	is	further	reduced	by	the	use	of	one	ormore	levels	of	cache	memory.

3.	Instruction	processing	is	heavily	pipelined.	For	example,	the	PowerPC	has	an	E-unitfor	integer	(fixed-point)	operations	that	has	the	four	pipeline	stages:	fetch,
decode,execute,	and	write	results.	Hence	if	an	E-unit's	pipeline	can	be	kept	full,	a	newresult	emerges	from	it	every	clock	cycle,	thus	achieving	the	ideal	performance
levelof	one	fully	executed	instruction	per	clock	cycle.

4.	The	CPU	contains	several	E-units—the	number	depends	on	the	model—whichallow	it	to	issue	several	instructions	simultaneously	and	puts	the	PowerPC	in



thesuperscalar	category.

The	organization	shown	in	Figure	1.25	is	typical	of	the	early	PowerPC	models,such	as	the	601	and	603,	which	have	three	E-units:	an	integer	execution	unit,	a	float-ing-
point	unit,	and	a	branch	processing	unit,	allowing	up	to	three	instructions	no	be
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Figure	1.25

Overall	organization	of	the	PowerPC.

issued	in	the	same	clock	cycle.	The	integer	unit	executes	all	fixed-point	numerical	andlogic	operations,	including	those	associated	with	load-store	instructions.	Although
partof	the	CPU's	program	control	unit,	the	branch	processing	unit	is	considered	an	E-unitfor	branch	instructions.	Each	PowerPC	chip	also	contains	a	cache	memory,	whose
sizeand	organization	vary	with	the	model.	For	example,	the	PowerPC	603,	which	wasintroduced	in	1995	and	is	aimed	at	low-power	applications	like	laptop	computers,
hasa	16	KB	cache,	half	of	which	stores	data	while	the	other	half	stores	instructions.	A	hintof	the	complexity	of	the	603	can	be	seen	from	Figure	1.26.	It	contains	1.6	million
tran-sistors	in	an	IC	chip	of	area	7.4	x	11.5	mm	(in	its	earliest	versions)	and	consumes	lessthan	3	watts	of	power.

To	illustrate	the	PowerPC's	instruction	set,	consider	the	vector	addition	discussedearlier	and	expressed	by	the	FORTRAN90	statement

C(	1:	1000)	=	A(l:	1000)	+	B(l:	1000)

Assume	that	each	vector	consists	of	1000	double-precision	(64-bit),	floating-pointnumbers.	An	assembly-language	program	for	the	PowerPC	that	carries	out	this
vectoroperation	appears	in	Figure	1.27.	(We	have	slightly	simplified	the	language	syntaxhere.)	The	last	five	instructions	form	the	program's	main	loop	and	are	executed
1000times.	The	key	data-processing	instruction	in	this	loop	has	the	opcode	fadd,	and	per-forms	a	double-precision,	floating-point	addition.	All	fadd's	operands	are	in	64-
bitfloating-point	registers,	of	which	the	PowerPC	has	32,	denoted	fr0:fr31	here.	Theprogram	communicates	with	memory	via	the	instructions	lw	(load	word),	lfdu
(loadfloating-point	double-precision	with	update),	and	stfdu	(store	floating-point	double-precision	with	update);	these	are	just	a	few	of	the	PowerPC's	many	types	of	load-
store
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Figure	1.26

Photomicrograph	of	the	PowerPC	603	micro-processor	chip.	[Courtesy	of	Motorola	Inc.]

instructions.	The	PowerPC	has	32	general-purpose	registers	r0:r31,	several	of	whichserve	as	memory	address	registers	in	our	program.	The	update	option,	indicated	by
theu	suffix	on	lfdu	and	stfdu	invokes	a	kind	of	automatic	indexing,	which	causes	the	con-tents	of	the	memory	address	register	to	be	initially	incremented.	For	example,
theinstruction

lfdu	frl,	l(r5)

invokes	the	following	two	operations:	increment	the	address	register	r5	and	then	loadthe	data	register	frl.	In	other	words

r5	:=	r5	+	1:	frl	:=	mem(r5):

(1.13)

Location	Instruction

Comment

mtspr	CTR,	#1000	Move	vector	length	N	=	1000	to	special	register	CTR.

Load	start	address	of	vector	A	into	general	register	r5.

Load	start	address	of	vector	B	into	general	register	r6.

Load	start	address	of	vector	C	into	general	register	r7.

LOOP	lfdu	frl,	Kr5)	Load	A(i	+	1)	into	floating-point	register	frl:	update	r5.

Load	B(i	+	1)	into	floating-point	register	fr2;	update	r6.Perform	floating-point	addition	frl	:=	frl	+	fr2Store	frl	as	C(i	+	1);	update	r7.Decrement	CTR.	then	branch	to	LOOP
if	CTR	*	0.

lw r5,	#A

lw r6.	#B

lw r7,#C

lfdu frl,	Kr5)

lfdu fr2.	I(r6)

fadd frl,	fr2,	frl

stfdu frl.	I(r7)

bne LOOP

Figure	1.27

A	PowerPC	program	for	vector	addition.
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50	The	memory	data	denoted	by	mem(r5)	in	(1.13)	is	normally	in	the	PowerPC's

cache	memory	which,	at	any	time,	mimics	a	portion	of	the	main	memory	M	that	is	inactive	use.	Thus	if	the	current	memory	address	defined	by	r5	is	assigned	to	the
cache,the	data	required	by	lfdu	is	fetched	from	the	cache,	rather	than	from	M,	where	a	"mas-ter"	copy	of	the	same	data	resides.	Similarly,	the	store	instruction	stfdu
writes	its	datainto	a	cache	location,	although	(eventually)	the	corresponding	data	in	M	must	beupdated.	Should	mem(r7)	not	be	currently	assigned	to	the	cache,	the
PowerPC's	elabo-rate	memory	access	control	automatically	transfers	data	between	M	and	the	cache	toassign	the	relevant	portion	of	the	processor's	address	space	to	the
cache.	The	lastinstruction	bne	(branch	if	not	equal)	appearing	in	Figure	1.27	is	a	powerful	conditionalbranch	instruction.	First	bne	automatically	decrements	the	"special"
register	calledCTR	(counter)	and	tests	it	for	zero.	If	CTR	*	0,	then	the	next	instruction	executed	is	theone	stored	in	location	LOOP.	When	CTR	reaches	zero,	the	vector
addition	terminatesand	the	instruction	following	bne	is	executed.	Observe	that	the	five-instruction	pro-gram	loop	typically	resides	in	the	cache	for	the	duration	of	the
program's	execution.

As	Figure	1.25	indicates,	the	Power	PC	has	three	(more	in	some	models)	separateE-units	for	executing	integer,	floating-point,	and	branch	instructions.	This
superscalardesign	allows	up	to	three	separate	instructions	to	be	dispatched	(issued)	for	executionin	every	clock	cycle.	Moreover,	these	E-units	are	pipelined	to	varying
degrees,	so	thatan	active	E-unit	can	contain	several	consecutive	instructions	in	various	stages	of	execu-tion.	Hence,	for	our	vector	addition	task,	we	would	expect	to	find
the	CPU	concur-rently	executing	several	operations	of	the	form

C(j)	:=	A(j)	+	B(j),	C(j	+	1)	:=	A(j	+	1)	+	B(j	+	1),	C(j	+	2)	:=	A(j	+	2)	+	B(j	+	2),	...

The	concurrency	achieved,	and	therefore	the	execution	time	of	the	program,	depend	onvarious	implementation	details	and	cannot	be	determined	from	inspection	of	the
pro-gram	code	alone.

The	vector	addition	programs	for	the	IAS	(Figure	1.15)	and	the	PowerPC	(Fig-ure	1.27)	reflect	the	evolution	of	computer	architecture	over	a	50-year	period.	Thetwo
programs	are	fundamentally	similar	in	that	each	program	is	designed	to	loop	TVtimes	through	the	three	basic	steps:	load	data	from	M,	add	data	in	CPU	registers,and
store	results	in	M.	The	computers	share	the	same	basic	features	of	the	vonNeumann	architecture.	However,	the	IAS	machine	has	far	fewer	data	types,	amuch	weaker
instruction	set	(especially	in	the	area	of	program	control),	and	essen-tially	no	instruction-level	parallelism.	The	IAS	lacks	floating-point	data	formatsand	instructions,	so	a
much	more	complicated	IAS	program	would	be	required	tohandle	double-precision,	floating-point	numbers	comparable	to	those	assumed	inFigure	1.27.	The	IAS	also	lacks
the	following	features	of	the	PowerPC's	instruc-tion	set:	indexed	addressing	modes;	conditional	branch	instructions	that	can	decre-ment	and	test	a	variable;	and	powerful
arithmetic	instructions	such	as	multiply,divide,	and	multiply-and-add.	Note	also	the	vast	differences	in	physical	size,	per-formance,	and	cost	between	the	IAS	and	PowerPC.

1.3.3	System	Architecture

We	next	review	the	overall	organization	of	contemporary	computer	systems,including	those	formed	by	linking	computers	together	into	large	networks.
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Instructions
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Data
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Figure	1.28

Overview	of	computer	system	operation.
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Basic	organization.	A	stand-alone	computer	system,	which	is	most	commonlyseen	as	a	desktop	machine	(a	PC	or	workstation)	intended	for	a	single	user,	has	thebasic
organization	illustrated	by	Figure	1.28;	see	also	Figure	1.22.	This	organiza-tion	has	changed	little	from	that	found	in	earlier	generations,	despite	the
massiveimprovements	in	implementation	technologies	that	have	occurred	in	recent	years.The	computer's	main	hardware	components	continue	to	be	a	CPU.	a	main
memory,and	an	10	subsystem,	which	communicate	with	one	another	over	a	system	bus.	Itsmain	software	component	is	an	operating	system	that	performs	most	system
man-agement	functions.

The	key	hardware	element	is	a	single-chip	microprocessor,	embodying	a	mod-ern	version	of	the	von	Neumann	architecture.	The	microprocessor	serves	as	the	com-puter's
CPU	and	is	responsible	for	fetching,	decoding,	and	executing	instructions.Data	and	instructions	are	typically	composed	of	32-bit	words,	which	constitute	thebasic
information	units	processed	by	the	computer.	The	CPU	is	characterized	by	aninstruction	set	containing	up	to	200	or	so	instruction	types,	which	perform	datatransfer,	data
processing,	and	program	control	operations	that	have	changed	littleover	the	years.	The	CPU	may	be	augmented	by	on-chip	or	off-chip	coprocessors	thatimplement	such
specialized	functions	as	managing	the	graphical	user	interface(GUI).

The	role	of	the	computer's	main	or	primary	memory	M	is	to	store	programsand	data	as	they	are	being	processed	by	the	CPU.	M	is	a	random-access	memory(RAM)
comprising	a	linear	store	of	items	(usually	8-bit	bytes),	each	of	which	isassigned	a	unique	address	that	permits	the	CPU	to	read	or	change	(write)	its	con-tents	via	load	or
store	instructions,	respectively.	M	is	backed	up	by	a	much	largerbut	slower	secondary	memory,	typically	implemented	by	hard	disks	employing
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magnetic	or	optical	storage	technology	and	forming	part	of	the	10	subsystem.	As	inthe	PowerPC	(Figure	1.25),	an	intermediate	memory	called	a	cache	may	also	beinserted
between	the	CPU	and	M.	Thus	we	find	a	hierarchy	of	memory	devicescomposed	of	the	CPU's	registers,	the	cache,	the	main	memory,	and	the	secondarymemory.	This
complex	structure	results	from	the	/act	that	the	fastest	memorydevices	are	also	the	most	costly.	The	memory	hierarchy	is	intended	to	provide	theCPU	with	fast	access	to
large	amounts	of	data	at	a	fairly	low	cost.

The	purpose	of	the	10	system	is	to	enable	a	user	to	communicate	with	the	com-puter.	10	devices	are	attached	to	the	host	computer	by	means	of	10	ports,	whosefunction	is
to	control	data	transfers	between	10	devices	and	main	memory.	Activeprograms	communicate	with	IO	ports	in	much	the	same	way	as	they	communicatewith	M.	An	IO
device	is	assigned	a	set	of	memory-like	addresses,	which	allowinput	and	output	instructions	to	be	implemented	in	essentially	the	same	way	as	loadand	store	instructions,
respectively.	However,	the	CPU	usually	takes	much	longerto	access	a	word	stored	in	the	10	system	than	to	access	a	word	stored	in	M—most10	operations	are	quite	slow.

The	traditional	input	and	output	devices	are	a	keyboard	and	screen	(providedby	a	CRT	or	a	flat-panel	display),	respectively,	which	are	convenient	for	handlingtextual
information.	Adding	a	pointing	device	like	a	mouse	makes	a	display	screeninto	an	input	device,	permitting	communication	between	the	user	and	the	computervia
graphical	images.	Special	software,	such	as	the	Windows	interface	found	inpersonal	computers,	supports	GUIs.	Audio	interfaces	for	speech	generation	andrecognition
extend	the	computer	into	a	multimedia	system.	A	major	component	ofmost	10	systems	is	a	set	of	secondary	memory	devices	that	provide	bulk	storage	ofprograms	and
data.	Rapid	transfer	of	information	between	primary	and	secondarymemories	is	often	a	key	factor	in	a	system's	overall	performance.

Microcontrollers.	Their	small	size	and	low	cost	have	made	it	feasible	to	useminiature	general-purpose	computers,	referred	to	as	microcontrollers,	for	tasks	thatpreviously
employed	either	special-purpose	control	circuits	or	had	no	control	logicat	all,	for	example,	controlling	a	home	washing	machine	or	the	ignition	system	of	acar.	Programs
stored	in	a	read-only	memory	(ROM)	that	forms	a	part	of	the	mainmemory	tailor	a	microcontroller	to	a	particular	application.	The	microcontroller	isbuilt	into,	or
embedded	in,	the	controlled	device,	often	in	a	way	that	is	invisible	tothe	end	user.	Hence	an	embedded	microcontroller	that	has	been	programmed	tohandle	the
application	in	question	can	replace	application-specific	control	circuits,often	at	substantial	cost	savings.	Furthermore,	by	bringing	the	power	of	a	computerto	bear	on
relatively	mundane	applications,	manufacturers	can	readily	introducemany	new	features	to	improve	flexibility,	performance,	or	ease	of	use.	As	a	result,most	computers	in
operation	today	are	microcontrollers	in	embedded	systems.

Figure	1.29	shows	one	of	the	first	applications	of	a	microcontroller:	a	point-of-sale	(POS)	terminal	that	has	replaced	cash	registers	in	retail	stores.	The	microcon-troller
has	a	conventional	computer	organization	built	around	a	system	bus	towhich	are	attached	a	microprocessor	(the	CPU),	one	or	more	ROM	chips	for	pro-gram	storage,	and
one	or	more	RAM	chips	for	data	and	working	storage.	All	10devices	are	also	connected	to	the	system	bus	using	IO	ports	with	standard	inter-faces.	The	10	devices	in	a
typical	POS	terminal	are	a	keyboard,	a	receipt	printer,	avisual	display,	a	product-code	scanner,	and	a	credit-card	reader.	The	latter	is	used

Centralcomputer

CPU(microprocessor)

H

RAM

E

ROM

Totelephonenetwork

10

port

ik

53

CHAPTER	1

Computing	andComputers

10

port



Systembus

Microcontroller

10

port

n

10

port

10

port

Product-codescanner

Keyboard

10port

Printer

anddisplay

Credit-cardreader

Figure	1.29

A	microcontroller-based	point-of-sale	terminal.

for	credit	authorization	and	requires	a	connection	to	the	telephone	system.	Thefinal	component	is	a	link	to	a	central	computer	used	to	provide	pricing	information,perform
inventory	control,	and	so	forth.

Computer	networks.	The	computer	in	Figure	1.29	is	linked	directly	to	a	centralcomputer	and	indirectly	to	a	potentially	huge	number	of	computers	via	the	tele-phone
network.	The	linking	of	computers	to	form	networks	of	various	types	hasbecome	an	increasingly	important	feature	of	modern	computing;	see	Figure	1.30.	A
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Figure	1.30

A	local-area	computer	network.

54	computer	in	an	office	or	industrial	environment	is	typically	linked	to	other	comput-
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The	vlsi	Era	extension	to	the	system	bus.	The	linked	computers	then	form	a	small,	closed	com-

puter	network	known	as	a	local-area	network	(LAN)	or	intranet.	The	physicallinks	between	the	computers	can	be	built	in	various	ways,	including	electricalcables,	optical
fibers,	and	radio	(wireless)	links.	Special	10	programs	(communica-tion	software)	enable	the	computers	on	the	network	to	exchange	information	andaccess	common
computing	resources	called	servers.

Computer	networks	have	several	advantages	over	the	large,	centralized	(main-frame)	computers	that	they	have	come	to	replace.	The	individual	user	has	directaccess	to	a
computer	(his	or	her	personal	computer)	that	can	quickly	and	conve-niently	handle	many	routine	computing	tasks.	Users	can	also	access	computingfacilities	that	they
need	less	frequently,	for	example	a	high-performance	supercom-puter	or	costly	10	equipment,	via	the	computer	network.	Many	widely	dispersedusers	can	share	such
specialized	equipment	via	the	network,	thus	lowering	its	costto	individual	users.	Furthermore,	a	computer	network	provides	useful	new	servicessuch	as	electronic	mail,
remote	library	services,	and	on-line	shopping.

Several	LANs	can	be	linked	together	by	various	means	including	the	telephonenetworks,	which	increasingly	are	designed	to	accommodate	digital	data	transmis-sion,
including	video	data,	as	well	as	the	traditional	(digitized)	voice	communication.In	Figure	1.30,	one	computer	serves	as	a	gateway	device	that	manages	communica-tion
between	the	LAN	and	other	computer	networks.	A	collection	of	linked	LANsforms	a	large	computer	network	that	can	be	worldwide	in	scope.	In	the	early	1990sa	network
of	this	sort	known	as	the	Internet	emerged,	which	because	of	its	huge	sizeand	global	reach—an	estimated	16	million	server	sites	in	180	countries	with	72	mil-lion	users	in
1997—has	had	a	profound	impact	on	the	way	people	compute	and	com-municate.

The	Internet	had	its	origins	in	a	computer	network	called	the	ARPANET	spon-sored	by	the	Advanced	Research	Projects	Agency	of	the	U.S.	Department	ofDefense	around
1970.	This	experimental	network	was	originally	designed	to	con-nect	research	institutions	in	the	United	States	via	leased	lines;	Figure	1.31	shows	thestructure	of	the
ARPANET	at	an	early	stage	in	its	evolution	(1972)	when	it	linked26	research	organizations	in	the	United	States.	The	ARPANET	pioneered	an	infor-mation-transmission
technique	called	packet	switching,	which	divides	both	longand	short	messages	into	packets	of	fixed	length	that	can	be	transmitted	indepen-dently	from	source	to
destination	via	variable	numbers	of	intermediate	nodes.	Eachnode	contains	a	server	that	is	responsible	for	sorting	the	packets	from	the	variousmessages	and	forwarding
them	to	the	appropriate	next	destinations.	Different	pack-ages	can	be	sent	by	different	routes	determined	by	the	network	traffic	conditions.	Atthe	final	destination,	a
message	is	reassembled	from	its	constituent	packets.	Thecommunication	software	designed	for	the	ARPANET	and	known	as	TCP/IP(Transmission	Control
Protocol/Internet	Protocol)	defines	the	communicationstandards	for	the	Internet.

In	the	early	years	the	Internet	was	used	almost	exclusively	to	transfer	text	filessuch	as	electronic	mail	(e-mail)	messages.	This	situation	changed	fundamentally	in1989
when	scientists	at	CERN	(Centre	Europeen	pour	la	Recherche	Nucleaire)	inGeneva	overlaid	on	TCP/IP	a	new,	high-level	protocol	called	http	{hypertext	trans-port
protocol)	and	an	associated	programming	language	html	{hypertext	markup
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Figure	1.31

The	ARPANET	in	1972.

language)	to	permit	the	linking	of	diverse	file	types—text,	still	pictures,	movies,sound,	etc.—in	an	simple	way.	This	combination	enabled	users	to	create	multime-dia	files
easily	and	transmit	them	rapidly	over	the	Internet.	For	example,	using	html,a	text	file	can	be	tagged	with	commands	that	tell	a	computer	where	to	find	and	insertvisual
images	into	the	text	file;	the	required	image	files	can	be	located	anywhere	onthe	Internet.	The	human	end	user	can	access	the	information	from	a	remote	host	viaa	simple
point-and-click	operation	on	a	PC	or	workstation.	The	result	is	an	enor-mously	rich	collection	of	easily	accessible	data	that	has	come	to	be	known	as	theWorld	Wide	Web.

Parallel	processing.	So-called	supercomputers	capable	of	executing	manyinstructions	in	parallel	have	existed	since	the	1950s.	Early	commercial	supercom-puters	relied
heavily	on	pipeline	processing	and	had	a	single	CPU	organizedaround	one	or	more	multistage	pipelines.	This	organization	allows	several	instruc-tions	to	be	in	process
simultaneously	in	each	pipeline,	resulting	in	a	potentialincrease	in	performance	of	a	factor	of	n	per	«-stage	pipeline.	The	Cray-1	super-computer,	first	marketed	by	Cray
Research	Inc.	in	1976,	contained	12	pipeline	pro-cessors	for	arithmetic-logic	operations,	several	of	which	could	operate	in	parallel[Russell	1978].	The	Cray-1	could
execute	up	to	160	million	operations	such	asfloating-point	addition	per	second.	Computers	of	this	type	have	been	most	success-fully	applied	to	scientific	computations
involving	large	amounts	of	vector	andmatrix	calculations;	consequently	they	are	sometimes	called	vector	processors.The	degree	of	parallelism	n	possible	with	a	pipeline	is
small,	typically	less	than	10.As	the	PowerPC	demonstrates	(Example	1.7),	pipeline	processing	of	instructions	isnow	a	standard	feature	of	microprocessors.	Indeed,	single-
chip	microprocessorsreached	the	Cray-Fs	level	of	performance	in	scientific	computation	in	the	mid-1990s.

56	An	alternative	approach	to	parallel	processing	with	the	potential	of	achieving

unlimited	degrees	of	parallelism	is	to	use	many	independent	processors	operating

Summary	*n	umson-	F°r	example,	a	network	of	computers	can	be	programmed	to	work	con-

currently	on	different	parts	of	the	same	task.	Such	a	loosely	coupled	or	distributedsystem	is	useful	for	computing	tasks	that	can	easily	be	partitioned	into
independentsubtasks,	with	infrequent	communication	of	results	among	the	subtasks.	However,many	large-scale	scientific	computations	permit	a	task	to	be	partitioned	into
sub-tasks	but	require	frequent	and	rapid	exchange	of	results	between	the	subtasks.	Thetime	required	for	such	exchanges—they	are	essentially	slow	10	transfers—
limitsthe	usefulness	of	a	computer	network	as	a	supercomputer.	To	address	the	interpro-cessor	communication	problem,	computers	have	been	built	that	employ	n
separateCPUs	that	are	tightly	coupled,	both	physically	and	logically.	Processors	in	thesemachines	can	access	one	another's	data	rapidly	and	are	called	multiprocessors.
Thetask	of	writing	parallel	programs	and	optimizing	compilers	for	multiprocessors	isfar	less	well	understood	than	the	corresponding	problem	for	a	single	(pipelined
ornonpipelined)	processor.	Nevertheless,	machines	of	this	type	have	been	studied	formany	years,	and	in	the	1980s	powerful	multiprocessors	employing	many	low-
costmicroprocessors	as	their	CPUs	began	to	be	manufactured	commercially,	mainly	asscientific	computers.

Two	types	of	multiprocessors	are	shared-memory	and	distributed-memorymachines.	In	shared-memory	machines	all	the	processors	have	access	to	a	commonmain	memory
through	which	they	communicate	to	share	programs	and	data.	Indistributed-memory	machines	each	processor	has	only	a	private	or	local	mainmemory	and	communicates
with	other	processors	by	sending	them	messagesthrough	an	10	subsystem	linking	the	processors.	In	each	case	a	key	issue	is	todesign	processor-to-memory	or	processor-
to-processor	interconnection	networksthat	are	of	high-speed	and	reasonable	cost.	For	small	multiprocessors	containingup	to	30	or	so	processors,	a	fast	bus	can	serve	as
an	interconnection	network.	Ineffect,	the	basic	organization	of	Figure	1.30	is	used	with	multiple	CPUs	attached	toa	high-speed	system	bus.	To	construct	massively	parallel
multiprocessors,	that	is,computers	with	hundreds	or	thousands	of	CPUs,	various	specialized	interconnec-tion	networks	have	been	developed,	which	we	will	examine	in
Chapter	7.	Mas-sively	parallel	multiprocessors	are	difficult	to	program	and	cannot	runconventional	(uniprocessor)	programs	efficiently.	As	a	result,	these	machines	haveso
far	had	a	limited	impact	on	the	commercial	computer	marketplace.

1.4SUMMARY

Humans	have	struggled	with	difficult	computations	since	ancient	times.	Some	ofthese	problems	are	inherently	unsolvable—they	cannot	be	solved	even	in	principleby	a
Turing	machine,	which	is	a	simple,	abstract,	but	completely	general	digitalcomputer.	Some	theoretically	solvable	problems	are	intractable	in	that	they	cannotbe	solved
within	a	reasonable	amount	of	time	by	practical	computers.	However,given	a	suitable	algorithm	or	solution	method	as	well	as	a	computer	of	sufficientpower,	many
important	problems	can	be	satisfactorily	solved.	Designing	practicalcomputers	that	provide	the	highest	possible	performance	at	acceptable	cost	is	thebasic	job	of	the
computer	architect.

The	design	of	computing	machines	has	evolved	over	a	long	period	of	time.Charles	Babbage	conceived	the	concept	of	a	general-purpose,	program-controlledcomputer	in
the	mid-19th	century.	Such	a	machine	was	not	completed	until	the1940s,	however,	when	the	first	electronic	computers	were	successfully	con-structed.	Since	then,
progress	has	been	dramatic,	mainly	driven	by	advances	incomputer	hardware	technology.

John	von	Neumann	and	others	defined	the	basic	organization	of	the	moderncomputer.	It	comprises	the	following	major	components:	a	CPU	responsible	forfetching	and
executing	instructions;	a	main	memory	used	for	instruction	and	datastorage;	and	a	set	of	input-output	devices,	such	as	user	terminals,	printers,	and	sec-ondary	memory
devices.	Three	main	instruction	types	are	found	in	every	com-puter:	data-transfer,	data-processing,	and	program-control	instructions.	Theinstruction	set	and	the	way	the
instructions	are	processed	define	the	power	of	acomputer.	The	computer	is	typically	programmed	in	a	high-level	language	such	asC++	or	Java,	which	is	automatically
compiled	into	executable	code	(object	pro-grams)	built	from	its	instruction	set.

Integrated	circuit	technology	has	had	a	profound	impact	on	computer	designvia	the	single-chip	microprocessor	and	the	high-capacity	RAM	chip.	IC	technol-ogy	has
enabled	manufacturers	to	build	very	small,	low-cost	computers	for	gen-eral	use	(personal	computers	and	workstations)	as	well	as	for	specialapplications	(embedded
microcontrollers).	IC	technology	has	also	been	the	driv-ing	force	in	the	proliferation	of	large-scale	computer	networks—the	Internet,	forexample—and	high-performance
multiprocessors.

As	the	computer	industry	has	matured,	a	few	computer	series	have	tended	tobecome	de	facto	architectural	standards,	notably	IBM's	System/360	mainframefamily
introduced	in	the	1960s	and	its	PC	personal	computer	family	introducedin	the	1980s.	Recent	computer	families	are	distinguished	by	powerful	RISC-style	instruction	sets
and	such	performance-enhancing	features	as	pipelining,instruction-level	parallelism,	and	cache	memories.	Continuing	advances	in	hard-ware	and	software	technology,
such	as	the	introduction	of	multimedia	comput-ing	and	the	World	Wide	Web,	suggest	that	major	advances	in	computer	designwill	continue	into	the	foreseeable	future.
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1.5PROBLEMS

1.1.	To	what	extent	does	each	of	the	following	items	play	the	role	of	processor	and/or	mem-ory	when	used	in	numerical	computations:	an	abacus;	a	slide	rule;	an	electronic
pocketcalculator?

1.2.	Consider	the	Turing	machine	program	of	Figure	1.4,	which	adds	two	unary	numbers	n,and	n2.	A	unary	zero	is	represented	by	one	or	more	blanks,	which	is	an
undesirable	fea-ture	of	the	unary	system.	Determine	how	the	given	Turing	machine	behaves	(a)	if	n,	=n2	=	0,	that	is,	the	initial	tape	is	entirely	blank;	and	(b)	if/i,	*	0	but
ru	=	0.	In	each	casespecify	the	final	contents	of	the	tape.

1.3.	Design	a	a	Turing	machine	that	subtracts	a	unary	number	n:	(rem	another	unary	num-ber	nx	>	n2.	Assume	that	n„	n2,	and	the	result	n,	-	n:	are	stored	in	the	formats
described

58	in	Example	1.1.	That	is,	the	tape	initially	contains	only	n,	and	n2	separated	by	a	blank,

while	the	final	tape	should	contain	only	n,	-	n2.	Describe	your	machine	by	a	programlisting	with	comments,	following	the	style	used	in	Figure	1.4.

SECTION	1.5Problems

1.4.	Construct	a	Turing	machine	program	Countjup	in	the	style	of	Figure	1.4	that	incre-ments	an	arbitrary	binary	number	by	one.	For	example,	if	the	number	10011
denoting19	is	initially	on	an	otherwise	blank	tape,	Count_up	should	replace	it	with	10100	de-noting	20.	Assume	that	the	read-write	head	starts	and	ends	on	the	blank
square	imme-diately	to	the	left	of	the	number	on	the	tape.	Describe	your	machine	by	a	programlisting	with	comments,	following	the	style	used	in	Figure	1.4.	[Hint:	Fewer
than	20	in-structions	employing	fewer	than	10	states	suffice	for	this	problem.]



1.5.	The	number	of	possible	sequences	of	moves	(distinct	games)	in	chess	has	been	estimat-ed	at	around	10120.	Is	developing	a	surefire	winning	strategy	for	chess
therefore	an	un-solvable	problem?

1.6.	Determine	whether	each	of	the	following	computational	tasks	is	unsolvable.	unde-cidable,	or	intractable.	Explain	your	reasoning,	(a)	Determining	the
minimumamount	of	wire	needed	to	connect	any	set	of	n	points	(wiring	terminals)	that	are	inspecified	but	arbitrary	positions	on	a	rectangular	circuit	board.	Assume	that	at
mosttwo	wires	may	be	attached	to	each	terminal,	(b)	Solving	the	preceding	wiring	prob-lem	when	the	n	points	and	the	wires	that	connect	them	are	constrained	to	lie	on
theperiphery	of	the	board;	that	is,	the	wire	segments	connecting	the	n	points	must	lie	ona	fixed	rectangle.

1.7.	Most	word-processing	computer	programs	contain	a	spelling	checker.	An	obviousbrute-force	method	to	check	the	spelling	of	a	word	Wis	to	search	the	entire	on-line
dic-tionary	from	beginning	to	end	and	compare	W	to	every	entry	in	the	dictionary.	Outlinea	faster	method	to	check	spelling	and	compare	its	time	complexity	to	that	of	the
brute-force	method.

1.8.	Consider	the	four	algorithms	listed	in	Figure	1.7.	With	the	given	data,	calculate	themaximum	problem	size	that	each	algorithm	can	handle	on	a	computer	M'	that	is
10,000times	faster	than	M.	Repeat	the	calculation	for	a	computer	M"	that	is	1,000.000	timesfaster	than	M.

1.9.	The	brute-force	technique	illustrated	by	the	Euler-circuit	algorithm	in	Example	1.2,which	involves	the	enumeration	and	examination	of	all	possible	cases,	is	applicable
tomany	computing	problems.	To	make	the	method	tractable,	problem-specific	tech-niques	are	used	to	reduce	the	number	of	cases	that	need	to	be	considered.	For
example,the	eight-edge	graph	of	Figure	1.6b	can	be	simplified	by	replacing	the	edge-pair	egwith	a	single	edge	because	any	Euler	circuit	that	contains	c	must	also	contain
g,	andvice	versa.	Similarly,	the	pair	dh	can	be	replaced	by	a	single	edge.	The	problem	thenreduces	to	checking	for	an	Euler	circuit	in	a	six-edge	graph.	For	the	same
problem,	sug-gest	another	method	that	can	sometimes	substantially	reduce	the	number	of	cases	thatmust	considered,	illustrating	it	with	a	different	graph	example.

1.10.	Consider	the	heuristic	method	to	solve	the	traveling	salesman	problem	discussed	brief-ly	in	section	1.1.2.	Construct	a	specific	problem	involving	at	most	five	cities,
for	whichthe	total	distance	dhem	traveled	in	the	heuristic	solution	is	not	the	minimum	distancedmin.	Conclude	from	your	example	(or	from	other	considerations)	that	the
heuristic	so-lution	can	be	made	arbitrarily	bad,	that	is,	"worst	case"	problems	can	be	contrived	indmin	can	be	made	arbitrarily	large.

1.11.	Consider	the	computation	of	x2	by	the	method	of	differences	covered	in	Example	1.3.Suppose	we	want	to	determine	x2	forx	=	0.5,	1.0,	1.5,	2.0,	2.5,	3.0,	that	is,	at
intervalsof	0.5.	Explain	how	to	modify	the	method	of	Example	1.3	to	accomplish	this	task.

1.12.	Use	the	method	of	differences	embodied	in	Babbage's	Difference	Engine	to	computex	for	integer	values	of	*	from	1	to	10.

1.13.	Use	the	method	of	differences	to	compute	x5,	for	integer	values	of	x	from	1	to	8.	Whatis	the	smallest	value	of	/	for	which	the	z'th	difference	of	x5	is	a	constant?	What
is	thevalue	of	that	constant?

1.14.	Consider	the	problem	of	computing	a	table	of	the	natural	logarithms	of	the	integersfrom	1	to	200,000	to	19	decimal	places,	a	task	carried	out	manually	in	1795.
Select	anymodern	commercially	available	computer	system	with	which	you	are	familiar	and	es-timate	the	total	time	it	would	require	to	compute	and	print	this	table.
Define	all	the	pa-rameters	used	in	your	estimation.

1.15.	Discuss	the	advantages	and	disadvantages	of	storing	programs	and	data	in	the	samememory	(the	stored	program	concept).	Under	what	circumstances	is	it	desirable
to	storeprograms	and	data	in	separate	memories?

1.16.	Computers	with	separate	program	and	data	memories	implemented	in	RAMs	andROMs,	respectively,	are	sometimes	called	Hanard-class	machines	after	the
HarvardMark	1	computer.	Computers	with	a	single	(RAM)	memory	for	program	and	data	stor-age	are	then	called	Princeton-class	after	the	IAS	computer.	Most	currently
installedcomputers	belong	to	one	of	these	classes.	Which	one?	Explain	why	the	class	you	se-lected	is	the	most	widely	used.

1.17.	Write	a	program	using	the	IAS	computer's	instruction	set	(Figure	1.14)	to	compute	x2by	means	of	the	method	of	finite	differences	described	in	Example	1.3.	For
simplicity,assume	that	the	numbers	being	processed	are	40-bit	integers	and	that	the	only	data-processing	instructions	you	may	use	are	the	IAS's	add	and	subtract
instructions.	Theresultsx2,	(x	+	l)2,	(x	+	2)2,	...,(x	+	k-	l)2,	should	be	stored	in	k	consecutive	memorylocations	with	starting	address	3001.

1.18.	A	vector	of	10	nonnegative	numbers	is	stored	in	consecutive	locations	beginning	in	lo-cation	100	in	the	memory	of	the	IAS	computer.	Using	the	instruction	set	of
Figure	1.14.write	a	program	that	computes	the	address	of	the	largest	number	in	this	array.	If	severallocations	contain	the	largest	number,	specify	the	smallest	address.

1.19.	The	designers	of	the	IAS	decided	not	to	implement	a	square	root	instruction	(ENIAChad	one),	citing	the	fact	that	y	=	xm	can	be	computed	iteratively—and	very
efficiently—via	the	following	formula	known	in	ancient	Babylon:

>'J+\	=(.v,	+	*/y,)/2

Here;	=	1,	2,	3,	...,	and	>•„	is	an	initial	approximation	to	x]f2.	Assuming	that	IAS	pro-cesses	real	(floating-point)	numbers	directly,	construct	a	program	in	the	style	of	Fig-
ure	1.15	to	calculate	the	square	root	of	a	given	positive	number	x	according	to	thisformula.

1.20.	Early	computer	literature	describes	the	IAS	and	other	first-generation	computers	as"parallel."	unlike	some	of	their	predecessors.	In	what	sense	was	the	IAS	a
parallel	com-puter?	What	forms	of	parallelism	do	modern	computers	have	that	are	lacking	in	theIAS?

1.21.	The	IAS	had	no	call	or	return	instructions	designed	for	transferring	control	betweenprograms,	(a)	Describe	how	call	and	return	can	be	programmed	using	the	IAS's
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60	original	instruction	set.	(b)	What	feature	would	you	suggest	adding	to	the	IAS	to

support	call	and	return	operations?SECTION	1.5Problen^	1-22.	Construct	both	a	Polish	expression	and	a	stack	program	of	the	kind	given	in	Figure

1.16a	to	evaluate	the	following	expression:

f:=(4x(a2	+	b	+	c)-d)/(e+fxg)	(1.14)

1.23.	From	the	data	presented	in	Figure	1.19,	estimate	how	long	it	takes,	on	average,	for	thedensity	of	leading-edge	ICs	to	double.	This	doubling	rate,	which	has	remained
remark-ably	constant	over	the	years,	is	referred	to	as	Moore's	law,	after	Gordon	E.	Moore,	acofounder	of	Intel	Corp.,	who	formulated	it	in	the	1960s.

1.24.	Using	the	circuit	of	Figure	1.20	as	an	illustration,	discuss	and	justify	the	followinggeneral	properties	of	CMOS	circuits:	(a)	Power	consumption	is	very	low	and	most
ofit	occurs	when	the	circuit	is	changing	state	(switching),	(b)	The	logic	signals	0	and	1correspond	to	electrical	voltage	levels,	(c)	The	subcircuits	that	constitute	logic
gatesdraw	their	power	directly	from	the	global	power	supply	rather	than	from	the	external(primary)	input	signals:	hence	the	gates	perform	signal	amplification.

1.25.	The	CMOS	zero-detection	circuit	of	Figures	1.20	and	1.21	can	be	implemented	as	asingle	four-input	logic	gate.	Identify	the	gate	in	question	and	redesign	the	circuit
in	themore	compact	single-gate	form.

1.26.	Design	a	CMOS	ones-detection	circuit	in	the	multigate	style	of	Figure	1.20.	It	shouldproduce	the	output	z	=	1	if	and	only	if	x0x]x2x3	-	1111.	Give	both	a	transistor
(switch-level)	circuit	and	a	gate-level	circuit	for	your	design.

1.27.	Discuss	the	impact	of	developments	in	computer	hardware	technology	on	the	evolutionof	each	of	the	following:	(a)	the	logical	complexity	of	the	smallest	replaceable
compo-nents;	(b)	the	operating	speed	of	the	smallest	replaceable	components;	and	(c)	the	for-mats	used	for	data	and	instruction	representation.

1.28.	Define	the	terms	software	compatibility	and	hardware	compatibility.	What	role	havethey	played	in	the	evolution	of	computers?

1.29.	Identify	and	briefly	describe	three	distinct	ways	in	which	parallelism	can	be	introducedinto	the	microarchitecture	of	a	computer	in	order	to	increase	its	overall
instruction	ex-ecution	speed.

1.30.	Compare	and	contrast	the	IAS	and	PowerPC	processors	in	terms	of	the	complexity	ofwriting	assembly-language	programs	for	them.	Use	the	vector	addition
programs	ofFigures	1.15	and	1.27	to	illustrate	your	answer.

1.31.	A	popular	microprocessor	of	the	1970s	was	the	Intel	8085,	a	direct	ancestor	of	the80X86/Pentium	series,	which	has	the	structure	shown	in	Figure	1.32.	The	data
wordsize	in	the	CPU	and	M	is	8	bits,	while	the	address	size	is	16	bits.	Because	the	8085'sIC	package	has	only	40	pins,	the	lines	AD	for	transmitting	addresses	and	data
betweenthe	CPU	and	M	are	shared	(multiplexed)	as	indicated.	AD	is	used	to	attach	IO	devicesas	well	as	M	to	the	8085;	there	is	also	a	separate	serial	(two	line)	IO	port.
The	8085	hasabout	70	different	instruction	types.	Its	most	complex	arithmetic	instructions	are	addi-tion	and	subtraction	of	8-bit	fixed-point	(binary	and	decimal)	numbers.
There	are	six8-bit	registers	designated	B,	C,	D,	E,	H,	and	L,	which,	with	the	accumulator	A,	form	ageneral-purpose	CPU	register	file.	The	register-pairs	BC,	DE,	and	HL
serve	as	16-bitaddress	registers.	A	program	counter	PC	maintains	the	address	of	the	next	instructionbyte	required	from	M	in	the	usual	manner.	The	8085	also	has	stack
pointer	SP	thatpoints	to	the	top	of	a	user-defined	stack	area	in	M.	(a)	What	is	the	maximum	capacity
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Figure	1.32

Structure	of	the	Intel	8085	microprocessor.
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Location

Instruction

Comment

ADDEC:

LOOP:

LXI D,	NUM1

LXI H,	NUM2

MVI C,	16

LDAX D

ADC M

DAA

MOV M,A

DCX D

DCX H

DCR C

JNZ LOOP

+	16	Initialize	address:	DE	:=	NUM1	+	16.+	16	Initialize	address:	HL	:=	NUM2	+	16.

Initialize	count:	C	:=	16.

Load	data:	D	:=	M(DE).

A	:=	A	+	CY	+	M(HL).	Update	CY	flag.

Convert	sum	in	A	to	decimal.

Store	data:	M(HL)	:=	A.

Decrement	address:	DE	:=	DE	-	1.

Decrement	address:	HL	:=	HL	-	1.

Decrement	count:	C	:=	C	-	1.	Update	Z	flag.

Jump	to	LOOP	if	Z	*	1.

Figure	1.33

An	8085	program	to	add	two	32-digit	decimal	integers.

of	the	8085's	main	memory?	(b)	What	is	the	size	of	PC?	(c)	What	is	the	purpose	of	SP?(d)	Identify	three	common	features	of	more	recent	microprocessors	that	the	8085
lacks.

1.32.	Consider	the	Intel	8085	described	in	the	preceding	problem.	A	taste	of	its	software	canbe	found	in	Figure	1.33,	which	lists	a	program	ADDEC	written	in	8085
assembly	lan-guage	that	performs	the	addition	of	two	long	(n	digit)	decimal	numbers	NUM1	andNUM2.	The	numbers	are	added	two	digits	(8	bits)	at	a	time	using	the
instructions	ADC(add	with	carry)	and	DAA	(decimal	adjust	accumulator).	ADC	takes	a	byte	from	Mand,	treating	it	as	an	8-bit	binary	number,	adds	it	and	a	carry	bit	CY	to
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62	the	A	register.	DAA	then	changes	the	binary	sum	in	A	to	binary-coded	decimal	form.

This	calculation	uses	several	flag	bits	of	the	status	register	SR:	the	carry	flag	CY,	whichis	set	to	1	(0)	whenever	the	9th	bit	resulting	from	an	8-bit	addition	is	1	(0);	and	the
zeroflag	Z,	which	is	set	to	1	(0)	when	the	result	of	an	arithmetic	instruction	such	as	add	ordecrement	is	0	(non-0),	(a)	From	the	information	given	here,	determine	the	size
n	ofthe	numbers	being	added	and	the	(symbolic)	location	in	M	where	the	sum	NUM1	+NUM2	is	stored,	(b)	Ignoring	the	size	of	the	8085's	instruction	set,	would	you
classifyit	as	CISC	or	RISC?	Justify	your	answers.

1.33.	The	performance	of	a	100	MHz	microprocessor	P	is	measured	by	executing10,000,000	instructions	of	benchmark	code,	which	is	found	to	take	0.25	s.	What	are
thevalues	of	CPl	and	MIPS	for	this	performance	experiment?	Is	P	likely	to	be	superscalar?

1.34.	Suppose	that	a	single-chip	microprocessor	P	operating	at	a	clock	frequency	of	50	MHzis	replaced	by	a	new	model	P	,	which	has	the	same	architecture	as	P	but	has	a
clockfrequency	of	75	MHz.	(a)	If	P	has	a	performance	rating	of	p	MIPS	for	a	particularbenchmark	program	Q,	what	is	the	corresponding	MIPS	rating	p	for	P	?	(b)	P
takes250	s	to	execute	Q	in	a	particular	personal	computer	system	C.	On	replacing	P	by	P	inC,	the	execution	time	of	Q	drops	only	to	220	s.	Suggest	a	possible	reason	for
this	dis-appointing	performance	improvement.

1.35.	{a)	What	are	the	usual	definitions	of	the	terms	CISC	and	RISC?	Identify	two	key	archi-tectural	features	that	distinguish	recent	RISC	and	CISC	machines,	(b)	When
develop-ing	the	RISC/6000,	the	direct	predecessor	of	the	PowerPC,	IBM	viewed	the	word	RISCto	mean	"reduced	instruction	set	cycles."	Explain	why	this	meaning	might
be	more	ap-propriate	for	the	PowerPC	than	the	usual	one.
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CHAPTER	2

Design	Methodology

This	chapter	views	the	design	process	for	digital	systems	at	three	basic	levels	ofabstraction:	the	gate,	the	register,	and	the	processor	levels.	It	discusses	the	natureof	the
design	process,	examines	design	at	the	register	and	processor	levels	in	detail,and	briefly	introduces	computer-aided	design	(CAD)	and	analysis	methods.

2.1

SYSTEM	DESIGN

A	computer	is	an	example	of	a	system,	which	is	defined	informally	as	a	collec-tion—often	a	large	and	complex	one—of	objects	called	components,	that	are	con-nected	to
form	a	coherent	entity	with	a	specific	function	or	purpose.	The	functionof	the	system	is	determined	by	the	functions	of	its	components	and	how	the	compo-nents	are
connected.	We	are	interested	in	information-processing	systems	whosefunction	is	to	map	a	set	A	of	input	information	items	(a	program	and	its	data,	forexample)	into
output	information	B	(the	results	computed	by	the	program	acting	onthe	data).	The	mapping	can	be	expressed	formally	by	a	mathematical	function/from	A	to	B.	If/maps
element	a	of	A	onto	element	b	of	B,	we	write	b	=	/(a)	or	b	:=f(a).	We	also	restrict	membership	of	A	and	B	to	digital	or	discrete	quantities,	whosevalues	are	defined	only	at
discrete	points	of	time.

2.1.1	System	Representation

A	useful	way	of	modeling	a	system	is	a	graph.	A	(directed)	graph	consists	of	aset	of	objects	V	=	{v,^^,...^,,}	called	nodes	or	vertices	and	a	set	of	edges	Ewhose	members
are	(ordered)	pairs	of	nodes	taken	from	the	set	{(vl,v2),(V!,v3),...,(vn	_,,v„)}of	all	such	pairs.	The	edge	e	=	(v,-,yp	joins	or	connects	nodev,	to	node	v.-.	A	graph	is	often
defined	by	a	diagram	in	which	nodes	are	repre-
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sented	by	circles,	dots,	or	other	symbols	and	edges	are	represented	by	lines:	thisdiagram	is	synonymous	with	the	graph.	The	ordering	implied	by	the	notation(v,,v)	may	be
indicated	in	the	diagram	by	an	arrowhead	pointing	from	v,	to	v	as,for	instance,	in	Figure	2.1.

The	systems	of	interest	comprise	two	classes	of	objects:	a	set	of	information-processing	components	C	and	a	set	of	lines	S	that	carry	information	signalsbetween
components.	In	modeling	the	system	by	a	graph	G,	we	associate	C	withthe	nodes	of	G	and	S	with	the	edges	of	G;	the	resulting	graph	is	often	called	ablock	diagram.	This
name	comes	from	the	fact	that	it	is	convenient	to	draw	eachnode	(component)	as	a	block	or	box	in	which	its	name	and/or	its	function	can	bewritten.	Thus	the	various
diagrams	of	computer	structures	presented	in	Chapter	1—Figure	1.29,	for	instance—are	block	diagrams.	Figure	2.2	shows	a	block	diagramrepresenting	a	small	gate-level
logic	circuit	called	an	EXCLUSIVE-OR	or	modulo-2adder.	This	circuit	has	the	same	general	form	as	the	more	abstract	graph	of	Fig-ure	2.1.
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Structure	versus	behavior.	Two	central	properties	of	any	system	are	its	struc-ture	and	behavior;	these	very	general	concepts	are	often	confused.	We	define	thestructure	of
a	system	as	the	abstract	graph	consisting	of	its	block	diagram	with	nofunctional	information.	Thus	Figure	2.1	shows	the	structure	of	the	small	system	ofFigure	2.2.	A
structural	description	merely	names	components	and	defines	theirinterconnection.	A	behavioral	description,	on	the	other	hand,	enables	one	to	deter-mine	for	any	given
input	signal	a	to	the	system,	the	corresponding	output/(a).	Wedefine	the	function/to	be	the	behavior	of	the	system.	The	behavior/may	be	repre-sented	in	many	different
ways.	Figure	2.3	shows	one	kind	of	behavioral	descriptionfor	the	logic	circuit	of	Figure	2.2.	This	tabulation	of	all	possible	combinations	ofinput-output	values	is	called	a
truth	table.	Another	description	of	the	sameEXCLUSIVE-OR	behavior	can	be	written	in	terms	of	mathematical	equations	asfollows,	noting	that/(a)	=/(x,^c2):

/(0,0)	=	0

/(0,1)=1

/(1,0)	=	1

/(U)	=	0

Figure	2.1

A	graph	with	eight	nodes	and	nine	edges.
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Figure	2.2

A	block	diagram	representing	an	EXCLUSIVE-OR	logic	circuit.

The	structural	and	behavioral	descriptions	embodied	in	Figures	2.1	and	2.3	areindependent:	neither	can	be	derived	from	the	other.	The	block	diagram	of	Figure2.2	serves
as	both	a	structural	and	behavioral	description	for	the	logic	circuit	inquestion,	since	from	it	we	can	derive	Figures	2.1	and	2.3.

In	general,	a	block	diagram	conveys	structure	rather	than	behavior.	For	exam-ple,	some	of	the	block	diagrams	of	computers	in	Chapter	1	identify	blocks	as
beingarithmetic-logic	units	or	memory	circuits.	Such	functional	descriptions	do	notcompletely	describe	the	behavior	of	the	components	in	question;	therefore,	we	can-not
deduce	the	behavior	of	the	system	as	a	whole	from	the	block	diagram.	If	weneed	a	more	precise	description	of	system	behavior,	we	generally	supply	a	separatenarrative
text,	or	a	more	formal	description	such	as	a	truth	table	or	a	list	of	equa-tions.

Hardware	description	languages.	As	we	have	seen,	we	can	fully	describe	asystem's	structure	and	behavior	by	means	of	a	block	diagram—the	term	schematicdiagram	is
also	used—in	which	we	identify	the	functions	of	the	components.	Wecan	convey	the	same	detailed	information	by	means	of	a	hardware	description	lan-guage	(HDL),	a
format	that	resembles	(and	is	usually	derived	from)	a	high-levelprogramming	language	such	as	Ada	or	C.	The	construction	of	such	description	lan-guages	can	be	traced
back	at	least	as	far	as	Babbage	[Morrison	and	Morrison1961].	Babbage's	notation,	of	which	he	was	very	proud,	centered	around	the	use	ofspecial	symbols	such	as	—>	to
represent	the	movement	of	mechanical	components.In	modern	times	Claude	E.	Shannon	[Shannon	1938]	introduced	Boolean	algebra

Input	a Output

x\	x2 fia)

0	0 0



0	1 1

1	0 1

1	1 0

Figure	2.3

Truth	table	for	the	EXCLUSIVE-OR	function.

as	a	concise	and	rigorous	descriptive	method	for	logic	circuits.	Beginning	in	the1950s,	academic	and	industrial	researchers	developed	many	ad	hoc	HDLs.
Theseeventually	evolved	into	a	few	widely	used	languages,	notably	VHDL	and	Verilog,1which	were	standardized	in	the	1980s	and	90s	[Smith	1996;	Thomas	and
Moorby1996].

Hardware	description	languages	such	as	VHDL	have	several	advantages.	Theycan	provide	precise,	technology-independent	descriptions	of	digital	circuits	at	vari-ous
levels	of	abstraction,	primarily	the	gate	and	register	levels.	Consequently,	theyare	widely	used	for	documentation	purposes.	Like	programming	languages,	HDLscan	be
processed	by	computers	and	so	are	suitable	for	use	with	computer-aideddesign	(CAD)	programs	which,	as	discussed	later,	play	an	important	role	in	thedesign	process.	For
example,	an	HDL	description	of	a	processor	P	can	beemployed	to	simulate	the	behavior	of	P	before	all	the	details	of	its	design	havebeen	specified.	On	the	negative	side,
HDL	descriptions	are	often	long	and	verbose;they	lack	the	intuitive	appeal	and	rapid	insights	that	circuit	diagrams	and	less	for-mal	descriptive	methods	provide.
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EXAMPLE	2.1	VHDL	DESCRIPTION	OF	A	HALF	ADDER.	To	illustrate	the	use

of	HDLs,	we	give	in	Figure	2.4a	a	VHDL	description	of	a	simple	logic	componentknown	as	a	half	adder.	Its	purpose	is	to	add	two	1-bit	binary	numbers	x	and	y	to	form	a2-
bit	result	consisting	of	a	sum	bit	sum	and	a	carry	bit	carry.	For	example,	if	x	=	y=	1.the	half	adder	should	produce	carry	=	1,	sum	=	0,	corresponding	to	the	binary
number10,	that	is,	two.

A	VHDL	description	has	two	main	parts:	an	entity	part	and	an	architecture	part.The	entity	part	is	a	formal	statement	of	the	system's	structure	at	the	highest	level,	thatis,
as	a	single	component.	It	describes	the	system's	interface,	which	is	the	"face"	pre-sented	to	external	devices	but	says	nothing	about	the	system's	behavior	or	its
internalstructure.	In	this	example	the	entity	statement	gives	the	half	adder's	formal	namehalf_adder	and	the	names	assigned	to	its	input-output	(IO)	signals;	10	signals
arereferred	to	in	VHDL	by	their	connection	terminals	or	ports.	Inputs	and	outputs	are

entity	half_adder	is

port	(x.y:	in	bit;	sum.	earn-,	out	bit);end	half	judder;

architecture	behavior	of	half_adder	isbegin

sum	<=	x	xor	y;

carry	<=	x	and	v;end	behavior;

(a)

sumhalf_adder

Inputs Outputs

X	v sum	carry

0	0 0	0

0	1 1	0

1	0 1	0

1	1 0	1

(b)

(c)

Figure	2.4

Half	adder:	(a)	behavioral	VHDL	description;	(b)	block	symbol;	and	(c)	truth	table.

'VHDL	was	sponsored	by	the	U.S.	Department	of	Defense.	Its	name	stands	for	VHSIC	hardware	descriptionlanguage,	where	VHSIC	(very	high-speed	integrated	circuits)	is
the	acronym	of	another	Department	ofDefense	research	program.	VHDL	is	based	on	the	programming	language	Ada.	while	Verilog.	whose	originsare	industrial,	is	based
on	the	C	language.	Both	HDLs	are	now	embodied	in	fonrul	standards	sponsored	bythe	Institute	of	Electrical	and	Electronics	Engineers	(IEEE).
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68	distinguished	by	the	keywords	in	and	out,	respectively.	The	size	of	each	10	port,

meaning	the	number	of	signals	associated	with	it,	is	specified	here	as	1	bit	by	the	key-word	bit.	Thus	we	can	conclude	from	the	entity	part	of	Figure	2.4a	that	half_adder

System	esign	nas	tWQ	i_l>it	inputs,	named	x	and	y,	and	two	1-bit	outputs,	named	sum	and	earn-.	Fig-

ure	2.4b	presents	the	same	information	in	graphical	form.lt	is	customary	in	such	dia-grams	to	put	inputs	on	the	left	and	outputs	on	the	right,	eliminating	the	need
forarrowheads	to	indicate	the	direction	of	signal	flow.

The	architecture	part	of	a	VHDL	description	specifies	behavior	and/or	internalstructure.	Figure	2.4a	defines	the	half	adder's	behavior	only;	we	are	assuming	for
themoment	that	it	is	a	primitive	module	or	"black	box,"	whose	internal	structure	is	eithernot	known	or	not	of	interest.	The	functions	of	the	half	adder's	two	outputs	sum
andcarry	are	specified	by	two	Boolean	functions	xor	and	and,	which	are	built	into	VHDL;that	is,	they	are	predefined	functions.	In	VHDL	xor	stands	for	the	EXCLUSIVE-
ORfunction,	which	we	have	encountered	already—it	is	defined	in	Figure	2.3.	The	ANDfunction	denoted	by	and	is	another	basic	logic	function,	which	may	be	defined	as	fol-
lows:	AND(jc,v)	=	1	if	and	only	if	x	=	1	and	y	=	1.	Note	that	VHDL	expresses	AND(jc,v)in	the	equivalent	"infix"	format	x	and	y.	An	alternative	description	of	the	behavior
ofhalf_adder	appears	in	Figure	2.4c	in	the	form	of	a	truth	table.

Figure	2.4a	illustrates	a	few	of	the	many	notational	conventions	of	VHDL,	whichcollectively	make	the	language	quite	complex.	The	symbol	<=	is	called	signal	assign-ment
and	indicates	that	the	value	of	the	expression	on	the	right	of	<=	is	assigned	to	thesignal	on	the	left.	Hence

carry	<=	x	and	y	(2.1)

means	that	the	signal	carry	is	the	AND	function	of	x	and	y.	This	notation	is	equivalentto	writing	carry	=	AND(jc,	v)	in	ordinary	mathematical	notation.	The	other	features
ofFigure	2.4a	such	as	the	use	of	begin-end	to	bracket	related	items	represent	minor	syn-tactical	details	borrowed	from	programming	languages.

VHDL	is	a	rich	language	that	can	say	the	same	thing	in	several	ways.	For	exam-ple,	we	might	replace	(2.1)	by

if	xy	-	'11'	then	carry	<=	1	else	carry	<=	0;



VHDL	can	also	convey	timing	or	performance	information	in	various	ways.	For	exam-ple,	to	indicate	that	it	takes	5	ns	for	the	carry	signal	to	change	in	response	to	a
changein	its	input	signals	x	and	y,	we	can	rewrite	statement	(2.1)	as

carry	<=	x	and	y	after	5	ns;

If	the	half	adder's	internal	structure	is	of	interest,	we	can	specify	it	by	means	of	astructural	architecture	description,	as	shown	in	Figure	2.5a.	The	same	structure
isdefined	by	the	block	diagram	of	Figure	2.5b.	Again	inputs	are	assumed	to	be	on	the	leftand	outputs	on	the	right.	Two	internal	component	types	are	identified	and	are
describedby	VHDL	component	statements	that	have	much	the	same	form	as	entity.	They	namethe	component	types	{xor_circuit	and	nand_gate	in	the	example)	and	specify
the	namesand	types	of	the	components'	10	signals.	Internal	signals	(lines	or	buses)	created	byconnections	between	the	components	are	specified	by	a	signal	statement,	in
this	case	a1-bit	internal	signal	named	alpha.	Finally,	all	the	copies	of	each	component	used	in	thecircuit	are	individually	named	and	their	10	connections	are	specified.	This
is	accom-plished	by	the	part	of	the	architecture	description	in	Figure	2.5a	bracketed	by	begin-end,	which	may	be	thought	of	as	a	(wiring)	network	specification	or	netlist.
There	isone	copy	named	XOR	of	xor_circuix	and	two	copies	of	nand_gate	named	NAND1	andNAND2.	The	second	line	in	this	netlist

NAND1:	nand_gate	port	map	(d	=>	x,	e	=>	>,/=>	alpha);

entity	half_adder	is

port	(x,y:	in	bit;	sum,	carry:	out	bit);end	half_adder;

architecture	structure	of	half_adder	is

component	xor_circuit	port	(a,b:	in	bit;	c:	out	bit);	end	component;

component	nand_gate	port	(d,e:	in	bit;/:	out	bit);	end	component;

signal	alpha:	bit;begin

XOR:	xor_circuit	port	map	(a	=>	x,	b	=>	y,	c	=>	sum);

NAND1:	nand_gate	port	map	(d	=>	*,	e	=>	>',/=>	alpha);

NAND2:	nand_gate	port	map	(d	=>	alpha,	e	=>	alpha./=>	carry);end	structure:

(a)
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xor_circuitXOR	c

nand_gateNAND1	/

half_adder

alpha

c

nand_gateNAND2	/

Figure	2.5

Half	adder:	(a)	structural	VHDL	description;	(b)	block	diagram.

states	that	half_adder	has	a	component	called	NAND1.	which	is	of	type	nand_gate	andhas	its	d,	e,	and/ports	(terminals)	mapped	(connected)	to	the	signals	x,	v,	and
alpha,respectively.

2.1.2	Design	Process

Given	a	system's	structure,	the	task	of	determining	its	function	or	behavior	istermed	analysis.	The	converse	problem	of	determining	a	system	structure	thatexhibits	a
given	behavior	is	design	or	synthesis.

Design	problem.	We	can	now	state	in	broad	terms	the	problem	facing	the	com-puter	designer	or,	indeed,	any	system	designer.

Given	a	desired	range	of	behavior	and	a	set	of	available	components,	determine	astructure	(design)	formed	from	these	components	that	achieves	the	desired	behav-ior
with	acceptable	cost	and	performance.

While	assuring	the	correctness	of	the	new	design's	behavior	is	the	overriding	goalof	the	design	process,	other	typical	requirements	are	to	minimize	cost	as	measured
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by	the	cost	of	manufacture	and	to	maximize	performance	as	measured	by	the	speedof	operation.	There	are	some	other	performance-	and	cost-related	constraints	to	sat-
isfy	such	as	high	reliability,	low	power	consumption,	and	compatibility	with	exist-ing	systems.	These	multiple	objectives	interact	in	poorly	understood	ways	thatdepend	on
the	complexity	and	novelty	of	the	design.

Despite	careful	attention	to	detail	and	the	assistance	of	CAD	tools,	the	initialversions	of	a	new	system	often	fail	to	meet	some	design	objective,	sometimes	insubtle	and
hard-to-detect	ways.	This	failure	can	be	attributed	to	incomplete	specifi-cations	for	the	design	(some	mode	of	behavior	was	overlooked),	errors	made	byhuman	designers
or	their	CAD	tools	(which	are	also	ultimately	due	to	humanerror),	and	unanticipated	interactions	between	structure,	performance,	and	cost.	Forexample,	increasing	a
system's	speed	to	a	desired	level	can	make	the	cost	unac-ceptably	high.

The	complexity	of	computer	systems	is	such	that	the	design	problem	must	bebroken	down	into	smaller,	easier	tasks	involving	various	classes	of	components.These	smaller
problems	can	then	be	solved	independently	by	different	designers	ordesign	teams.	Each	major	design	step	is	often	implemented	via	the	multistep	oriterative	process
depicted	by	a	flowchart	in	Figure	2.6.	An	initial	design	is	created,perhaps	in	ad	hoc	fashion,	by	adapting	an	existing	design	of	a	similar	system.	Theresult	is	then	evaluated
to	see	if	it	meets	the	relevant	design	objectives.	If	not,	thedesign	is	revised	and	the	result	reevaluated.	Many	iterations	through	the	redesignand	evaluation	steps	of	Figure
2.6	may	be	necessary	to	obtain	a	satisfactory	design.

Computer-aided	design.	The	emergence	of	powerful	and	inexpensive	desktopcomputers	with	good	graphics	interfaces	provides	designers	with	a	range	of	pro-grams	to
support	their	design	tasks.	CAD	tools	are	used	to	automate,	at	least	in

(	Begin	J

Construct	aninitial	design

Evaluate	its	costand	performance

Modify	the	designto	meet	the	goals

Figure	2.6

Flowchart	of	an	iterativedesign	process.

part,	the	more	tedious	design	and	evaluation	steps	and	contribute	in	three	importantways	to	the	overall	design	process.



•	CAD	editors	or	translators	convert	design	data	into	forms	such	as	HDL	descrip-tions	or	schematic	diagrams,	which	humans,	computers,	or	both	can	efficientlyprocess.

•	Simulators	create	computer	models	of	a	new	design,	which	can	mimic	thedesign's	behavior	and	help	designers	determine	how	well	the	design	meets	vari-ous
performance	and	cost	goals.

•	Synthesizers	automate	the	design	process	itself	by	deriving	structures	that	imple-ment	all	or	part	of	some	design	step.

Editing	is	the	easiest	of	these	three	tasks,	and	synthesis	the	most	difficult.Some	synthesis	methods	incorporate	exact	or	optimal	algorithms	which,	even	ifeasy	to	program
into	CAD	tools,	often	demand	excessive	amounts	of	computingresources.	Many	synthesis	approaches	are	therefore	based	on	trial-and	error	meth-ods	and	experience	with
earlier	designs.	These	computationally	efficient	but	inex-act	methods	are	called	heuristics	and	form	the	basis	of	most	practical	CA©	t»«ls.

Design	levels.	The	design	of	a	complex	system	such	as	a	computer	is	carriedout	at	several	levels	of	abstraction.	Three	such	levels	are	generally	recognized	incomputer
design,	although	they	are	referred	to	by	various	different	names	in	the	lit-erature:

•	The	processor	level,	also	called	the	architecture,	behavior,	or	system	level.

•	The	register	level,	also	called	the	register-transfer	level	(RTL).

•	The	gate	level,	also	called	the	logic	level.

As	Figure	2.7	indicates	we	are	naming	each	level	for	a	key	component	treated	asprimitive	or	indivisible	at	that	level	of	abstraction.	The	processor	level	correspondsto	a
user's	or	manager's	view	of	a	computer.	The	register	level	is	approximatelythe	level	of	detail	seen	by	a	programmer.	The	gate	level	is	primarily	the	concern	ofthe	hardware
designer.	These	three	design	levels	also	correspond	roughly	to	themajor	subdivisions	of	integrated-circuit	technology	into	VLSI,	MSI,	and	SSI	com-ponents.	The
boundaries	between	the	levels	are	far	from	clear-cut,	and	it	is	com-mon	to	encounter	descriptions	that	mix	components	from	more	than	one	level.

71

CHAPTER	2

Design

Methodology

It Information

Level Components density units Time	units

Gate Logic	gates,	flip-flops. SSI Bits 10-'2to	10"9s

Register Registers,	counters,combinational	circuits,small	sequential	circuits. MSI Words lfr'toio^s

Processor CPUs,	memories,	10	devices. VLSI Blocks	ofwords ur'io	io-'s

Figure	2.7

The	major	computer	design	levels.

72	A	few	basic	component	types	from	each	design	level	are	listed	in	Figure	2.7.

section	2	^e	^°^c	£ates	rec°gnized	as	primitive	at	the	gate	level	include	AND,	OR,

System	Design	NAND,	NOR,	and	NOT	gates.	Consequently,	the	EXCLUSIVE-OR	circuit	of

Figure	2.2	is	an	example	of	a	gate-level	circuit	composed	of	five	gates.	Thecomponent	marked	XOR	in	Figure	2.5b	performs	the	EXCLUSIVE-OR	functionand	so	can	be
thought	of	as	a	more	abstract	or	higher-level	view	of	the	circuitof	Figure	2.2,	in	which	all	internal	structure	has	been	abstracted	away.	Similarly,the	half-adder	block	of
Figure	2Ab	represents	a	higher-level	view	of	the	three-component	circuit	of	Figure	2.5b.	We	consider	a	half	adder	to	be	a	register-levelcomponent.	We	might	regard	the
circuit	of	Figure	2.5b	as	being	at	the	registerlevel	also,	but	because	NAND	is	another	gate	type	and	XOR	is	sometimes	treatedas	a	gate,	this	circuit	can	also	be	viewed	as
gate	level.

Figure	2.7	indicates	some	further	differences	between	the	design	levels.	Theunits	of	information	being	processed	increase	in	complexity	as	one	goes	from	thegate	to	the
processor	level.	At	the	gate	level	individual	bits	(Os	and	Is)	are	pro-cessed.	At	the	register	level	information	is	organized	into	multibit	words	or	vec-tors,	usually	of	a	small
number	of	standard	types.	Such	words	represent	numbers,instructions,	and	the	like.	At	the	processor	level	the	units	of	information	are	blocksof	words,	for	example,	a
program	or	a	data	set.	Another	important	difference	lies	inthe	time	required	for	an	elementary	operation;	successive	levels	can	differ	by	sev-eral	orders	of	magnitude	in
this	parameter.	At	the	gate	level	the	time	required	toswitch	the	output	of	a	gate	between	0	and	1	(the	gate	delay)	serves	as	the	time	unitand	typically	is	a	nanosecond	(ns)
or	less.	A	clock	cycle	of,	say,	10	ns,	is	a	com-monly	used	unit	of	time	at	the	register	level.	The	time	unit	at	the	processor	levelmight	be	a	program's	execution	time,	a
quantity	that	can	vary	widely.

System	hierarchy.	It	is	customary	to	refer	to	a	design	level	as	high	or	low;	themore	complex	the	components,	the	higher	the	level.	In	this	book	we	are	primarilyconcerned
with	the	two	highest	levels	listed	in	Figure	2.7,	the	processor	and	regis-ter	levels,	which	embrace	what	is	generally	regarded	as	computer	architecture.	Theordering	of	the
levels	suggested	by	the	terms	high	and	low	is,	in	fact,	quite	strong.A	component	in	any	level	L,	is	equivalent	to	a	(sub)	system	of	components	takenfrom	the	level	L,	_	,
beneath	it.	This	relationship	is	illustrated	in	Figure	2.8.	For-mally	speaking,	there	is	a	one-to-one	mapping	ht	between	components	in	L,	anddisjoint	subsystems	in	level
L,-.,;a	system	with	levels	of	this	type	is	called	a	hier-archical	system.	Thus	in	Figure	2.8	the	subsystem	composed	of	blocks	1,	3,	and	4in	the	low-level	description	maps
onto	block	A	in	the	high-level	description.	Fig-ures	2Ab	and	2.5b	show	two	hierarchical	descriptions	of	a	half-adder	circuit.

Complex	systems,	both	natural	and	artificial,	tend	to	have	a	well-defined	hier-archical	organization.	A	profound	explanation	of	this	phenomenon	has	been	givenby	Herbert
A.	Simon	[Simon	1962].	The	components	of	a	hierarchical	system	ateach	level	are	self-contained	and	stable	entities.	The	evolution	of	systems	fromsimple	to	complex
organizations	is	greatly	helped	by	the	existence	of	stable	inter-mediate	structures.	Hierarchical	organization	also	has	important	implications	in	thedesign	of	computer
systems.	It	is	perhaps	most	natural	to	proceed	from	higher	tolower	design	levels	because	this	sequence	corresponds	to	a	progression	of	succes-sively	greater	levels	of
detail.	Thus	if	a	complex	system	is	to	be	designed	usingsmall-scale	ICs	or	a	single	IC	composed	of	standard	cells,	the	design	process	mightconsist	of	the	following	three
steps.
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Figure	2.8



Two	descriptions	of	a	hierarchical	system:	(a)	low	level;	(b)	high	level.

1.	Specify	the	processor-level	structure	of	the	system.

2.	Specify	the	register-level	structure	of	each	component	type	identified	in	step	1.

3.	Specify	the	gate-level	structure	of	each	component	type	identified	in	step	2.

This	design	approach	is	termed	top	down;	it	is	extensively	used	in	both	hardwareand	software	design.	If	the	foregoing	system	is	to	be	designed	using	medium-scaleICs	or
standard	cells,	then	the	third	step,	gate-level	design,	is	no	longer	needed.

As	might	be	expected,	the	design	problems	arising	at	each	level	are	quite	dif-ferent.	Only	in	the	case	of	gate-level	design	is	there	a	substantial	theoretical	basis(Boolean
algebra).	The	register	and	processor	levels	are	of	most	interest	in	com-puter	design,	but	unfortunately,	design	at	these	levels	is	largely	an	art	that	dependson	the
designers'	skill	and	experience.	In	the	following	sections	we	examine	designat	the	register	and	processor	levels	in	detail,	beginning	with	the	better-understoodregister
level.	We	assume	that	the	reader	is	familiar	with	binary	numbers	and	withgate-level	design	concepts	[Armstrong	and	Gray	1993;	Hayes	1993;	Hachtel	andSomenzi	1996],
which	we	review	in	the	next	section.
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2.1.3	The	Gate	Level

Gate-level	(logic)	design	is	concerned	with	processing	binary	variables	whose	pos-sible	values	are	restricted	to	the	bits	(binary	digits)	0	and	1.	The	design	componentsare
logic	gates,	which	are	simple,	memoryless	processing	elements,	and	flip-flops,which	are	bit-storage	devices.

Combinational	logic.	A	combinational	film	rum,	also	referred	to	as	a	logic,	or	aBoolean	function,	is	a	mapping	from	the	set	of	2"	input	combinations	of	n	binaryvariables
onto	the	output	values	0	and	1.	Such	a	function	is	denoted	by	r(.v,.	v:
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xn)	or	simply	by	z.	The	function	z	can	be	defined	by	a	truth	table,	which	specifiesfor	every	input	combination	(jc1,	x2,...,	xn)	the	corresponding	value	of	z{xx,	x2,...,xn).
Figure	2.9a	shows	the	truth	table	for	a	pair	of	three-variable	functions,	s0(xq,v'o	c_,)	and	c0(xq,	Vq,	c_,),	which	are	the	sum	and	carry	outputs,	respectively,	of	alogic
circuit	called	a	full	adder.	This	useful	logic	circuit	computes	the	numericalsum	of	its	three	input	bits	using	binary	(base	2)	arithmetic:

c&0	=	xQphisy0plusc_]

(2.2)

For	example,	the	last	row	of	the	truth	table	of	Figure	2.9a	expresses	the	fact	thatthe	sum	of	three	Is	is	CqS0	=	112,	that	is,	the	base-2	representation	of	the	numberthree.
When	discussing	logic	circuits,	we	will	normally	reserve	the	plus	symbol	(+)for	the	logical	OR	operation,	and	write	out	plus	for	numerical	addition.	We	willalso	use	a
subscript	to	identify	the	number	base	when	it	is	not	clear	from	the	con-text;	for	example,	twelve	is	denoted	by	1210	in	decimal	and	by	11002	in	binary.

A	combinational	function	z	can	be	realized	in	many	different	ways	by	combi-national	circuits	built	from	the	standard	gate	types,	which	include	AND,	OR,
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Full	adder:	(a)	truth	table;	(b)	realization	using	half	adders:	(c)	realization	using	AND	andOR	gates;	(d)	realization	using	NAND,	NOR.	and	NOT	gates.

EXCLUSIVE-OR,	NOT	(inverter),	NAND,	and	NOR.	The	functions	performed	byAND,	OR,	EXCLUSIVE-OR,	and	NOT	gates	are	denoted	by	logic	expressions	ofthe	form
x{x2,	xx	+	x2,	xx	©	x2,	and	xx,	respectively,	and	are	defined	as	follows:

AND:	xxx2	=	1	if	and	only	if	Xjand^are	both	1.OR:	jcj	+	x2	=	1	if	and	only	if	xx	or	x2	or	both	are	1.EXCLUSIVE-OR:	x{	©	x2	=	1	if	and	only	if	xx	ovx2	but	not	both	are
1.NOT:	xx	=	1	if	and	only	if	xl	=	0.

The	function	performed	by	a	NOT	gate	is	known	as	inversion.	The	NAND	orNOR	functions	are	obtained	by	inverting	AND	and	OR,	respectively.	NAND	isdenoted	by	xxx2
and	NOR	by	xx	+	x2.	The	preceding	definitions	(except	that	ofNOT)	can	be	extended	to	gates	with	any	number	of	inputs	k,	but	practical	consid-erations	limit	k,	which	is
called	the	gate's	fan-in,	to	a	maximum	value	of	10	or	so.Note	that	the	NOT	gate	or	inverter	can	be	regarded	as	a	one-input	version	ofNAND	or	NOR.

A	set	G	of	gate	types	is	said	to	be	(functionally)	complete	if	any	logic	functioncan	be	realized	by	a	circuit	that	contains	gates	from	G	only.	Examples	of	completesets	of
gates	are	{AND,	OR,	NOT},	{AND,	NOT},	{NAND},	and	{NOR}.NANDs	and	NORs	are	particularly	important	in	logic	design	because	they	are	eas-ily	manufactured	using
most	IC	technologies	and	are	the	only	standard	gate	typesthat	are	functionally	complete	by	themselves.	With	any	complete	set	of	logic	oper-ations,	the	set	of	all	logic
functions	of	up	to	n	variables	forms	a	Boolean	algebra,named	after	George	Boole	(1815-1864),	a	contemporary	of	Babbage's	[Brown1990].	Boolean	algebra	allows	the
function	realized	by	a	combinational	circuit	tobe	described	in	a	form	that	resembles	the	circuit's	structure.	It	is	similar	to	ordinary(numerical)	algebra	in	many	respects,
and	both	numerical	and	Boolean	algebra	areembedded	in	the	syntax	of	a	typical	HDL.

Figure	2.9b	shows	a	possible	gate-level	realization	of	a	full	adder	that	employstwo	copies	of	the	half	adder	defined	in	Figures	2.4	and	2.5	along	with	a	single	ORgate.	Here
we	use	standard,	distinctively	shaped	symbols	for	the	various	gate	typesinstead	of	the	generic	box	symbols	of	Figure	2.5b.	Observe	that	the	two	NANDs	ineach	half	adder,
one	of	which	is	used	as	an	inverter,	can	be	replaced	by	a	single,functionally	equivalent	AND	gate.	This	equivalence	is	seen	from	the	fact	that	theinversions	associated	with
the	two	NANDs	cancel;	in	algebraic	terms,	ab	=	ab.

Two	alternative	gate-level	designs	for	the	full	adder	appear	in	Figures	2.9cand	2.9d.	The	AND-OR	circuit	of	Figure	2.9c	is	defined	by	the	logic	(Boolean)equations

(2.3)

(24)

so	=	-*o>'oc-i	+	Vo^'-i	+	*o>'oc-i	+	*o?oC-ic0	=	(*0	+	c_{)(xQ	+	y0)(\'()	+	c_i)

whose	structure	also	corresponds	closely	to	that	of	the	circuit.	By	analogy	withordinary	algebra,	(2.3)	and	(2.4)	are	referred	to	as	sum-of-prochuts	(SOP)	andproduct-of-
sums	(POS)	expressions,	respectively.	The	circuit	of	Figure	2.9c	iscalled	a	two-level	or	depth-two	logic	circuit	because	there	are	only	two	gates,	oneAND	and	one	OR,
along	each	path	from	this	adder's	external	or	primary	inputs	v,,.y0,	c_,	to	its	primary	outputs	,v0.	c(),	assuming	each	primary	input	variable	is	avail-able	in	both	true	and
inverted	(complemented)	form.	The	number	of	logic	levels	isdefined	by	the	number	of	gates	along	the	circuit's	longest	10	path.	Because	each
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76	gate	imposes	some	delay	(typically	1	ns	or	so)	on	every	signal	that	propagates

through	it,	the	fewer	the	logic	levels,	the	faster	the	circuit.

s	D	The	half-adder-based	circuit	of	Figure	2.9b	has	10	paths	containing	up	to	four

gates	and	so	is	considered	to	have	four	levels	of	logic.	If	all	gates	have	the	samepropagation	delay,	then	the	two-level	adder	(Figure	2.9c)	is	twice	as	fast	as	thefour-level
design	(Figure	2.9b).	However,	the	two-level	adder	has	more	gates	andso	has	a	higher	hardware	cost.	A	basic	task	in	logic	design	is	to	synthesize	a	gate-level	circuit
realization	of	a	given	set	of	combinational	functions	that	achieves	asatisfactory	balance	between	hardware	cost	as	measured	by	the	number	of	gates,and	operating	speed
as	measured	by	the	number	of	logic	levels	used.	Often	thetypes	of	gates	that	may	be	used	are	restricted	by	IC	technology	considerations,	forexample,	to	NAND	gates	with
five	or	fewer	inputs	per	gate.	The	design	of	Figure2.9d,	which	has	essentially	the	same	structure	as	that	of	Figure	2.9c,	uses	NANDand	NOR	gates	instead	of	ANDs	and
ORs.	In	this	particular	case	the	primaryinputs	are	provided	in	true	(noninverted)	form	jc0,	y0,	c_,	only;	hence	inverters	areintroduced	to	generate	the	inverted	inputs	x0,
y0,	c_x.

Computer-aided	synthesis	tools	are	available	to	design	circuits	like	those	ofFigure	2.9	automatically.	The	input	to	such	a	logic	synthesizer	is	a	specification	ofthe	desired



function,	such	as	a	truth	table	like	Figure	2.9a,	or	a	set	of	logic	equa-tions	like	(2.3)	or	(2.4);	these	are	often	embedded	in	a	behavioral	HDL	description.Also	given	to	the
synthesizer	are	such	design	constraints	as	the	gate	types	to	useand	restrictions	on	the	circuit's	interconnection	structure.	One	such	restriction	is	anupper	bound	on	the
number	of	inputs	(fan-in)	of	a	gate	G.	Another	is	an	upperbound	on	the	number	of	inputs	of	other	gates	to	which	G's	output	line	may	con-nect;	this	is	called	the	(maximum)
fan-out	of	G.	The	output	of	the	synthesizer	is	astructural	description	of	a	logic	circuit	that	implements	the	desired	function	andmeets	the	specified	constraints	as	closely	as
possible.

Exact	methods	for	designing	two-level	circuits	like	that	of	Figure	2.9c	(or	Fig-ure	2.9<i	with	its	inverters	removed)	using	the	minimum	number	of	gates	have	longbeen
known.	They	are	computationally	complex,	however—gate	minimizationfalls	into	the	class	of	intractable	problems	discussed	in	section	1.1.2—so	they	areonly	practical	for
designing	small	circuits.	However,	practical	heuristic	methodsfor	synthesizing	two-level	and	multilevel	logic	circuits	that	are	often	nearly	opti-mal	are	known	and
implemented	in	CAD	programs	(see	Example	2.2).	Once	agood	design	of	a	useful	function	is	known,	it	can	be	placed	in	a	library	for	futureuse.	A	full	adder,	for	instance,
can	be	used	to	build	a	multibit,	multilevel	adder,	asshown	in	Figure	2.10a.2	This	circuit	adds	two	4-bit	numbers	X	=	(x-i,x2,xx,xQ)	andY	=	(>'3,>,2'>'i'>'o)	and	computes
their	sum	S	=	(s3,s2,S\,s0y,	it	also	accepts	an	inputcarry	signal	c_,	and	produces	an	output	carry	c3.	A	multibit	adder	is	treated	as	aprimitive	component	at	the	register
level,	as	shown	Figure	2.10b,	at	which	point	itsinternal	structure	or	logic	design	may	no	longer	be	of	interest.

Flip-flops.	By	adding	memory	to	a	combinational	circuit	in	the	form	of	1-bitstorage	elements	called	flip-flops,	we	obtain	a	sequential	logic	circuit.	Flip-flopsrely	on	an
external	clock	signal	CK	to	synchronize	the	times	at	which	they	respond

2This	design,	which	is	known	as	a	ripple-carry	adder,	and	other	types	of	binary	adders	are	examined	in	detailin	Chapter	4.
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Four-bit	ripple-carry:	(a)	logic	structure;	(b)	high-level	symbol.

to	changes	on	their	input	data	lines.	They	are	also	designed	to	be	unaffected	bytransient	signal	changes	(noise)	produced	by	the	combinational	logic	that	feedsthem.	An
efficient	way	to	meet	these	requirements	is	edge	triggering,	which	con-fines	the	flip-flop's	state	changes	to	a	narrow	window	of	time	around	one	edge	(the0-to-l	or	l-to-0
transition	point)	of	CK.

Figure	2.11	summarizes	the	behavior	of	the	most	common	kind	of	flip-flop,	anedge-triggered	D	{delay)	flip-flop.	(Another	well-known	flip-flop	type,	the	JK	flip-flop,	is
discussed	in	problem	2.11.)	The	output	signal	y	constitutes	the	stored	dataor	state	of	the	flip-flop.	The	D	flip-flop	reads	in	the	data	value	on	its	D	line	whenthe	0-to-l
triggering	edge	of	clock	signal	CK	arrives;	this	D	value	becomes	the	newvalue	of	y.	The	triangular	symbol	on	the	clock's	input	port	in	Figure	2.1	la	specifiesedge
triggering;	its	omission	indicates	level	triggering,	in	which	case	the	flip-flop(then	usually	referred	to	as	a	latch)	responds	to	all	changes	in	signal	value	on	D.Since	there	is
just	one	triggering	edge	in	each	clock	cycle,	there	can	be	just	onechange	in	y	per	clock	cycle.	Hence	we	can	view	the	edge-triggered	flip-flop	as	tra-versing	a	sequence	of
discrete	state	values	v(/),	one	for	every	clock	cycle	i.

The	input	data	line	D	can	be	varied	independently	and	so	can	go	through	sev-eral	changes	in	any	clock	cycle	i.	However,	only	the	data	value	D{i)	present	justbefore	the
arrival	of	the	triggering	edge	of	CK	determines	the	next	state	y{i	+	1).To	change	the	flip-flop's	state,	the	D	signal	must	be	held	steady	for	a	minimumperiod	known	as	the
setup	time	Tselup	before	the	flip-flop	is	triggered.	For	exam-ple,	in	Figure	2.1	lc,	which	shows	a	sample	of	the	D	flip-flop's	behavior,	we	haveD(l)	=	1	and	v(l)	=	0	in	clock
cycle	1.	At	the	start	of	the	next	clock	cycle,	ychanges	to	1	in	response	to	D(l)	=	1.	making	v(2)	=	1.	In	clock	cycle	3,	y	changes
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D	flip-flop:	(a)	graphic	symbol;	(b)	state	table;	(c)	timing	diagram.

back	to	0,	making	y(3)	=	0.	Even	though	D	=	1	for	most	of	clock	cycle	3,	D(3)	=	0during	the	critical	setup	phase	of	cycle	3,	thus	ensuring	that	y(4)	=	0.	Observe	thatthe
spurious	pulse	or	glitch	affecting	D	in	cycle	5	has	no	effect	on	y.	Hence	edge-triggered	flip-flops	have	the	very	useful	property	of	filtering	out	noise	signalsappearing	at
their	inputs.

When	a	flip-flop	is	first	switched	on.	its	state	y	is	uncertain	unless	it	is	explic-itly	brought	to	a	known	initial	state.	It	is	therefore	desirable	to	be	able	to	initialize(reset)	the
flip-flop	asynchronously,	that	is,	independently	of	the	clock	signal	CK,at	the	start	of	operation.	To	this	end,	a	flip-flop	can	have	one	or	two	asynchronouscontrol	inputs,	CLR
(clear)	and	PRE	(preset),	as	shown	in	Figure	2.11a.	Each	isdesigned	to	respond	to	a	brief	input	pulse	that	forces	y	to	0	in	the	case	of	CLR	or	to1	in	the	case	of	PRE.

In	normal	synchronous	operation	with	a	clock	that	is	matched	to	the	timingcharacteristics	of	its	flip-flops,	we	can	be	sure	that	one	well-defined	change	of	statetakes	place
in	a	sequential	circuit	during	each	clock	cycle.	We	do	not	have	to	worryabout	the	exact	times	at	which	signals	change	within	the	clock	cycle.	We	can	there-fore	consider
the	actions	of	a	flip-flop,	and	hence	of	any	sequential	circuit	employ-ing	it,	to	occur	at	a	discrete	sequence	of	points	of	time	/=	1,	2,	3,	...	In	effect,	theclock	quantizes	time
into	discrete,	technology-independent	time	steps,	each	ofwhich	represents	a	clock	cycle.	We	can	then	describe	a	D	flip-flop's	next-statebehavior	by	the	following
characteristic	equation:

y(/+l)	=	D(/)

(2.5)

which	simply	says	that	y	takes	the	value	of	D	delayed	by	one	clock	cycle,	hence	theD	flip-flop's	name.

Figure	2.1	\b	shows	another	convenient	way	to	represent	the	flip-flop's	next-state	behavior.	This	state	table	tabulates	the	possible	values	of	the	next	state	y{i	+	1)for	every
possible	combination	of	the	present	input	D(i)	and	the	present	state	y(i).	Itis	not	customary	(or	necessary)	to	include	clock-signal	values	explicitly	in	charac-teristic
equations	or	state	tables.	The	clock	is	considered	to	be	the	implicit	generatorof	time	steps	and	so	is	always	present	in	the	background.	Asynchronous	inputs	arealso
omitted	as	they	are	associated	only	with	initialization.
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Sequential	circuits.	A	sequential	circuit	consists	of	a	combinational	circuitand	a	set	of	flip-flops.	The	combinational	logic	forms	the	computational	or	data-processing	part
of	the	circuit.	The	flip-flops	store	information	on	the	circuit's	pastbehavior;	this	stored	information	defines	the	circuit's	internal	state	Y.	If	the	pri-mary	inputs	are	X	and	the
primary	outputs	are	Z,	then	Z	is	a	function	of	both	X	andY,	denoted	Z(X,Y).	It	is	usual	to	supply	a	sequential	circuit	with	a	precisely	con-trolled	clock	signal	that	determines
the	times	at	which	the	flip-flops	change	state;the	resulting	circuit	is	said	to	be	clocked	or	synchronous.	Each	tick	(cycle	orperiod)	of	the	clock	permits	a	single	change	in
the	circuit's	state	Y	as	discussedabove;	it	can	also	trigger	changes	in	the	primary	output	Z	Reflecting	the	impor-tance	of	state	behavior,	the	term	finite-state	machine
(FSM)	is	often	applied	to	asequential	circuit.

The	behavior	of	a	sequential	circuit	can	be	specified	by	a	state	table	thatincludes	the	possible	values	of	its	primary	outputs	and	its	internal	states.	Figure2.12a	shows	the
state	table	of	a	small	but	useful	sequential	circuit,	a	serial	adder,which	is	intended	to	add	two	unsigned	binary	numbers	X,	and	X2	of	arbitrarylength,	producing	their	sum
Z	=	X{	plus	X2.	The	numbers	are	supplied	serially,	thatis,	bit	by	bit,	and	the	result	is	also	produced	serially.	In	contrast,	the	combinational

Input	x 1*2

00 01 10 11

Present S0(y	=	0) 50.0 50.1 50.1 s,.o

state S,(y=l) s0.i S,,0 5,.0 5,.l

Next	Presentstate	output

(a)

Figure	2.12

(a)	State	table;	(b)	logic	circuit	for	a	serial	adder.

D

nip-Hop

Clock

80	adder	of	Figure	2.10	is	a	"parallel"	adder,	which,	ignoring	its	internal-signal	propa-

gation	delays,	adds	all	bits	of	the	input	numbers	simultaneously.	In	one	clock	cycle

System	Design	'"'	^	se"a^	adder	receives	2	input	bits	Xy(i)	and	x2(i)	and	computes	1	bit	z(i)	of	Z	It

also	computes	a	carry	signal	c(i)	that	affects	the	addition	in	the	next	clock	cycle.Thus	the	output	computed	in	clock	cycle	i	is

c(i)z(i)	=	x^Oplus	x2(i)plus	c(i	-	1)	(2.6)

where	c(i	-	1)	must	be	determined	from	the	adder's	present	state	S(i).	Observe	that(2.6)	is	equivalent	to	the	expression	(2.2)	for	the	full-adder	function	defined	earlier.It
follows	that	two	possible	internal	states	exist:	50,	meaning	that	the	previous	carrysignal	c(i	-	1)	=	0,	and	Sx,	meaning	that	c(i	-	1)	=	1.	These	considerations	lead	tothe	two-
state	state	table	of	Figure	2.12a.	An	entry	in	row	5(0	and	column	x^x^i)of	the	state	table	has	the	format	S(i	+	1),	z(i),	where	S(i	+	1)	is	the	next	internal	statethat	the



circuit	must	have	when	the	present	state	is	5(0	and	the	present	primaryinput	combination	is	xl(i)x2(i);	z(i)	is	the	corresponding	primary	output	signal	thatmust	be
generated.

Because	the	serial	adder	has	only	two	internal	states,	its	memory	consists	of	asingle	flip-flop	storing	a	state	variable	y.	There	are	only	two	possible	ways	toassign	0s	and	Is
to	y.	We	select	the	"natural"	state	assignment	that	has	y	=	0	for	50and	y	=	1	for	Sx,	since	this	equates	>(/)	with	the	stored	carry	signal	c(i	-	1).	Assumethat	we	use	an	edge-
triggered	D	flip-flop	(Figure	2.11)	to	store	y.	The	combina-tional	logic	C	then	must	generate	two	signals:	the	primary	output	z(i)	and	a	second-ary	output	signal	D(i)	that	is
applied	to	the	D	flip-flop's	data	input.	The	flip-flop'sbehavior	is	defined	by	its	characteristic	equation	(2.5);	that	is,	y(i	+	1)	=	D(i).Hence	we	have

D(i)	=	c(0

It	follows	from	the	above	discussion	that	C	can	be	implemented	directly	by	a	full-adder	circuit	such	as	that	of	Figure	2.9b,	whose	sum	output	is	z	and	whose	carryoutput	is
D;	see	Figure	2.12b.	Before	entering	two	new	numbers	to	be	added,	it	isnecessary	to	reset	the	serial	adder	to	the	50	state.	The	easiest	way	to	do	so	is	toapply	a	reset	pulse
to	the	flip-flop's	asynchronous	clear	(CLR)	input.

Example	2.2	involves	a	similar,	but	more	complex	sequential	circuit	and	dem-onstrates	the	use	of	CAD	tools	in	its	design.

example	2.2	design	of	a	4-bit-stream	serial	adder.	Consider	another	typeof	serial	adder	that	adds	four	number	streams	instead	of	the	two	handled	by	a	conven-tional	serial
adder	(Figure	2.12).	The	new	adder	has	four	primary	input	lines	jc,,	x2,	x3,x4	and	a	single	primary	output	z.	To	determine	the	circuit's	state	behavior—often	themost
difficult	part	of	the	design	process—we	first	identify	the	information	to	be	stored.As	in	the	standard	serial	adder	case,	the	circuit	must	remember	carry	information	com-
puted	in	earlier	clock	cycles.	The	current	2-bit	sum	SUM(i)	=	c(i)z(i)	is	given	by

SUM(i)	=	xx{i)plus	x2(i)plus	x3(/)/?/us	x4(i)plus	c(i	-1)

where	c(i	-1)	is	the	carry	computed	in	the	preceding	clock	cycle.	If	c(i	-1)	is	0	andeach	xfi)	=	1,	then	SUM(i)	=	1	plus	1	plus	1	plus	1	plus	0	=	4	=	1002,	so	c(i)	=	102.With
c(i	-1)	=	102,	SUM{i)	becomes	6	=	1102,	making	c{i)	=	112.	Finally,	c(i	-	1)	=112	makes	SUM(i)	=	1112	and	c(i)	=	112,	which	is	the	maximum	possible	value	of	c.The
carry	data	to	be	stored	is	a	binary	number	ranging	from	002	to	112,	which	implies

that	the	adder	needs	four	states	and	two	flip-flops.	We	will	denote	the	four	states	by50,	5,,	S2,	S3,	where	5,	represents	a	stored	carry	of	(decimal)	value	i.

Figure	2.13a	shows	the	adder's	state	table,	which	has	four	rows	and	16	columns.For	present	state	S(i)	and	input	combination	j,	the	next-state/output	entry	Sk,z	isobtained
by	adding	i2	and	the	4	input	bits	that	determine	7	to	form	SUM(i)	=	(k2k]k0)2.	Itfollows	that	k	=	(k2ki)2	and	z	=	k0.	For	example,	with	present	state	S2	and	present
input7,	SUM(i)	=	0	plus	1	plus	1	plus	1	plus	102	=	1012,	so	z	=	1	and	A:	=102	=	2,	making	S-,the	next-state.	Following	this	pattern,	it	is	straightforward	to	construct	the
adder's	statetable.	With	D	flip-flops,	the	next-state	values	>',(/	+	l)y2(i	+	I)	coincide	with	the	flip-flops'	data	input	values	D{(i)D2(i).	The	adder	thus	has	the	general
structure	shown	inFigure	2.13£>.

A	truth	table	for	the	combinational	logic	C	appears	in	Figure	2.13c.	It	is	deriveddirectly	from	Figure	2.13a	with	the	states	assigned	the	four	bit	patterns	of	>',y2	as	fol-
lows:	S0	=	00,	5,	=	01,	S2	=	10,	and	53=	11.	Suppose	we	want	to	design	Cas	a	two-level
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Present	inputs	xlx2xix4	(decimal)

0	1	2 3 4	5	6	7	8	9	10 11 12	13 14	15

So S0,0	S„.	1	S0,	1 s,.o S0.1	S,.0	S,.0	S,.l	S0.1	S[,0	S,,0 S„l S,,0	S,,l S,.l	S2,0

Present	5i s0,1	s,,o	s,.o S,.l S,,0	S,,	1	S,,	1	S2,0	S,,0	S„	1	S,,l S2.0 S,,	1	S2.0 S2.0	S2,1

state	S-> S,,0	S,.l	S,,l s2,o S,.	1	S2.0	S2,0	S2.1	S,.l	S2.0	S2,0 S2.l s2.0	s2,1 s2,1	s3,0

S3 S„	1	5:.0	S2,0 s2.1 s2.0	s2,1	s2,1	s3,0	s2.0	s2.1	s2.1 S3.0 s2.1	s3,0 s3.0	s3.1

(a)

Combinationallogic	C

CK<

CK<

Dy

Reset	Clock

Present Present Secondary- Primary

inputs state outputs output

A"	j	X2	Xy	X4 >'l	>'2 £»,	D2 z

0	0	0	0	0 0	0 0	0 0

1	0	0	0	0 0	1 0	0 1

2	0	0	0	0 1	0 0	1 0

3	0	0	0	0 1	1 0	1 1

4	0	0	0	1 0	0 0	0 1

5	0	0	0	1 0	1 0	1 0

6	0	0	0	1 1	0 0	1 1

7	0	0	0	1 1	1 1	0 0

8	0	0	10 0	0 0	0 1

59	1	1	1	0 1	1 1	1 0



60	1	1	1	1 0	0 1	0 0

61	1111 0	1 1	0 1

62	1	1	1	1 1	0 1	1 0

63	1	1	1	1 1	1 1	1 1

(b)

(c)

Figure	2.13

Four-bit-stream	serial	adder:	(a)	state	table;	(b)	overall	structure;	(c)	truth	table	for
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.1	6

.o	3. 26 1010-1 001

.p	51 27 0110-1 001

1 -00010 010 28 1001-1 001

2 0-0010 010 29 0101-1 001

3 00-010 010 30 0011-1 001

4 000-10 010 31 -11111 010

5 00001- 010 32 1-1111 010

6 1000-0 001 33 11-111 010

7 0100-0 001 34 111-11 010

8 0010-0 001 35 11111- 010

9 0001-0 001 36 1111-1 001

10 0000-1 001 37 -111-1 100

11 -11000 010 38 1-11-1 100

12 1-0100 010 39 11-1-1 100

13 01-100 010 40 111—1 100

14 101-00 010 41 1111— 100

15 0-1001 010 42 —Ill 100

16 10-001 010 43 —1-11 100

17 -00101 010 44 -1—11 100

18 010-01 010 45 1—11 100

19 11000- 010 46 —111- 100

2	0 00110- 010 47 -1-11- 100

21 1110-0 001 48 1—11- 100

22 1101-0 001 49 -11-1- 100

23 1011-0 001 50 1-1-1- 100

24 0111-0 001 51 11—1- 100

25 1100-1 001 .	e

Figure	2.14

///I	\	\AX	Minimal	two-level	(SOP)	design	for	C	com-



x,	x2	x3	x4	>>,	y2	D,	£>2	z	puted	by	ESPRESSO.

circuit	like	that	of	Figure	2.9c,	using	the	minimum	number	of	gates.	Manual	minimiza-tion	methods	[Hayes	1993]	are	painfully	slow	in	this	case	without	computer	aid.
Wehave	therefore	used	a	logic	synthesis	program	called	Espresso	[Brayton	et	al.	1984;Hachtel	and	Somenzi	1996]	to	obtain	a	two-level	SOP	design.	To	instruct	Espresso
tocompute	the	minimum-cost	SOP	design	on	a	UNIX-based	computer	requires	issuing	acommand	like

^espresso	seradd4

where	seradd4	is	a	file	containing	the	truth	table	of	Figure	2.13c	or	an	equivalentdescription	of	C.	Espresso	responds	with	the	table	of	Figure	2.14,	which	specifies	anSOP
design	containing	the	fewest	product	terms	(these	are	in	a	minimal	form	calledprime	implicants	[Hayes	1993]),	in	this	case,	51.	For	example,	row	26,	which	has	theformat

x]x2x3x4yiy2	DiD2z=	1010-1	001

states	that	output	z	(but	not	the	outputs	D,	or	D2)	has	xix2xix4y2	as	one	of	its	chosenproduct	terms.	The	dash	in	1010-1	indicates	a	literal,	in	this	case	ylt	that	is	not
includedin	the	term	in	question.	Similarly,	row	51	(11	-	-1	-	100)	states	that	xix2yi	is	a	term	ofDy	We	conclude	from	Figure	2.14	that	an	SOP	realization	of	C	for	the	four-
streamadder	has	51	product	terms,	none	of	which	happen	to	be	shared	among	the	output	func-tions.	This	conclusion	implies	a	two-level	circuit	containing	the	equivalent
of	at	least54	gates	(51	ANDs	and	three	ORs),	some—especially	the	OR	gates—with	very	highfan-in,	which	makes	this	type	of	two-level	design	expensive	and	impractical	for
manyIC	technologies.	Example	2.6	in	section	2.2.3	shows	an	alternative	approach	that	leadsto	a	lower-cost,	multilevel	design	for	this	adder.

Minimizing	the	number	of	gates	in	a	sequential	circuit	is	difficult	because	it	isaffected	by	the	flip-flop	types,	the	state	assignment,	and,	of	course,	the	way	inwhich	the
combinational	subcircuit	C	is	designed.	Other	design	techniques	exist	tosimplify	the	design	process	at	the	expense	of	using	more	logic	elements.	It	isimpractical	to	deal
with	complete	binary	descriptions	like	state	tables	if	they	con-tain	more	than,	say,	a	dozen	states.	Consequently,	large,	sequential	circuits	aredesigned	by	heuristic
techniques	whose	implementations	use	reasonable	but	non-minimal	amounts	of	hardware	[Hayes	1993;	Hachtel	and	Somenzi	1996].	Thesecircuits	are	often	best	designed
at	the	more	abstract	register	level	rather	than	thegate	level.
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2.2

THE	REGISTER	LEVEL

At	the	register	or	register-transfer	level,	related	information	bits	are	grouped	intoordered	sets	called	words	or	vectors.	The	primitive	components	are	small	combina-tional
or	sequential	circuits	intended	to	process	or	store	words.

2.2.1	Register-Level	Components

Register-level	circuits	are	composed	of	word-oriented	devices,	the	more	importantof	which	are	listed	in	Figure	2.15.	The	key	sequential	component,	which	gives	thislevel
of	abstraction	its	name,	is	a	(parallel)	register,	a	storage	device	for	words.Other	common	sequential	elements	are	shift	registers	and	counters.	A	number	ofstandard
combinational	components	exist,	ranging	from	general-purpose	devices,such	as	word	gates,	to	more	specialized	circuits,	such	as	decoders	and	adders.

Type

Component

Functions

Combinational

Sequential

Word	gates.Multiplexers.Decoders	and	encoders.Adders.

Arithmetic-logic	units.Programmable	logic	devices.

(Parallel)	registers.Shift	registers.

Logical	(Boolean)	operations.

Data	routing:	general	combinational	functions.

Code	checking	and	conversion.

Addition	and	subtraction.

Numerical	and	logical	operations.

General	combinational	functions.

Information	storage.

Information	storage;	serial-parallel	conver-

Counters.

Programmable	logic	devices.

Control/timing	signal	generation.General	sequential	functions.

Figure	2.15

The	major	component	types	at	the	register	level.
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Register-level	components	are	linked	to	form	circuits	by	means	of	word-carryinggroups	of	lines,	referred	to	as	buses.

Types.	The	component	types	of	Figure	2.15	are	generally	useful	in	register-level	design;	they	are	available	as	MSI	parts	in	various	IC	series	and	as	standardcells	in	VLSI
design	libraries.	However,	they	cannot	be	identified	a	priori	based	onsome	property	analogous	to	the	functional	completeness	of	gate-level	operations.For	example,	we	will
show	that	multiplexers	can	realize	any	combinational	func-tion.	This	completeness	property	is	incidental	to	the	main	application	of	multiplex-ers,	which	is	signal	selection
or	path	switching.

There	are	no	universally	accepted	graphic	symbols	for	register-level	compo-nents.	They	are	usually	represented	in	circuit	diagrams	by	blocks	containing	anabbreviated
description	of	their	behavior,	as	in	Figure	2.16.	A	single	signal	line	in	adiagram	can	represent	a	bus	transmitting	m	>	1	bits	of	information	in	parallel;	m	isindicated
explicitly	by	placing	a	slash	(/)	in	the	line	and	writing	m	next	to	it	(seeFigure	2.16).	A	components's	10	lines	are	often	separated	into	data	and	controllines.	An	m-bit	bus
may	be	given	a	name	that	identifies	the	bus's	role,	for	example,the	type	of	data	transmitted	over	a	data	bus.	A	control	line's	name	indicates	theoperation	determined	by
the	line	in	its	active,	enabled,	or	asserted	state.	Unlessotherwise	indicated,	the	active	state	of	a	bus	occurs	when	its	lines	assume	the	logi-cal	1	value.	A	small	circle
representing	inversion	is	placed	at	an	input	or	outputport	of	a	block	to	indicate	that	the	corresponding	lines	are	active	in	the	0	state	andinactive	in	the	1	state.
Alternatively,	the	name	of	a	signal	whose	active	value	is	0includes	an	overbar.

The	input	control	lines	associated	with	a	multifunction	block	fall	into	twobroad	categories:	select	lines,	which	specify	one	of	several	possible	operations	thatthe	unit	is	to
perform,	and	enable	lines,	which	specify	the	time	or	condition	for	aselected	operation	to	be	performed.	Thus	in	Figure	2.16,	to	perform	some	operationFx,	first	set	the
select	line	F	to	a	bit	pattern	denoting	F{	and	then	activate	the	edge-triggered	enable	line	£by	applying	a	O-to-1	edge	signal.	Enable	lines	are	often	con-nected	to	clock
sources.	The	output	control	signals,	if	any,	indicate	when	or	howthe	unit	completes	its	processing.	Figure	2.16	indicates	termination	by	5	=	0.	Thearrowheads	are	omitted
when	we	can	infer	signal	direction	from	the	circuit	struc-ture	or	signal	names.

Function	kselect	F

Enable	E



Controlinput	lines

Data	input	linesAi	A-?	A-i

i	/f	m	/T	m	X

Z,	Z2

Data	output	lines

Control

output	lines	Figure	2.16

Generic	block	representation	of	aregister-level	component.

Operations.	Gate-level	logic	design	is	concerned	with	combinational	func-tions	whose	signal	values	are	from	the	two-valued	set	B	=	{0,1}	and	form	a	Bool-ean	algebra.	We
can	extend	these	functions	to	functions	whose	values	are	takenfrom	Bm,	the	set	of	2m	m-bit	words,	rather	than	from	B.	Let	z(xx,x2,...,xn)	be	anytwo-valued	combinational
function.	Let	Xx,X2,...,Xn	denote	m-bit	binary	wordshaving	the	form	X,	=	(xiti,xi^,...,xi^)	for	/	=	1,2,...,«.	We	define	the	word	opera-tion	z	as	follows:

z(Xl,X2,...,Xn)	=	[z(xl	{,x2	u...,xn	l)^(xl2,x22,...,xn2),...,zixljn,x2jn,...,xnjn)]	(2.7)

This	definition	simply	generalizes	the	usual	Boolean	operations,	AND,	NAND,and	so	forth,	from	1-bit	to	m-bit	words.	If	z	is	the	OR	function,	for	instance,	wehave

Xl+X2+-	+Xn	=	(*lfl	+	x2A	+	■■■+	xnAsh2	+	x22	+	■■■+	xn2,

■	•	•'	X\jn	+	xljm	+	'••	+	xn,m)

which	applies	OR	bitwise	to	the	corresponding	bits	of	n	m-bit	words.2mnThe	set	of	all	2	combinational	functions	defined	on	n	m-bit	words	forms	a

Boolean	algebra	with	respect	to	the	word	operations	for	AND,	OR,	and	NOT.	Thisgeneralization	of	Boolean	algebra	to	multibit	words	is	analogous	to	the	extensionof	the
ordinary	algebra	from	single	numbers	(scalars)	to	vectors.	Pursuing	thisanalogy,	we	can	treat	bits	as	scalars	and	words	as	vectors,	and	obtain	more	com-plex	logical
operations,	such	as

yX=(yxl,yx2,	...,yxjy	+	X	=	(y	+	x],y	+	x2,	...,y	+	xj

(2.8)

Word-based	logical	operations	of	this	type	are	useful	in	some	aspects	of	register-level	design.	However,	they	do	not	by	themselves	provide	an	adequate	design	the-ory	for
several	reasons.

•	The	operations	performed	by	some	basic	register-level	components	are	numeri-cal	rather	than	logical;	they	are	not	easily	incorporated	into	a	Boolean	frame-work.

•	Many	of	the	logical	operations	associated	with	register-level	components	arecomplex	and	do	not	have	the	properties	of	the	gates—interchangeability	ofinputs,	for
example—that	simplify	gate-level	design.

•	Although	a	system	often	has	a	standard	word	length	w	based	on	the	width	ofsome	important	buses	or	registers,	some	buses	carry	signals	with	a	differentnumber	of	bits.
For	example,	the	outcome	of	a	test	on	a	set	5	of	vv-bit	words(does	S	have	property	PI)	is	1	bit	rather	than	w.	The	lack	of	a	uniform	word	sizefor	all	signals	makes	it	difficult
to	define	a	useful	algebra	to	describe	operationson	these	signals.

Lacking	an	adequate	general	theory,	register-level	design	is	tackled	mainly	withheuristic	and	intuitive	methods.

We	next	introduce	the	major	combinational	and	sequential	components	used	indesign	at	the	register	level.	(Refer	to	Figure	2.15).
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Word	gates.	Let	X	=	(xux2,...,xm)	and	Y	=	(yi,y2,...,y„,)	be	two	m-bit	binarywords.	As	noted	already,	it	is	useful	to	perform	gate	operations	bitwise	on	X	and	Yto	obtain
another	m-bit	word	Z	=	(zi,z2,...,Zm).	We	coin	the	term	word-gate	opera-tions	for	logical	functions	of	this	type.	In	general,	if/is	any	logic	operator,	wewrite	Z=f(X,Y)	if	z,
=/(jc,,y,)	for	i	=	l,2,...,m.	For	example,	Z=	XY	denotes	the	m-bit	NAND	operation	defined	by

Z=(zl,z2,...,zm)	=	(xly1,x2y2,	...,xmym)

This	generalized	NAND	is	realized	by	the	gate-level	circuit	in	Figure	2.17a.	It	isrepresented	in	register-level	diagrams	by	the	two-input	NAND	symbol	of	Figure2.17b,
which	is	an	example	of	a	word	gate.	It	is	also	useful	to	represent	scalar-vector	operations	by	a	single	gate	symbol.	For	example,	the	operation	y	+	Xdefined	by	(2.8)	and
realized	by	the	circuit	of	Figure	2.18a	can	be	represented	bythe	register-level	gate	symbol	of	Figure	2.18b.

Word	gates	are	universal	in	that	they	suffice	to	implement	any	logic	circuit;moreover,	word-gate	circuits	can	be	analyzed	using	Boolean	algebra.	In	practice,however,	the
usefulness	of	word	gates	is	severely	limited	by	the	relative	simplicityof	the	operations	they	perform	and	by	the	variability	in	word	size	found	at	the	reg-ister	level.

*i	y\	x2	>'2

X	Y

m	,'	/	m

(a)

V

z

(b)

Figure	2.17

Two-input,	m-bit	NAND	word	gate:	(a)	logic	diagram	and	(b)	symbol.

(a)

X	y

m	/	/	1

Z

(b)



Figure	2.18

OR	word	gate	implementing	y	+	X:	(a)	logic	diagram;	(b)	symbol.

Multiplexers.	A	multiplexer	is	a	device	intended	to	route	data	from	one	ofseveral	sources	to	a	common	destination;	the	source	is	specified	by	applyingappropriate	control
(select)	signals	to	the	multiplexer.	If	the	maximum	number	ofdata	sources	is	k	and	each	10	data	line	carries	m	bits,	the	multiplexer	is	referred	toas	a	k-input	(or	k-way),	m-
bit	multiplexer.	It	is	convenient	to	make	k	=	2P,	so	thatdata	source	selection	is	determined	by	an	encoded	pattern	or	address	of	p	bits.The	2P	addresses	then	cover	the
range	00...0,	00...1,	...,	11...1	=	2P	-	1.	A	multi-plexer	is	easily	denoted	by	a	suitably	labeled	version	of	the	generic	block	symbolof	Figure	2.16;	the	tapered	block	symbol
shown	in	Figure	2.19,	where	the	narrowend	indicates	the	data	output	side,	is	also	common.

Let	a{	=	1	when	we	want	to	select	the	m-bit	input	data	bus	X,	=	(jc,-^*,	(,...,xi,m-\)	°f	me	multiplexer	of	Figure	2.19.	Then	at	=	1	when	we	apply	the	word	cor-responding
to	the	binary	number	i	to	the	select	bus	5.	The	binary	variable	a,denotes	the	selection	of	input	data	bus	X,—a,	is	not	a	physical	signal.	The	dataword	on	X,	is	then
transferred	to	Z	when	e	=	1.	The	operation	of	the	2^-input	w-bitmultiplexer	is	therefore	defined	by	m	sum-of-product	Boolean	equations	of	theform

Zj=	(x0ja0	+	xljal+	•••	+x2p_i	ja2p_i)e	for;'	=	0,	1,	...,m-	1	(2.9)

or	by	the	single	word-based	equation

Z=	(X0a0	+	Xlal	+

{a2P-i)e

Figure	2.20	shows	a	typical	gate-level	realization	of	a	two-input,	4-bit	multiplexer.Several	&-input	multiplexers	can	be	used	to	route	more	than	k	data	paths	byconnecting
them	in	the	treelike	fashion	shown	in	Figure	2.21.	A	g-level	tree	cir-cuit	of	this	type	forms	a	^-input	multiplexer.	A	distinct	select	line	is	associatedwith	every	level	of	the
tree	and	is	connected	to	all	multiplexers	in	that	level.	Thuseach	level	performs	a	partial	selection	of	the	data	line	X,	to	be	connected	to	theoutput	Z.

Multiplexers	as	function	generators.	Multiplexers	have	the	interesting	prop-erty	that	they	can	compute	any	combinational	function	and	so	form	a	type	of	uni-versal	logic
generator.	Specifically,	a	2"-input,	1-bit	multiplexer	MUX	cangenerate	any	^-variable	function	z(v0,v,,...,v„_,).	This	is	accomplished	by	apply-ing	the	n	input	variables
v0,v,,...,vn_,	to	the	n	select	Ymes	s0,s],...,sn_]of	MUX,	and2"	function-specific	constant	values	(0	or	1)	to	MUX's	2"	input	data	lines	.v0,.v,
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Figure	2.19

A	2/'-input,	m-bit	multiplexer.
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Select	s

Enable	e

Data	out	z0

Figure	2.20

Realization	of	a	two-input,	4-bit	multiplexer.

Data	in

An	X<

X2	X3	X4	X5	X6	Xn

^'—To	T7	I—To	i7	|—To	i7	I—To

1	A	Mux	/	1	A	Mux	/	1	A	Mux	/	1	A	Mux

Select	•<	^i	—»

Enable	e

0	11	4	Mux

Mux

1	A	Mux	/

Data	out	Z

Figure	2.21

An	eight-input	multiplexer	constructed	from	two-input	multiplexers.

jc2n_j.	The	output	of	MUX	is	then

Z=	(x0a0	+	xla1	+	•••	+x2"_,a2«_1)e

(2.10)

as	defined	by	(2.9),	where	again	a,	denotes	the	selection	of	input	data	bus	jc,.Clearly,	a,	corresponds	to	the	z'th	row	in	z's	truth	table	with	respect	to	the	inputvariables	v0,



v^...,	vn_,.	With	e=	1,	setting	xt	=	1	(0)	if	row	i	of	the	truth	table	for	zis	1	(0)	makes	(2.10)	into	a	sum-of-products	expression	for	z.	Hence	by	connectingeach	input	data
line	to	the	appropriate	logic	value	0	or	1,	we	can	realize	any	of	the2	possible	logic	functions	of	n	variables.

EXAMPLE	2.3	USING	A	MULTIPLEXER	TO	IMPLEMENT	A	FULL	ADDER.	As	we	saw

in	section	2.1,	a	full	adder	is	a	three-input,	two-output	circuit	that	adds	3	bits	x0,	y0,	andc_]	(the	carry	in)	to	obtain	a	2-bit	result	consisting	of	s0	(the	sum	bit)	and	c0	(the
carryout).	It	is	the	basic	component	of	a	serial	adder	(Figure	2.12)	and	has	various	gate-levelrealizations	such	as	those	of	Figure	2.9.	A	multiplexer	MUXX	with	m	=	2	and
n	=	2P	=	8,that	is,	an	eight-input,	2-bit	multiplexer,	can	implement	the	full	adder,	as	shown	in	Fig-ure	2.22b.	The	adder's	input	variables	are	applied	to	the	three	select
lines,	not	as	mightbe	expected,	to	the	multiplexer's	data	input	buses.	Instead	constant	values	0	or	1	areapplied	to	the	data	inputs	as	indicated.	Each	pattern	i	of	x^qC^
selects	a	specific	inputdata	bus	X,	and	routes	its	2-bit	word	to	the	output	bus	z	=	s0c0.	Observe	how	this	proce-dure	effectively	maps	the	truth	table	for	.s0	and	c0	(Figure
2.22a)	directly	onto	M£/X,'sinput	data	lines.

If	one	input	variable	of	the	full	adder,	say	c_,,	is	available	in	both	true	and	comple-mented	form,	we	can	implement	the	adder	with	the	smaller,	four-input,	2-bit	multi-plexer
MUX2	shown	in	Figure	2.22c.	The	two	inputs	x0,	y0	are	applied	to	M£/X2's	selectlines	as	before,	but	we	apply	one	of	c_x,	c_1?	0,	or	1	to	each	line	Xq	of	data	bus	X,.
NowXjj	must	realize	two	rows	of	the	form	x$>00	and	x^qI	in	the	adder's	truth	table.	If,	forexample,	these	rows	have	the	same	fixed	value	a	for	the	output	(s0	or	c0)	of
interest,then	we	apply	a	tox^-.	If	the	rows	have	different	values,	then	either	c_,	or	c_,	is	applied
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*0 yo c-\ so	co

0 0 0 0	0

0 0 1 1	0

0 1 0 1	0

0 1 1 0	1

1 0 0 1	0

1 0 1 0	1

1

1

1

1

0

1

0	1

1	1

(fl)

Sum	s0Carry	c0

Sum	sQ—	Carry	c0

(c)

Figure	2.22

Multiplexer-based	full	adder:	(a)	truth	table;	(b)	first	version;	(c)	second	version.
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to	Xn,	as	appropriate.	We	see	from	this	example	that	a	2"-input,	m-bit	multiplexer	canrealize	any	(n	+	Invariable,	w-output	logic	function.

Decoders.	A	l-out-of-2"	or	1/2"	decoder	is	a'combinational	circuit	with	ninput	lines	X	and	2"	output	lines	Z	such	that	each	of	the	2"	possible	input	combina-tions	Aj	applied
to	X	activates	a	corresponding	output	line	z(.	Figure	2.23	shows	a1/4	decoder.	Several	1/2"	decoders	can	be	used	to	decode	more	than	n	lines	byconnecting	them	in	a	tree
configuration	analogous	to	the	multiplexer	tree	of	Figure2.21.	The	main	application	of	decoders	is	address	decoding,	where	A,	is	interpretedas	an	address	that	selects	a
specific	output	line	Z;	or	some	circuit	attached	to	z,.	Forexample,	decoders	are	used	in	RAMs	to	select	storage	cells	to	be	read	from	orwritten	into.

Another	common	application	of	decoders	is	that	of	routing	data	from	a	com-mon	source	to	one	of	several	destinations.	A	circuit	of	this	kind	is	called	a	demulti-plexer,	since
it	is,	in	effect,	the	inverse	of	a	multiplexer.	In	this	application	thecontrol	input	e	(enable)	of	the	decoder	is	viewed	as	a	1-bit	data	source	to	be	routedto	one	of	2"
destinations,	as	determined	by	the	address	applied	to	the	decoder.	Thusa	1/2"	decoder	is	also	a	2"-output,	1-bit	demultiplexer.	A	£:-output,	m-bit	demulti-plexer	can	be
readily	constructed	from	a	network	of	decoders.	Figure	2.24	shows	afour-output,	2-bit	demultiplexer	that	employs	two	1/4	decoders	of	the	type	in	Fig-ure	2.23.

Encoders.	An	encoder	is	a	circuit	intended	to	generate	the	address	or	index	ofan	active	input	line;	it	is	therefore	the	inverse	of	a	decoder.	Most	encoders	have	2input	data
lines	and	k	output	data	lines.	For	example,	when	k	=	3,	entering	a	data

Enable	e



1/4decoder

Z0	Z\	z2	z3(b)

Figure	2.23

A	1/4	decoder:	(a)	logic	diagram;	(b)	symbol.

Data	in

Select(address)

1/4decoder

1/4decoder

Data	out

Z:

Figure	2.24

A	four-output,	2-bit	demultiplexer.
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pattern	such	as	x0xix2x3x4x5x6x1	=	00000010	into	an	eight-input	encoder	shouldproduce	the	response	z2Z\Zq	=110,	denoting	the	number	6,	and	indicating	that	x6	=1.
Additional	(control)	outputs	are	necessary	to	distinguish	the	input	jc0	active	andno	input	active	states.	Moreover,	it	is	also	necessary	to	assign	priorities	to	the	inputlines
and	design	the	encoder	so	that	the	output	address	is	always	that	of	the	activeinput	line	with	the	highest	priority.	A	circuit	of	this	type	is	called	a	priority-encoder;	see
Figure	2.25.	A	fixed	priority	is	assigned	to	each	input	line	such	that	a,has	higher	priority	than	x	if	/	>j.	We	leave	the	logic	design	of	this	priority	encoderas	an	exercise
(problem	2.22).

Arithmetic	elements.	A	few	fairly	simple	arithmetic	functions,	notably	addi-tion	and	subtraction	of	fixed-point	numbers,	can	be	implemented	by	combinationalregister-level
components.	Most	forms	of	fixed-point	multiplication	and	divisionand	essentially	all	floating-point	operations	are	too	complex	to	be	realized	by	sin-gle	components	at	this
design	level.	However,	adders	and	subtracters	for	fixed-point	binary	numbers	are	basic	register-level	components	from	which	we	canderive	a	variety	of	other	arithmetic
circuits,	as	we	will	see	later.	Figure	2.26ashows	a	component	that	adds	two	4-bit	data	words	and	an	input	carry	bit:	it	iscalled	a	4-bit	adder.	(A	full	adder	is	sometimes
called	a	1-bit	adder.)	The	adder'scarry-in	and	carry-out	lines	allow	several	copies	of	this	component	to	be	chainedtogether	to	add	numbers	of	arbitrary	size;	note,	however,
that	the	addition	timeincreases	with	the	number	size.	(See	Chapter	4	for	coverage	of	the	design	of	addersand	more-complex	arithmetic	circuits).	Another	useful	arithmetic
component	is	amagnitude	comparator,	whose	function	is	to	compare	the	magnitudes	of*	twobinary	numbers.	Figure	2.26b	shows	the	overall	structure	of	a	4-bit
comparator.
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(a)

Figure	2.25

An	8-input	priority	encoder:	(a)	truth	table;	(b)	symbol.
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4-bitmagnitudecomparator

X<Y	X=Y	X>Y

(b)

Figure	2.26

Symbols	for	(a)	a	4-bit	parallel	adder;	(b)	a	4-bit	magnitude	comparator.

Magnitude	comparators	are	relatively	complex	circuits	requiring	either	many	gatesor	many	logic	levels.

EXAMPLE	2.4	DESIGN	OF	A	4-BIT	MAGNITUDE	COMPARATOR.	Consider	theinternal	design	of	the	magnitude	comparator	depicted	in	Figure	2.26b.	It	has	eight
inputlines,	implying	that	its	truth	table	has	28	=	256	rows.	The	comparator	is	quite	difficultto	design	at	the	gate	level.	Furthermore,	a	two-level	(SOP	or	POS)	realization
isimpractical	because	of	the	many	gates	involved,	as	well	as	their	large	fan-in.

We	can	design	a	magnitude	comparator	for	two	n-bit	numbers	X	and	Y	efficientlyat	the	register	level	by	noting	that	X	>	Y	is	equivalent	to

X-K>0

(2.11)

Now	Y	can	be	computed	by	the	subtraction	step	(2"	-	1)	-	Y,	where	Y	is	the	bitwisecomplement	of	Y	and	2"	-	1	is	a	sequence	of	n	Is.	For	example,	if	n	=	4	and	Y	=	1001(9),
then	Y	=	0110(6),	24-	1	=	1111	(15),	and	Y=	1111	-0110=	1001.	Hence	inequal-ity	(2.11)	can	be	replaced	by	X	-	(2"	-	1	-	Y)	>	0,	implying

X+	Y>2"-1	=	11...1	(2.12)

Now	suppose	we	add	X	and	Y	using	an	adder	such	as	that	of	Figure	2.26a.	If	the	ine-quality	of	(2.12)	is	satisfied,	then	the	adder's	carry-out	signal	cout	will	be	1,	because	X
+Y	will	exceed	the	largest	n-bit	number	2"	-	1.	In	the	preceding	example	with	X	=	1100(12)	and	Y	=	1001	(9),	we	have	X+	Y=	1100	+	0110	=	10010	(18),	for	which	the
outputcarry	is	1.	We	can	therefore	perform	the	original	magnitude	test	X	>	Y	as	follows:

1.	Compute	Y	from	Y	using	an	n-bit	word	inverter.

2.	Add	X	and	Y	via	an	n-bit	adder	and	use	the	output-carry	signal	cout	as	the	primaryoutput.	If	cout	=	1,	then	X	>	Y;	if	cout	=	0,	then	X	<	Y.

Figure	2.27	shows	a	direct	realization	of	the	above	scheme	to	implement	zz	=	{X>Y)for	the	4-bit	case.	By	switching	X	and	Y,	we	can	generate	Z\	-	(X	<	Y)	in	exactly
thesame	manner.	We	do	not	need	the	sum	outputs	of	the	two	adder	modules;	hence	wecan	discard	them	and	their	associated	circuits,	thereby	reducing	the	adders	to
carry-generation	circuits.

We	have	yet	to	compute	the	"equals"	output	denoted	z2	=	(X	=	Y).	This	calculationrequires	comparing	each	bit	X,	of	X	to	the	corresponding	bit	Y,	of	Y,	which	can	be
doneby	an	EXCLUSIVE-NOR	gate	that	produces	X,	©	Y,.	Now	z2	=	1	when	X,	©	Y,	=	1for	all	i;	that	is,

z2	=	(x„_1©Yll_1)(xII_2eyl,_2)"-(x0©y0)

(2.13)

Figure	2.27	also	gives	a	4-bit	implementation	of	(2.13)	using	EXCLUSIVE-NOR	andAND	word	gates.	Practical	magnitude	comparators	such	as	the	74X85	[Texas	Instru-
ments	1988]	use	a	similar	design	that	incorporates	a	fast	carry-generation	technique(carry	lookahead).
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Z,(X<y)	z2(X=	Y)	Zj(X>Y)

Figure	2.27

Register-level	design	of	a	4-bit	magnitude	comparator.
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We	turn	now	to	the	main	sequential	components	used	at	the	register	level.

Registers.	An	m-bit	register	is	an	ordered	set	of	m	flip-flops	designed	to	storean	/n-bit	word	(zq,Z\,...,z,„_	\).	Each	bit	of	the	word	is	stored	in	a	separate	flip-flop,but	the
flip-flops	have	common	control	lines	(clock,	clear,	and	so	on).	Registerscan	be	constructed	from	various	flip-flop	types.	Figure	2.28a	shows	a	4-bit	registerconstructed	from
four	D	flip-flops,	and	Figure	2.286	shows	a	suitable	graphic	sym-bol	for	it.	The	register	and	its	output	signal	(which	denotes	the	register's	state)	arefrequently	assigned	the
same	name.

The	register	Z	of	Figure	2.28	reads	in	the	data	word	X	each	time	it	is	clocked.Therefore,	to	maintain	the	contents	or	state	of	Z	at	a	constant	value,	it	is	necessaryto	apply
that	value	continuously	to	Z's	input	bus.	Often	we	want	to	load	a	newvalue	of	X	into	Z	in	a	particular	clock	cycle	and	subsequently	change	X	withoutchanging	Z.	To	this
end,	we	introduce	a	control	line	LOAD,	which	should	cause	theregister	to	read	in	(load)	the	current	value	of	X	when	it	is	clocked	and	LOAD	hasbeen	set	to	1.	When	LOAD
=	0,	the	state	of	Z	should	not	change	when	the	registeris	clocked;	it	should	retain	the	last	value	loaded	into	it.	To	add	this	load	feature	toregister	Z	of	Figure	2.28,	we
insert	a	two-input,	4-bit	multiplexer	MUX	into	itsinput	data	bus	as	shown	in	Figure	2.29a.	The	new	control	line	LOAD	is	connected

CLOCKCLEAR

CLOCKCLEAR

X

4	/

Register	Z

4	/

Z

(b)

Figure	2.28

A	4-bit	D	register	with	parallel	10:	(a)	logic	diagram;	(b)	symbol.

to	MUX's	select	line	s.	MUX's	data	input	lines	are	connected	to	X	and	to	the	regis-ter	output	Z	so	that	the	circuit	behaves	as	follows	in	each	clock	cycle.	If	LOAD	=	1,then
X	is	loaded	into	the	register	from	the	input	bus:	that	is.	Z	:=	X.	If	LOAD	=	0,then	the	old	value	of	Z	is	loaded	back	into	the	register;	that	is,	Z	:=	Z.

Registers	like	those	of	Figures	2.28	and	2.29	are	designed	so	that	external	datacan	be	transferred	to	or	from	all	its	flip-flops	simultaneously;	this	mode	of	opera-tion	is
called	parallel	input-output.	In	some	computer-design	situations	it	is	usefulto	transfer	(shift)	the	contents	of	a	register	in	and	out	1	bit	at	a	time.	A	registerdesigned	for
such	operations	is	a	shift	register.	A	right-shift	operation	changes	theregister's	state	as	described	by	the	following	register-transfer	statement:

(X'Zm-\'Zm-2'---'Z0	'■-	(^m-l'Zm-2'---'2l'Zo)

A	left	shift	performs	the	similar	transformation:

(zm-2>zm-?>>--->zOx)	:=	(zm-\'Zm-2>---'Z\'Zo)

In	each	case	a	bit	of	stored	data	is	lost	from	one	end	of	the	shift	register,	while	anew	data	bit	x	is	brought	in	at	the	other	end.	In	its	simplest	form,	an	m-bit	shift	reg-ister
consists	of	m	flip-flops	each	of	which	is	connected	to	its	left	or	right	neighbor.Data	can	be	entered	1	bit	at	a	time	at	one	end	of	the	register	and	can	be	removed(read)	1	bit
at	a	time	from	the	other	end;	this	process	is	called	serial	input-output.Figure	2.30	shows	a	4-bit	shift	register	built	from	D	flip-flops.	A	right	shift	isaccomplished	by
activating	the	SHIFT	enable	line	connected	to	the	clock	input	CKof	each	flip-flop.	In	addition	to	the	serial	data	lines,	m	input	or	output	lines	areoften	provided	to	permit
parallel	data	transfers	to	or	from	the	shift	register.	Addi-tional	control	lines	are	required	to	select	the	serial	or	parallel	input	modes.	A	fur-ther	refinement	is	to	permit	both
left-	and	right-shift	operations.
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LOADCLOCKCLEAR

>	Register	Z
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Figure	2.29

A	4-bit	D	register	with	parallel	load:	(a)	logic	diagram;	(b)	symbol.
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SHIFT

CLEAR
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Figure	2.30

A	4-bit,	right-shift	register:	(a)	logic	diagram;	(b)	symbol.

Shift	registers	are	useful	design	components	in	a	number	of	applications,including	storage	of	serial	data	and	serial-to-parallel	or	parallel-to-serial	data	con-version.	They
can	also	be	used	to	perform	certain	arithmetic	operations	on	binarynumbers,	because	left-	(right-)	shifting	corresponds	to	multiplication	(division)	bytwo.	The	instruction
sets	of	most	computers	include	shift	operations.

Counters.	A	counter	is	a	sequential	circuit	designed	to	cycle	through	a	prede-termined	sequence	of	k	distinct	states	50,5,,...,	Sk_	j	in	response	to	signals	(1	-pulses)on	an
input	line.	The	k	states	represent	k	consecutive	numbers,	so	the	state	transitionscan	be	described	by	the	statement

SM	:=	5,	plus	1	(modulo	k)

Each	1-input	increments	the	state	by	one;	the	circuit	can	therefore	be	viewed	ascounting	the	input	Is.	Counters	come	in	many	different	varieties	depending	on	thenumber
codes	used,	the	modulus	k,	and	the	timing	mode	(synchronous	or	asynchro-nous).

Figure	2.31	shows	a	counter	designed	to	count	1-pulses	applied	to	its	COUNTENABLE	input	line.	The	counting	is	modulo-2";	that	is,	the	counter's	modulus	k	=

2",	and	it	has	2"	states	Sn,	S,

'2--1-

The	output	is	an	n-bit	binary	number

COUNT	=	Sj,	and	the	count	sequence	is	either	up	or	down,	as	determined	by	thecontrol	line	DOWN.	In	the	up-counting	mode	(DOWN=	0),	the	counter's	behavior	is

S,+1	:=	5,	plus	1	(modulo	2")

COUNT	ENABLECLEARDOWN

Modulo-2"up-downcounter

COUNT

Figure	2.31

A	modulo-2'1	up-down	counter.
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whereas	in	the	down-counting	mode	(DOWN	=	1),	the	behavior	becomes5,+1	:=	S	minus	1	(modulo	2")

In	some	counters	modulus-select	control	lines	can	alter	the	modulus;	such	countersare	termed	programmable.

Counters	have	several	applications	in	computer	design.	They	can	store	thestate	of	a	control	unit,	as	in	a	program	counter.	Incrementing	a	counter	provides	anefficient
means	of	generating	a	sequence	of	control	states.	Counters	can	also	gener-ate	timing	signals	and	introduce	precise	delays	into	a	system.

Buses.	A	bus	is	a	set	of	lines	(wires)	designed	to	transfer	all	bits	of	a	wordfrom	a	specified	source	to	a	specified	destination	on	the	same	or	a	different	IC;	thesource	and
destination	are	typically	registers.	A	bus	can	be	unidirectional,	that	is,capable	of	transmitting	data	in	one	direction	only,	or	it	can	be	bidirectional.Although	buses	perform
no	logical	function,	a	significant	cost	is	associated	withthem,	since	they	require	logic	circuits	to	control	access	to	them	and,	when	usedover	longer	distances,	signal
amplification	circuits	(drivers	and	receivers).	The	pinrequirements	and	gate	density	of	an	IC	increase	rapidly	with	the	number	of	externalbuses	connected	to	it.	If	these
buses	are	long,	the	cost	of	the	wires	or	cables	usedmust	also	be	taken	into	account.

To	reduce	costs,	buses	are	often	shared,	especially	when	they	connect	manydevices.	A	shared	bus	is	one	that	can	connect	one	of	several	sources	to	one	of	sev-eral
destinations.	Bus	sharing	reduces	the	number	of	connecting	lines	but	requiresmore	complex	bus-control	mechanisms.	Although	shared	buses	are	relativelycheap,	they	do
not	permit	simultaneous	transfers	between	different	pairs	ofdevices,	which	is	possible	with	unshared	or	dedicated	buses.	Bus	structures	areexplored	further	in	Chapter	7.

2.2.2	Programmable	Logic	Devices

Next	we	examine	a	class	of	components	called	programmable	logic	devices	orPLDs,	a	term	applied	to	ICs	containing	many	gates	or	other	general-purpose	cellswhose
interconnections	can	be	configured	or	"programmed"	to	implement	anydesired	combinational	or	sequential	function	[Alford	1989].	PLDs	are	relativelyeasy	to	design	and
inexpensive	to	manufacture.	They	constitute	a	key	technologyfor	building	application-specific	integrated	circuits	(ASICs).	Two	techniques,	areused	to	program	PLDs:	mask
programming,	which	requires	a	few	special	steps	in
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the	IC	chip-manufacturing	process,	and	field	programming,	which	is	done	bydesigners	or	end	users	"in	the	field"	via	small,	low-cost	programming	units.	Somefield-
programmable	PLDs	are	erasable,	implying	that	the	same	IC	can	be	repro-grammed	many	times.	This	technology	is	especially	convenient	when	developingand	debugging
a	prototype	design	for	a	new	product.

Programmable	arrays.	The	connections	leading	to	and	from	logic	elements	ina	PLD	contain	transistor	switches	that	can	be	programmed	to	be	permanentlyswitched	on	or
switched	off.	These	switches	are	laid	out	in	two-dimensional	arraysso	that	large	gates	can	be	implemented	with	minimum	IC	area.	The	programmablelogic	gates	of	a	PLD
array	are	represented	abstractly	in	Figure	2.32b,	with	x	denot-ing	a	programmable	connection	or	crosspoint	in	a	gate's	input	line.	The	absence	ofan	x	means	that	the
corresponding	connection	has	been	programmed	to	the	off	(dis-connected)	state.

The	gate	structures	of	Figure	232b	can	be	combined	in	various	ways	to	imple-ment	logic	functions.	The	programmable	logic	array	(PLA)	shown	in	Figure	2.33is	intended
to	realize	a	set	of	combinational	logic	functions	in	minimal	SOP	form.It	consists	of	an	array	of	AND	gates	(the	AND	plane),	which	realize	a	set	of	prod-uct	terms	(prime
implicants),	and	a	set	of	OR	gates	(the	OR	plane),	which	formvarious	logical	sums	of	the	product	terms.	The	inputs	to	the	AND	gates	are	pro-grammable	and	include	all
the	input	variables	and	their	complements.	Hence	it	ispossible	to	program	any	desired	product	term	into	any	row	of	the	PLA.	For	exam-ple,	the	top	row	of	the	PLA	in
Figure	2.33	is	programmed	to	generate	the	termx2x3x4y}y2,	which	is	used	in	computing	the	output	D2\	the	last	row	is	programmedto	generate	xxx2yx	for	output	D,.	The
inputs	to	the	OR	gates	are	also	programma-ble,	so	each	output	column	can	include	any	subset	of	the	product	terms	producedby	the	rows.	The	PLA	in	Figure	2.33	realizes
the	combinational	part	C	of	the	4-bit-stream	adder	specified	in	Figure	2.13.	The	AND	plane	generates	the	51	six-vari-able	product	terms	according	to	the	SOP	design	given
in	Figure	2.14.
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Figure	2.32

AND	and	OR	gates:	(a)	normal	notation;	(b)	PLD	notation.
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PL	A	implementing	the	combinational	part	C	of	the	adder	of	Figure	2.13.
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Closely	related	to	a	PLA	is	a	read-only	memory	(ROM)	that	generates	all	2"possible	rc-variable	product	terms	(minterms)	in	its	AND	plane.	This	enables	eachoutput
column	of	the	OR	plane	to	realize	any	desired	function	of	n	or	fewer	vari-ables	in	sum-of-minterms	form.	Unlike	a	PLA,	the	AND	plane	is	fixed;	the	pro-gramming	that
determines	the	functions	generated	by	a	ROM	is	confined	to	the	ORplane.	A	small	ROM	with	three	input	variables,	23	=	8	rows,	and	two	output	col-umns	is	shown	in
Figure	2.34/?.	It	has	been	programmed	to	realize	the	full-adderfunction	defined	by	Figure	2.34a—compare	the	multiplexer	realizations	of	the	fulladder	appearing	in	Figure
2.22.	Note	the	use	of	dots	to	denote	the	fixed	connec-tions	in	the	AND	plane.	This	particular	ROM	can	be	programmed	to	realize	anytwo	of	the	256	Boolean	functions	of
three	or	fewer	variables.	Field-programmableROMs	are	known	as	PROMs	(programmable	ROMs).

PLAs	and	ROMs	are	universal	function	generators	capable	of	realizing	a	set	oflogic	functions	that	depend	on	some	maximum	number	of	variables.	They	are	two-level	logic
circuits	in	which	the	lines	can	have	large	fan-out	and	the	gates	(espe-cially	the	output	gates)	can	have	large	fan-in.	High	fan-in	and	fan-out	tends	tomake	these	circuits'
propagation	delays	quite	high,	however.	A	ROM	is	a	memorydevice	only	in	the	sense	that	its	OR	plane	"stores"	the	2"	data	words	that	have	beenprogrammed	into	it.	A
stored	word	is	read	out	each	time	the	ROM	receives	a	newinput	combination	or	address.	The	AND	plane	therefore	serves	as	a	l-ouf-ol-2'address	decoder.
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Figure	2.34

ROM	implementation	of	a	full	adder:	(a)	truth	table;	(b)	ROM	array.

Comparing	Figures	2.34a	and	2.34b,	we	see	that	a	ROM	effectively	stores	theentire	truth	table	of	the	functions	it	generates.	Consequently,	the	effort	needed	todesign	a
ROM	is	trivial.	The	process	of	reading	the	stored	information	from	aROM	is	referred	to	as	table	lookup.	Read-only	memories	are	suitable	for	imple-menting	circuits	whose
10	functions	are	difficult	to	specify	in	logical	terms;	somecode	conversion	and	arithmetic	circuits	are	of	this	type.	The	usefulness	of	ROMs	islimited	by	the	fact	that	their
size	doubles	with	each	new	primary	input	variable.Unlike	a	ROM,	a	PLA	stores	a	condensed	(minimized)	form	of	the	truth	table	andso	generally	occupies	much	less	chip
area	than	an	equivalent	ROM.

Many	variants	of	the	preceding	PLD	types	exist	[Alford	1989].	RegisteredPLAs	have	flip-flops	attached	via	programmable	connections	to	the	outputs	of	theOR	plane,
allowing	a	single	IC	to	implement	medium-sized	sequential	circuits.Programmable	array	logic	(PAL)	circuits	have	an	AND	plane	that	is	programma-ble,	but	an	OR	plane
with	fixed	connections	designed	to	link	each	output	line	to	afixed	set	of	AND	rows,	typically	about	eight	rows.	Such	a	PAL	output	can	realizeonly	a	two-level	expression
containing	at	most	eight	terms.	A	PAL's	advantagesare	ease	of	use	in	some	applications,	as	well	as	higher	speed	because	output	fan-outis	restricted.

Field-programmable	gate	arrays.	This	important	class	of	PLDs	was	introducedin	the	mid-1980s.	A	field-programmable	gate	array	(FPGA)	is	a	two-dimensionalarray	of
general-purpose	logic	circuits,	called	cells	or	logic	blocks,	whose	functionsare	programmable;	the	cells	are	linked	to	one	another	by	programmable	buses.	Thecell	types
are	not	restricted	to	gates.	They	are	small	multifunction	circuits	capableof	realizing	all	Boolean	functions	of	a	few	variables;	a	cell	may	also	contain	one	ortwo	flip-flops.
Like	all	field-programmable	devices,	FPGAs	are	suitable	for	imple-menting	prototype	designs	and	for	small-scale	manufacture.

FPGAs	can	store	the	program	that	determines	the	circuit	to	be	implemented	ina	RAM	or	PROM	on	the	FPGA	chip.	The	pattern	of	the	data	in	this	configuration

memory	CM	determines	the	cells'	functions	and	their	interconnection	wiring.	Eachbit	of	CM	controls	a	transistor	switch	in	the	target	circuit	that	can	select	some
cellfunction	or	make	(break)	some	connection.	By	replacing	the	contents	of	CM,designers	can	make	design	changes	or	correct	design	errors.	This	type	of	FPGAcan	be
reprogrammed	repeatedly,	which	significantly	reduces	development	andmanufacturing	costs.	Some	FPGAs	employ	fuses	or	antifuses	as	switches,	whichmeans	that	each
FPGA	IC	can	be	programmed	only	once.	These	one-time	pro-grammable	FPGAs	have	other	advantages,	however,	such	as	higher	density,	andsmaller	or	more	predictable
delays.

Two	types	of	logic	cells	found	in	FPGAs	are	those	based	on	multiplexers	andthose	based	on	PROM	table-lookup	memories.	Figure	2.35a	shows	a	cell	type	(theC-module)
employed	by	Actel	Corp.'s	ACT	series	of	multiplexer-based	FPGAs[Greene,	Hamdy,	and	Beal	1993;	Actel	1994].	This	cell	is	a	four-input,	1-bit	multi-plexer	with	an	AND	and
OR	gate	added.	A	variant	called	the	S-module	has	a	Dflip-flop	connected	to	the	primary	output;	there	are	also	special	cells	attached	to	theFPGA's	10	pins.	An	ACT	FPGA
contains	a	large	array	(many	thousands)	of	suchcells	organized	in	rows	separated	by	horizontal	wiring	channels	as	illustrated	inFigure	2.356.	Vertical	wire	segments	are
attached	to	each	cell's	10	terminals.These	wires	enable	connections	to	be	established	between	the	cells	and	the	wiringchannels	by	means	of	one-time-programmable
antifuses	positioned	where	the	hori-zontal	and	vertical	wires	cross.	In	addition,	long	vertical	wires	run	across	the	entirearray	to	carry	primary	IO	signals,	power	(logical
1),	and	ground	(logical	0).

Our	discussion	of	multiplexers	as	function	generators	implies	that	the	FPGAcell	of	Figure	2.35a	can	generate	any	Boolean	function	of	up	to	three	variables	ifthe	inputs	are
supplied	in	both	true	and	complemented	form.	This	cell	can	alsogenerate	various	useful	functions	of	more	than	three	variables	due	to	the	presence
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Figure	2.35

Actel	ACT-series	FPGA:	(a)	basic	cell	(C-module);	(b)	chip	architecture
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of	the	two	extra	gates.	Figures	2.36a,	2.36b.	and	2.36c	show	how	this	cell	imple-ments	a	functionally	complete	set	of	logic	gates.	Observe	how	the	cell's	AND	andOR	gates
help	to	realize	four-input	AND	and	OR	functions.	Figure	2.36a1	showshow	the	same,	basically	combinational	cell	implements	an	edge-triggered	D	flip-flop.



EXAMPLE	2.5	FPGA	IMPLEMENTATION	OF	A	SERIAL	ADDER.	We	will	use

the	Actel	C-module	of	Figure	2.35a	to	realize	the	serial	adder	of	Figure	2.12.	The	tar-get	circuit	contains	a	combinational	part	C.	which	is	a	full	adder	defined	by	the	equa-
tions

c	=	xxx2	+	xly	+	x^y

(2.14)

0	^X

Four-input,1-bit

multiplexer

>£-*

c	d

abed

1	-X-

Four-input.

1-bitmultiplexer

d

a	+	b	+	c	+	d

0	-X

Four-input.

1-bitmultiplexer

X	X	X	X

(a)

(b)

(c)

CK

(d)

Figure	2.36

FPGA	cell	of	Figure	2.35a	programmed	to	realize:	(a)	a	four-input	AND	gate;	(»)	a	four-input	OR	gate;	(c)	aninverter;	(d)	a	D	flip-flop.

Here	z	is	the	sum	bit	and	c	is	the	carry	bit.	A	single	D	flip-flop	stores	the	value	of	c	pro-duced	in	each	clock	cycle	and	applies	it	to	C	as	y	in	the	next	clock	cycle.	We
willassume	that	if	the	complements	of	any	of	the	input	variables	jc,,	x2,	or	y	are	needed,they	must	be	generated	explicitly	in	the	FPGA.	We	will	also	try	to	use	as	few	cells
aspossible	in	the	target	circuit.

Figure	2.36d	shows	that	two	cells	are	required	for	the	D	flip-flop,	assuming	thatwe	don't	need	the	complement	of	y.	It's	not	immediately	clear	how	many	cells	areneeded	to
produce	the	sum	and	carry.	A	little	experimentation	shows	that	the	carryfunction	does	indeed	have	a	one-cell	realization;	see	Figure	2.37.	Observe	that	Equa-tion	(2.14)
can	be	rewritten	as

c	=	y(xx	+	x2)	+	xyx2

which	suggests	the	way	we	use	the	Actel	cell's	AND	and	OR	gates.	No	amount	ofexperimentation	yields	a	one-cell	realization	of	the	sum	function.	The
multiplexerrealization	of	the	full	adder	we	gave	earlier	(Figure	2.22c)	requires	the	data	inputs	tobe	supplied	to	the	sum	part	in	both	true	and	complemented	form.	We	will
thereforedevote	a	third	cell	to	generating	y	so	we	can	realize	z	in	the	manner	of	Figure	2.22c.
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Figure	2.37

FPGA	implementation	of	a	serial	adder.

104	The	resulting	design	given	in	Figure	2.37	for	the	serial	adder	employs	a	total	of	five
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FPGAs	are	very	well	suited	to	computer-aided'design	and	manufacture;	theprocess	of	mapping	a	new	design	into	one	or	more	FPGA	chips	can	be	almostentirely
automated.	It	requires	first	translating	or	"compiling"	the	design	specifica-tion—a	schematic	diagram	or	an	HDL	description,	for	example—into	a	logic	(gateand	flip-flop)
model.	Specialized	place-and-route	CAD	software	is	then	employedto	assign	the	logic	elements	to	cells,	to	determine	the	switch	settings	needed	to	seteach	cell's	function,
and	to	establish	the	intercell	connections.	Finally,	the	designis	physically	transferred	to	one	or	more	copies	of	the	FPGA	chip	via	an	appropri-ate	programming	unit,	a
process	that	has	been	aptly	described	as	"desktop	manu-facturing."

2.2.3	Register-Level	Design

A	register-level	system	consists	of	a	set	of	registers	linked	by	combinational	data-transfer	and	data-processing	circuits.	A	block	diagram	can	define	its	structure,	andthe
set	of	operations	it	performs	on	data	words	can	define	its	behavior.	Each	opera-tion	is	typically	implemented	by	one	or	more	elementary	register-transfer	steps	ofthe	form

cond:Z:=f(X],X2,...,Xk);	(2.15)

where/is	a	function	to	be	performed	or	an	instruction	to	be	executed	in	one	clockcycle.	Here	X,,	X->,	...,	Xk	and	Z	denote	data	words	or	the	registers	that	store	them.The
prefix	cond	denotes	a	control	condition	that	must	be	satisfied	(cond	=	1)	forthe	indicated	operation	to	take	place.	Statement	(2.15)	is	read	as	follows:	whencond	holds,
compute	the	(combinational)	function/on	Xx,	X2,	...,Xk	and	assign	theresulting	value	to	Z.

Data	and	control.	A	simple	register-level	system	like	that	of	Figure	2.38a	per-forms	a	single	action,	in	this	case,	the	add	operation	Z	:=	A	+	B.	Figure	2.386shows	a	more
complicated	system	that	can	perform	several	different	operations.Such	a	multifunction	system	is	generally	partitioned	into	a	data-processing	part,called	a	datapath,	and	a
controlling	part,	the	control	unit,	which	is	responsible	forselecting	and	controlling	the	actions	of	the	datapath.	In	the	example	in	Figure2.386,	control	unit	CU	selects	the
operation	(add,	shift,	and	so	on)	for	the	ALU	toperform	in	each	clock	cycle.	It	also	determines	the	input	operands	to	apply	to	theALU	and	the	destination	of	its	results.	It	is
easy	to	see	that	this	circuit	has	the	con-nection	paths	necessary	to	perform	the	following	data-processing	operations,	aswell	as	many	others.

Z	:=	A	+	B;

B:=A-B;

Less	obvious	operations	that	can	be	performed	are	the	simple	data	transfer	Z	:=	B,which	is	implemented	as	Z	:=	0	+	B:	the	clear	operation	B	:=	0,	which	is	imple-mented
as	B	:=	B	-	B;	and	the	negation	operation	B	:=	0	-	B.	A	few	double	opera-

Register	A Register	B
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Adder
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Register	Z

Register^

—1	°	I

\	«*"«-	L.

\	plexer	/

Register	B

MultifunctionALU

Register	Z

Controlunit	CU

(a)

(b)

Figure	2.38

(a)	Single-function	circuit	performing	Z:=	A	+	B;	(b)	a	multifunction	circuit.
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tions	can	also	be	performed	in	one	clock	cycle,	for	example,

B	:=Z+B,Z:=Z+B;

Each	of	the	foregoing	operations	requires	CU	to	send	specific	control	signals,	indi-cated	by	dashed	lines	in	Figure	2.38b,	to	various	places	in	the	datapath.	Forinstance,	to
execute	the	subtraction	Z	:=	A	-	B,	the	controller	CU	must	send	selectsignals	to	the	ALU	to	select	its	subtract	function;	it	must	send	select	signals	to	themultiplexer	that
connects	register	A	to	the	ALU's	left	port;	and	it	must	send	a	"loaddata"	control	signal	to	the	output	register	Z.

An	example	of	a	large	multifunction	system	is	a	computer's	CPU.	Its	controlunit,	which	is	responsible	for	the	interpretation	of	instructions,	is	called	the	pro-gram	control
unit	or	I-unit.	The	CPU's	datapath	is	also	called	the	E-unit.	Furtherdatapath/control	subdivisions	are	possible	in	complex	systems,	yielding	a	hierar-chy	of	levels	of	control.
In	relatively	simple	machines	such	as	that	of	Figure	2.38/?,the	control	unit	can	be	a	special-purpose	hard-wired	sequential	circuit	designedusing	standard	gate-level
techniques.	In	more	complex	cases,	both	the	datapath	andcontrol	units	may	have	to	be	treated	at	the	register	level.

A	description	language.	HDLs,	which	were	introduced	in	section	2.1.1,	pro-vide	both	behavioral	and	structural	descriptions	at	the	register	level.	A	full-fledgedHDL	like
VHDL	is	very	complex,	however,	so	we	will	use	a	much	smaller	HDLthat	suffices	for	our	purposes	and	is	largely	self-explanatory.	An	essential	elementof	all	HDLs,
including	ours,	is	a	state	assignment	or	register-transfer	statement.which	has	the	general	form	of	(2.15),	and	specifies	a	conditional	state	transitionthat	takes	place	in	a
single	clock	cycle.	An	alternative	notation	for	(2.15)	is	'

if	cond	=	1	then	Z	:=/(*,.	X2	Xk);
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,	.,	description	and	hardware	components	and	signals	in	the	system	being	described.

The	Register	Level	^or	examPle-tne	statement	Z	:=	A	+	B	describes	the	circuit	of	Figure	2.38a.	In	thisinterpretation,	+	represents	the	adder.	The	input	connections	to	the
adder	from	reg-isters	A	and	B	are	inferred	from	the	fact	that	A	and	B	are	the	arguments	of	+,	whilethe	output	connection	from	the	adder	to	register	Z	is	inferred	from	Z	:
=.	An	exactcorrespondence	between	hardware	structures	and	HDL	constructs	can	be	hard	tospecify	without	considerable	verbosity.	To	keep	our	HDL	concise,	we	use	it
prima-rily	for	behavioral	descriptions	and	supplement	it	with	block	diagrams	to	describestructure.

Figure	2.39	illustrates	the	use	of	our	HDL	to	describe	the	behavior	of	a	com-plete	system	at	the	register	level.	This	8-bit	multiplication	circuit,	namedmultiplier8,
computes	the	product	Z	=	Y	x	X.	where	the	numbers	are	8-bit	binaryfractions	in	sign-magnitude	form.	(The	actual	design	of	this	multiplier,	whichimplements	a	binary
version	of	"long"	multiplication	based	on	repeated	additionand	shifting,	is	examined	later	in	Example	2.7.)	Two	8-bit	buses	INBUS	and	OUT-BUS	form	multiplier8's	input
and	output	ports,	respectively,	and	link	it	to	the	out-side	world.	The	circuit	contains	three	8-bit	data	registers	A,	A/,	and	Q,	as	well	as	a3-bit	control	register	COUNT	that
counts	the	number	of	add-and-shift	steps	todecide	when	multiplication	is	complete.	The	A	and	Q	registers	can	be	merged	intoa	single	16-bit	shift	register	denoted	A.Q.	The
operands	X	(the	multiplier)	and	F(the	multiplicand)	are	initially	transferred	from	INBUS	into	the	Q	and	M	registers,respectively.	The	product	is	computed	by	multiplying
Fby	1	bit	of	X	at	a	time	andadding	the	result	to	A.	After	each	addition	step,	the	contents	of	A.Q	are	shifted	1	bitto	the	right	so	that	the	next	multiplier	bit	required	is	always



in	<2[7],	the	right-mostbit	in	the	Q	register.	(Consequently,	the	multiplier	F	is	eventually	shifted	out	of	Qand	lost.)	After	seven	iterations	to	multiply	the	magnitude	parts	of
X	and	F,	the	signof	the	product	is	computed	and	placed	in	the	left-most	position	of	A,	that	is,	in	A[0].

multiplier8 (in:	INBUS:	out:	OUTBUS):

register	A[0:1].	M[0:7],	£[0:7].	COUNT[0:2];

bus	INBUS[0J],	OUTBUS10J);

BEGIN: A	:=	0.	COUNT	:=	0,	M	:=	INBUS:

Q	:=	INBUS:

ADD: A[0:7]	:=	A[l:7]	+	M[l:7]	x	Q[l];

SHIFT: A[0]	:=0,A[1:7].	Q:=A.Q[0:6],

TEST: COUNT	:=	COUNT	+	1;

if	COUNT*	1	then	go	to	ADD.

FINISH: A[0]	:=	M[0]	xor	Q[l],	Q[l]	:=	0:

OUTPUT: OUTBUS	:=	Q:

OUTBUS	:=	A:

end	multiplier8:

Figure	2.39

Formal	language	description	of	an	8-bit	binary	multiplier.

The	final	product	ends	up	in	A.Q,	from	which	it	is	transferred	8	bits	at	a	time	toOUTBUS.

The	description	of	the	multiplier	consists	mostly	of	register-transfer	opera-tions.	The	registers	are	defined	by	the	initial	register	statement,	which	gives	theirnames,	their
sizes,	and	the	order	in	which	their	bits	are	indexed.	For	example,

register	M[0:7];

means	that	M	is	a	register	composed	of	eight	flip-flops	individually	identified	asM[i],	where	i	runs	from	0	to	7	from	left	to	right.	Equivalently,	we	could	write

M	=	M[0].M[\].M[2].M[3].M[4].M[5].M[6].M[1];

Buses	are	used	in	much	the	same	way	as	registers	and	are	defined	similarly.	Regis-ter-transfer	operations	that	take	place	simultaneously,	that	is,	during	the	same
clockcycle,	are	separated	by	commas,	while	a	semicolon	separates	sets	of	operations	thatmust	occur	in	successive	clock	cycles.	Thus	the	statement

A	:=	0,	COUNT	:=	0,	M	:=	INBUS;

appearing	on	the	line	labeled	BEGIN	in	Figure	2.39,	specifies	three	distinct	actionsto	take	place	in	the	same	clock	period:	clear	the	A	register	(transfer	the	all-0	oper-and
to	it),	clear	the	COUNT	register,	and	transfer	the	data	on	INBUS	to	register	M.Note	that	a	register	can	be	read	from	and	written	into	in	the	same	clock	cycle,	ashappens	to
Q	in	the	statement

A[0]	:=	M(0)	xor	Q[l],	Q[l]	:=	0-

The	order	in	which	a	list	of	statements	terminating	in	semicolons	are	written	isthe	sequence	in	which	the	actions	they	define	should	occur.	Deviations	from	thissequence
are	specified	by	control	statements	and	by	the	use	of	statement	labels.	Weuse	the	if	...	then	control	statement	to	make	an	action	sequence	depend	on	somecircuit
condition.	For	example,	the	conditional	branch	statement

if	COUNT	*	7	then	go	to	ADD,

(2.16)

in	Figure	2.39	means	the	following:	Test	the	state	of	the	3-bit	COUNT	register.	IfCOUNT	is	not	equal	to	7,	that	is,	1112,	then	the	next	action	to	be	taken	is	specifiedby	the
statement	labeled	ADD.	If	COUNT	=	7,	then	the	next	action	is	specified	bythe	statement	FINISH.
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Design	techniques.	The	design	problem	for	register-level	systems	is	as	fol-lows.	Given	a	set	of	operations	to	be	executed,	design	a	circuit	using	a	specified	setof	register-
level	components	that	implement	the	desired	functions	while	satisfyingcertain	cost	and	performance	criteria.	As	noted	already,	it	is	difficult	to	impose	use-ful
mathematical	structures	on	register-level	behavior	or	structure	correspondingto,	say,	Boolean	algebra	and	the	two-level	constraint	in	gate-level	design.	Lackingsuch
mathematical	tools,	register-level	design	methods	tend	to	be	heuristic	anddepend	heavily	on	the	designer's	expertise.	We	can,	however,	state	the	followinggeneral
approach	to	the	design	problem.

1.	Define	the	desired	behavior	by	a	set	of	sequences	of	register-transfer	operations,such	that	each	operation	can	be	implemented	directly	using	the	available
designcomponents.	This	constitutes	an	algorithm	AL	to	be	executed.

108	2.	Analyze	AL	to	determine	the	types	of	components	and	the	number	of	each	type

section	2	2	required	for	the	datapath	DP.

The	Register	Level	^-	Construct	a	block	diagram	for	DP	using	the	components	identified	in	step	2.Make	the	connections	between	the	components	so	that	all	data	paths
implied	byAL	are	present	and	the	given	performance-cost	constraints	are	met.

4.	Analyze	AL	and	DP	to	identify	the	control	signals	needed.	Introduce	into	DP	thelogic	or	control	points	necessary	to	apply	these	signals.

5.	Design	a	control	unit	CU	for	DP	that	meets	all	the	requirements	of	AL.

6.	Verify,	typically	by	computer	simulation,	that	the	final	design	operates	correctlyand	meets	all	performance-cost	goals.

Algorithm	design	(step	1)	involves	a	creative	design	process	analogous	to	writ-ing	a	computer	program	and	depends	heavily	on	the	skill	and	experience	of	thedesigner.
The	identification	of	the	data-processing	components	in	step	2	is	straight-forward,	but	complications	arise	when	the	possibility	of	sharing	components	exists.For	example,

c:	A:=A	+	B,C:=C	+	D;

defines	two	addition	operations.	Since	these	additions	do	not	involve	the	sameoperands,	they	can	be	done	in	parallel	if	two	independent	adders	are	provided.However,



costs	can	be	lowered	by	sharing	a	single	adder	and	performing	the	twoadditions	sequentially,	thus:

c(t0):	A	:=	A	+	B;

c(tQ+	1):	C	:=C	+	D;

This	example	illustrates	a	fundamental	cost-performance	trade-off.	The	identifica-tion	of	the	parallelism	inherent	in	a	multistep	algorithm	can	be	exceedingly	diffi-cult.

A	typical	datapath	unit	DP	has	a	regular	and	relatively	simple	structuredesigned	for	processing	data	of	some	fixed	word	size	w.	Its	main	components	areregisters,	buses,
and	combinational	circuits,	all	oriented	toward	w-bit	words.	Thedesign	of	DP	(step	3	above)	requires	defining	an	interconnection	structure	thatlinks	the	components
needed	by	the	various	parts	of	AL.	The	specification	anddesign	of	the	control	unit	CU	(steps	4	and	5)	is	a	relatively	independent	process.Unlike	DP,	the	control	unit	often
has	a	small	number	of	states	that	interact	in	anirregular	fashion,	making	it	suitable	for	gate-level,	sequential	circuit	design	(sec-tion	2.1.3).	Specialized	methods	such	as
microprogramming	are	used	to	designlarge	control	units,	a	topic	we	consider	in	Chapter	5.

Design	verification	(step	6)	plays	a	crucial	role	in	the	development	processbecause	mistakes,	often	of	a	subtle	kind,	are	unavoidable	in	the	design	of	a	com-plex	system.
Simulation	via	CAD	tools	is	used	to	identify	and	correct	functionalerrors	before	the	new	design	is	committed	to	hardware.	CAD	tools	are	also	used	topredict	or	measure
the	system's	operating	speed.	If	a	particular	design	does	notmeet	some	specification	—an	algorithm	step	is	executed	too	slowly,	or	componentcosts	are	exceeded—it	is
necessary	to	return,	sometimes	repeatedly,	to	steps	1through	5	and	modify	AL,	DP,	or	CU.

We	now	present	two	examples	of	sequential	circuits	designed	at	the	registerlevel.	The	first	revisits	the	4-bit-stream	adder,	whose	behavior	and	gate-level	design

are	covered	in	Example	2.2.	It	illustrates	some	advantages	of	a	high-level,	func-tional	approach	to	design,	as	well	as	the	important	design	technique	of	pipelining.

EXAMPLE	2.6	DESIGN	OF	A	PIPELINED	4-BIT-STREAM	SERIAL	ADDER.	Con-sider	again	the	design	of	a	circuit	to	add	four	unsigned	binary	numbers	presented	seri-ally
(least	significant	bits	first)	to	produce	their	arithmetic	sum,	also	in	serial	form.	Thisadder	has	four	input	lines	xl,x2,x3,x4	and	a	single	output	line	z.	Our	first,	gate-
leveldesign	(Example	2.2)	started	with	the	construction	of	a	(4	x	16)-entry	state	table	(Fig-ure	2.13a),	and	culminated	in	a	circuit	(Figure	2.13Z?)	containing	two	D	flip-
flops	and	alarge	(eight-input,	three-output)	combinational	circuit.

This	time	we	will	start	with	the	observation	that	we	can	add	the	four	bit	streams	inpairs	using	a	basic	register-level	component,	the	serial	adder	(Figure	2.12).	We	can
addstreams	xl	and	x2	using	one	serial	adder	SA]	and,	at	the	same	time,	add	streams	x3	and	x4using	a	second	serial	adder	SA2.	The	outputs	of	SAX	and	SA2	are	then
combined	by	athird	serial	adder	SA3	to	obtain	the	desired	output	z.	This	process	leads	to	the	circuit4ADDX	in	Figure	2.40a,	which	contains	three	D	flip-flops	and	three	full
adders.Because	the	full	adders	are	relatively	simple—several	representative	logic	realizationsappear	in	Figure	2.9—4ADDX	contains	far	fewer	gates	than	the	design	of
Figure	2.13.

SA3's	combinational	logic	(a	full	adder)	receives	signals	directly	from	the	corre-sponding	full	adders	in	SAX	and	SA2.	Hence	4ADDX	has	more	levels	of	combinationallogic
than	a	simple	serial	adder.	Consequently,	for	4ADDX	to	operate	properly,	it	mustbe	clocked	at	a	frequency	/'	<	/.	where	/	is	the	maximum	permissible	frequency	of	aserial
adder.	We	can,	however,	operate	the	4-bit-stream	adder	at	the	higher	frequency/,if	we	insert	a	pair	of	flip-flops	as	buffers	between	SAX:SA2	and	5A3,	as	illustrated
inFigure	2.40b.	Now	the	inputs	to	SA3	in	clock	cycle	/	consist	only	of	the	signals	com-puted	by	SAX	and	SA2	in	cycle	/'	-	1	and	stored	in	the	buffer	flip-flops	of	the	new
design4ADD2.	This,	however,	means	that	each	result	bit	produced	by	4ADD2	is	delayed	byone	clock	cycle.	It	might	therefore	be	thought	that	4ADD2	is	significantly	slower
than4ADDX.	This	is	not	the	case,	however,	because	in	both	circuits	a	new	final	result	bit	z	isgenerated	in	every	clock	cycle.	Although	it	takes	two	clock	cycles	to	calculate
eachsum	bit,	4ADD2	overlaps	the	computation	of	two	successive	sum	bits	so	that,	once	it	isin	full	operation,	it	also	produces	one	result	bit	per	cycle.	Breaking	a
computation	intoa	sequence	of	simpler	subcomputations	that	can	be	overlapped	is	called	pipelining	andis	an	important	technique	in	computer	design.

In	the	final	circuit	4ADD3	(Figure	2.40c),	we	have	introduced	a	flip-flop	to	storethe	output	z	of	SA3;	we	have	also	regrouped	the	internal	(carry)	flip-flops	of	the
serialadders	to	make	them	part	of	the	buffer	registers—recall	that	their	role	is	to	store	carrybits	generated	in	clock	cycle	/'	-	1	and	used	in	clock	cycle	i.	4ADDi	has	a
circuit	struc-ture	called	a	pipeline.	It	is	composed	of	two	stages,	each	of	which	consists	of	somecombinational	logic	followed	by	a	buffer	register.	Suppose	the	first	four
data	bits	enterstage	1	at	time	(clock	cycle)	1.	Their	partial	sum	bits	z,	and	z2	are	computed	andpassed	on	to	stage	2.	The	first	result	bit	z	=	zx	plus	z2	is	then	computed	by
stage	2	dur-ing	clock	cycle	2.	At	the	same	time	a	second	set	of	four	data	bits	can	be	entered	intoand	processed	by	stage	1.	In	clock	cycle	3,	the	result	sum	is	computed	by
stage	2	whilestage	1	handles	a	third	set	of	input	data,	and	so	on.	Clearly	if	a	steady	stream	of	dataenters	the	pipeline,	then	a	new	result	bit	emerges	every	clock	cycle,
beginning	withclock	cycle	2.

Modern	computers	often	employ	pipelines	of	this	sort	for	complex	arithmeticoperations	such	as	floating-point	addition,	as	we	will	see	in	Chapter	4.	They	also	pro-cess
instructions	by	means	of	a	special	multifunction	pipeline	composed	of	as	many	asa	dozen	stages	(Chapter	5).
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Figure	2.40

Four-bit-stream	serial	adder:	(a)	basic	design	4ADD];	(b)	buffered	design	4ADD2;	(c)	two-stage	pipeline	design	4ADDi.

Next	we	examine	a	bigger	register-level	design	problem,	a	sequential	circuitthat	multiplies	two	binary	numbers.	This	circuit	is	too	complex	to	design	at	the	gatelevel;	it
also	has	well-defined	data-processing	and	control	parts.

EXAMPLE	2.7	DESIGN	OF	A	FIXED-POINT	BINARY	MULTIPLIER.	Fixed-point

multiplication	is	often	implemented	in	computers	by	a	binary	version	of	the	manualmultiplication	algorithm	for	decimal	numbers	based	on	repeated	addition	and
shifting.Consider	the	task	of	multiplying	two	8-bit	binary	fractions	X	=	XqX^x^x^x^	andY	=	y0Vj\sv;.y4.v5y6_VT	to	form	the	product	P	=	XxY.	Each	number	is	assumed	to
be	insign-magnitude	form,	where	the	left-most	bit	(with	subscript	0)	of	the	number	denotesits	sign:	0	for	positive	and	1	for	negative.	The	remaining	seven	bits	represent
the	num-ber's	magnitude.	Note	that	for	fractions,	it	is	convenient	to	index	the	numbers	from	leftto	right,	so	that	bit	xt	has	weight	2"'.	Hence	when	x0	=	0,	X	=
XqX^XjXjX^^x^j	denotes

Q[7]	iMultiplier	register

n	M[0]

Multiplicand	register

Externalcontrol	'signals
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Figure	2.41

Block	diagram	of	an	8-bit	binary	multiplier	multiplier^.

the	positive	number	N	given	by

N	=	.v,2-'	+	x22~2	+	jc32"3	+	V"*	+	x52'5	+	V-6	+	V7

When	x0	-	1,	X	denotes	-N.

The	multiplication	algorithm	that	we	will	implement	first	multiplies	the	magnitudeparts	XM	and	YM	of	A"	and	Y	thus:

Pm'^m^m	(217)

where	PM	-	p^p2...	pu	is	the	magnitude	of	the	product	P.	It	computes	the	sign/?0	of	Pvia	the	simple	operation	p0	:=	.v0	xor	y„.	The	final	result	P	-	PoPiP?	■■■	P\A	is	'^
b'tslong.	The	magnitude	multiplication	(2.17)	is	clearly	the	central	design	problem.	Theunsigned	product	PM	is	computed	in	seven	add-and-shift	steps	defined	as	follows:

P,:=PI	+	.v7	,x,M;	(2.18)

Pl+]:=2-sP-	(2.19)
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Step Action Accumulator	A Register	Q

0 Initialize	registers 00000000 10110011	=	multiplier	X

1 Add	M	to	AShift	A.	Q 010101010101010100101010 =	multiplicand	M	=	Y1011001*111011001

2 Add	M	to	AShift	A.	2 010101010111111100111111 U01100111101100

3 Add	0	to	AShift	A.	Q 000000000011111100011111
11101100

nnono

4 Add	0	to	AShift	A.	Q 000000000001111100001111 11110110

union



Add	A/	to	AShift	A.	Q

5 010101010110010000110010 in	nonomnoi

6 Add	A/	to	AShift	A.Q 010101011000011101000011 oinnoi101	n	no

7 Add	0	to	AShift	A.Q 000000000100001100100001
loin	no

11011111

8 Put	sign	of	Pin	A	[0]and	set	Q[l]	to	0 10100001 11011110	=	product/'

Figure	2.42

Illustration	of	the	binary	multiplication	algorithm.

where	P0	=	0,	P7	-	PM,	and	/	goes	from	1	to	7.	The	quantities	P0,/>,,...,P7	are	referredto	as	partial	products.	When	the	current	multiplier	bit	x1_i	is	1,	(2.18)	becomes	P,
:=P,	+	YM\	when	x7_,	=	0,	(2.18)	becomes	P,	:=	P,	+	0.	Hence	step	(2.18)	requires	add-ing	either	the	multiplicand	YM	or	0	to	the	current	partial	product	/>,.	The	factor	2~l
in(2.19)	indicates	that	P,	is	right-shifted	by	1	bit	after	each	addition;	this	factor	is	equiv-alent	to	division	by	2.	Note	that	each	add-and-shift	step	appends	1	bit	to	the
partialproduct,	which	therefore	grows	from	7	to	15	bits	(including	the	sign	bit	p0)	over	thecourse	of	the	multiplication.

With	these	preliminaries,	we	can	now	specify	the	main	components	needed	formultiplier8.	Two	8-bit	registers,	conventionally	denoted	Q	(for	multiplier-quotient)	andM
(for	multiplicand),	are	required	to	store	X	and	Y,	respectively.	A	double-length,	16-bit	register	A	(for	accumulator)	stores	the	P,'s;	this	standard	length	is	more
convenientthan	the	actual	15-bit	maximum	size	of	P.	A	7-bit	combinational	adder	is	used	for	theaddition	specified	by	(2.18)	(The	serial	adder	of	Figure	2.12	could	also	be
used,	but	itwould	be	about	seven	times	slower.)	The	adder	must	have	its	output	and	one	input	con-nected	to	A,	while	its	other	input	must	be	switched	between	M	and	zero.
The	1-bitright-shift	function	(2.19)	can	be	conveniently	obtained	by	constructing	A	from	a	right-shift	register	with	parallel	IO.

As	specified	by	(2.18),	addition	is	controlled	by	bit	x1_i,	which	is	stored	in	the	Qregister.	The	multipliers	control	unit	must	be	able	to	scan	the	contents	of	Q	from	rightto
left	in	the	course	of	the	multiplication.	If	Q	is	a	right-shift	register,	then	x1_i	canalways	be	obtained	from	Q's	right-most	flip-flop	Q[l]	by	right-shifting	Q	before	thenext	x1_l
is	needed.	Consequently,	XSi	is	gradually	reduced	from	7	to	0	bits	while	Pt	isexpanding	from	7	to	14	bits,	also	by	right-shifting.	Hence	we	can	combine	A	and	Q	intoa
single	16-bit,	right-shift	register,	the	left	half	of	which	is	A	while	the	right	half	is	Q.The	multiplier	is	completed	by	the	inclusion	of	external	data	buses	INBUS	and	OUT-
BUS	and	a	control	unit,	which	contains	a	3-bit	iteration	counter	named	COUNT.	Theresulting	circuit	has	the	structure	depicted	in	Figure	2.41.	A	complete	HDL
descriptionof	the	multiplication	algorithm	developed	above	appears	in	Figure	2.39.

At	the	core	of	our	design	is	the	adder	and	the	A.Q	register	that	implement	(2.18)and	(2.19).	respectively.	The	output-carry	signal	cOVT	of	the	adder	is	the	most	signifi-cant
bit	of	an	8-bit	sum	and	so	is	connected	to	the	data	input	of	A[0}.	The	counterCOUNT	is	incremented	and	tested	at	the	end	of	each	add-shift	step	to	determine	if	theadd-
shift	phase	should	terminate.	When	COUNT	is	found	to	contain	7,	PSi	occupiesbits	1:14	of	the	register-pair	A.Q;	that	is,	bits	A[1:7].Q[0:6].	The	sign	bit	p0	is	thencomputed
from	x0	and	y0,	which	are	stored	in	Q[l]	and	M[0],	respectively,	and	p0	isplaced	inA[0].	At	the	same	time	0	is	written	into	Q[l]	to	expand	the	final	product	from15	to	16
bits.	Figure	2.42	shows	the	complete	step-by-step	multiplication	process	fortwo	sample	fractions	X	=	10110011	and	Y	=	01010101.	The	sign	bit	x0	=	1	of	X	(indi-cating
that	it	is	a	negative	number)	is	marked	by	an	underline.	The	data	in	A.Q	to	theleft	of	.v0	is	the	current	partial	product	P,.

The	control	unit	of	Figure	2.41	is	designed	by	first	identifying	from	the	formaldescription	(Figure	2.39)	all	the	control	signals	and	control	points	needed	to	implementthe
specified	register-transfer	operations.	Figure	2.43	lists	a	possible	set	of	control
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Controlsignal

Operation	controlled

Clear	accumulator	A	(reset	to	0).

Clear	counter	COUNT	(reset	to	0).

LoadA[0].

Load	multiplicand	register	M	from	INBUS.

Load	multiplier	register	Q	from	INBUS.

Load	main	adder	outputs	into	A[	1:7].

Select	M	or	0	to	apply	to	right	input	of	adder.

Right-shift	A.	Q.

Increment	counter	COUNT.

Select	COUTot	Af[0]	xor	Q[l\	to	load	into	A[0].

Clear	Q[l\.

Transfer	contents	of	A	to	OUTBIS

Transfer	contents	of	Q	to	OUTBUS.

Figure	2.43

Control	signals	for	multipliers.
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M[l:7]

OLTBUS

Figure	2.44

Implementation	of	some	control	points	of	multiplier8.

signals	for	the	multiplier.	In	some	cases	several	control	signals	implement	a	particularoperation.	For	instance,	the	add	operation	employs	c6	to	select	the	adder's	right
inputoperand,	c9	to	select	cOUT	for	loading	into	A[0],	and	c2	and	c5	to	actually	load	the	8-bitsum	into	v4[0:7].	The	number	of	distinguished	control	signals	will	vary	with
the	detailsof	the	logic	used	to	implement	the	control	unit.	Figure	2.44	shows	a	straightforwardimplementation	of	the	control	logic	associated	with	the	accumulator	and
adder	subcir-cuits	using	the	control	signals	defined	in	Figure	2.43.

2.3

THE	PROCESSOR	LEVEL

The	processor	or	system	level	is	the	highest	in	the	computer	design	hierarchy.	It	isconcerned	with	the	storage	and	processing	of	blocks	of	information	such	as	pro-grams
and	data	files.	The	components	at	this	level	are	complex,	usually	sequential,circuits	that	are	based	on	VLSI	technology.	Processor-level	design	is	very	much	aheuristic
process,	as	there	is	little	design	theory	at	this	level	of	abstraction.

2.3.1	Processor-Level	Components
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The	component	types	recognized	at	the	processor	level	fall	into	four	main	groups:processors,	memories,	IO	devices,	and	interconnection	networks;	see	Figure	2.45.In	this
section	we	give	only	a	brief	summary	of	the	characteristics	of	processor-level	components;	they	are	examined	individually	and	in	much	greater	depth	inlater	chapters.
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Central	processing	unit.	We	define	a	CPU	to	be	a	general-purpose,	instruc-tion-set	processor	that	has	overall	responsibility	for	program	interpretation	andexecution	in	a
computer	system.	The	qualifier	general-purpose	distinguishes	CPUsfrom	other,	more	specialized	processors,	such	as	IO	processors	(IOPs),	whosefunctions	are	restricted.
An	instruction-set	processor	is	characterized	by	the	factthat	it	operates	on	word-organized	instructions	and	data,	which	the	processorobtains	from	an	external	memory
that	also	stores	results	computed	by	the	proces-sor.	Most	contemporary	CPUs	are	microprocessors,	implying	that	their	physicalimplementation	is	a	single	VLSI	chip.

Figure	2.46	shows	the	essential	internal	organization	of	a	CPU	at	the	registerlevel.	The	CPU	contains	the	logic	needed	to	execute	its	particular	instruction	setand	is
divided	into	datapath	and	control	units.	The	control	part	(the	I-unit)	gener-ates	the	addresses	of	instructions	and	data	stored	in	external	memory.	In	this	par-ticular	system
a	cache	memory	is	interposed	between	the	main	memory	M	and	theCPU.	The	cache	is	a	fast	buffer	memory	designed	to	hold	an	active	portion	of	thesystem's	address
space;	it	is	often	placed,	wholly	or	in	part,	on	the	same	IC	asthe	CPU.	Each	memory	request	generated	by	the	CPU	is	first	directed	to	the	cache.If	the	required	information
is	not	currently	assigned	to	the	cache,	the	request	is	re-directed	to	M	and	the	cache	is	automatically	updated	from	M.	The	I-unit	fetchesinstructions	from	the	cache	or	M
and	decodes	them	to	derive	the	control	signalsneeded	for	their	execution.	The	CPU's	datapath	(E-unit)	has	the	arithmetic-logiccircuits	that	execute	most	instructions;	it
also	has	a	set	of	registers	for	temporarydata	storage.	The	CPU	manages	a	system	bus,	which	is	the	main	communicationlink	among	the	CPU-cache	subsystem,	main
memory,	and	the	IO	devices.

Micro-processor(CPU)

Mainmemory

Interconnection	network(system	bus)

Input/output	devices(keyboard,	video	display,secondary	memory,	etc.)

Figure	2.45

Major	components	of	a	computer	system.
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System	bus
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Figure	2.46

Internal	organization	of	a	CPU	and	cache	memory.

The	CPU	is	a	synchronous	sequential	circuit	whose	clock	period	is	the	com-puter's	basic	unit	of	time.	In	one	clock	cycle	the	CPU	can	perform	a	register-transferoperation,
such	as	fetching	an	instruction	word	from	M	via	the	system	bus	and	load-ing	it	into	the	instruction	register	IR.	This	operation	can	be	expressed	formally	by

IR	:=	M(PC);



where	PC	is	the	program	counter	the	CPU	uses	to	hold	the	expected	address	of	thenext	instruction	word.	Once	in	the	I-unit,	an	instruction	is	decoded	to	determine
theactions	needed	for	its	execution;	for	example,	perform	an	arithmetic	operation	ondata	words	stored	in	CPU	registers.	The	I-unit	then	issues	the	sequence	of
controlsignals	that	enables	execution	of	the	instruction	in	question.	The	entire	process	offetching,	decoding,	and	executing	an	instruction	constitutes	the	CPU's
instructioncycle.

Memories.	CPUs	and	other	instruction-set	processors	operate	in	conjunctionwith	external	memories	that	store	the	programs	and	data	required	by	the	proces-sors.
Numerous	memory	technologies	exist,	and	they	vary	greatly	in	cost	and	per-formance.	The	cost	of	a	memory	device	generally	increases	rapidly	with	its	speedof	operation.
The	memory	part	of	a	computer	can	be	divided	into	several	majorsubsystems:

1.	Main	memory	M,	consisting	of	relatively	fast	storage	ICs	connected	directly	to,and	controlled	by,	the	CPU.

2.	Secondary	memory,	consisting	of	less	expensive	devices	that	have	very	highstorage	capacity.	These	devices	often	involve	mechanical	motion	and	so	aremuch	slower
than	M.	They	are	generally	connected	indirectly	(via	M)	to	theCPU	and	form	part	of	the	computer's	10	system.

3.	Many	computers	have	a	third	type	of	memory	called	a	cache,	which	is	posi-tioned	between	the	CPU	and	main	memory.	The	cache	is	intended	to	furtherreduce	the
average	time	taken	by	the	CPU	to	access	the	memory	system.	Someor	all	of	the	cache	may	be	integrated	on	the	same	IC	chip	as	the	CPU	itself.

Main	memory	M	is	a	word-organized	addressable	random-access	memory(RAM).	The	term	random	access	stems	from	the	fact	that	the	access	time	for	everylocation	in	M
is	the	same.	Random	access	is	contrasted	with	serial	access,	wherememory	access	times	vary	with	the	location	being	accessed.	Serial	access	memo-ries	are	slower	and
less	expensive	than	RAMs;	most	secondary-memory	devicesuse	some	form	of	serial	access.	Because	of	their	lower	operating	speeds	and	serial-access	mode,	the	manner	in
which	the	stored	information	is	organized	in	secondarymemories	is	more	complex	than	the	simple	word	organization	of	main	memory.Caches	also	use	random	access	or	an
even	faster	memory-accessing	method	calledassociative	or	content	addressing.	Memory	technologies	and	the	organization	ofstored	information	are	covered	in	Chapter	6.

IO	devices.	Input-output	devices	are	the	means	by	which	a	computer	commu-nicates	with	the	outside	world.	A	primary	function	of	10	devices	is	to	act	as	datatransducers,
that	is,	to	convert	information	from	one	physical	representation	toanother.	Unlike	processors,	10	devices	do	not	alter	the	information	content	ormeaning	of	the	data	on
which	they	act.	Since	data	is	transferred	and	processedwithin	a	computer	system	in	the	form	of	digital	electrical	signals,	input	(output)devices	transform	other	forms	of
information	to	(from)	digital	electrical	signals.Figure	2.47	lists	some	widely	used	10	devices	and	the	information	media	theyinvolve.	Many	of	these	devices	use
electromechanical	technologies;	hence	theirspeed	of	operation	is	slow	compared	with	processor	and	main-memory	speeds.Although	the	CPU	can	take	direct	control	of	an
IO	device	it	is	often	under	theimmediate	control	of	a	special-purpose	processor	or	control	unit	that	directs	theflow	of	information	between	the	IO	device	and	main	memory.
The	design	of	10systems	is	considered	in	Chapter	7.

Interconnection	networks.	Processor-level	components	communicate	byword-oriented	buses.	In	systems	with	many	components,	communication	may	becontrolled	by	a
subsystem	called	an	interconnection	network;	terms	such	as	switch-ing	network,	communications	controller,	and	bus	controller	are	also	used	in	thiscontext.	The	function
of	the	interconnection	network	is	to	establish	dynamic	com-munication	paths	among	the	components	via	the	buses	under	its	control.	For	costreasons,	these	paths	are
usually	shared.	Only	two	communicating	devices	canaccess	and	use	a	shared	bus	at	any	time,	so	contention	results	when	several	systemcomponents	request	use	of	the
bus.	The	interconnection	network	resolves	suchcontention	by	selecting	one	of	the	requesting	devices	on	some	priority	basis	andconnecting	it	to	the	bus.	The
interconnection	network	may	place	the	other	request-ing	devices	in	a	queue.
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Type Medium	to/from	which	IO	device

IO	device Input Output transforms	digital	electrical	signals

Analog-digital	converter X Analog	(continuous)	electrical	signals

CD-ROM	drive X Characters	^nd	coded	images)	on	optical	disk

Document	scanner/reader X Images	on	paper

Dot-matrix	display	panel X Images	on	screen

Keyboard/keypad X Characters	on	keyboard

Laser	printer X Images	on	paper

Loudspeaker X Spoken	words	and	sounds

Magnetic-disk	drive X X Characters	(and	coded	images)	on	magnetic	disk

Magnetic-tape	drive X X Characters	(and	coded	images)	on	magnetic	tape

Microphone X Spoken	words	and	sounds

Mouse/touchpad X Spatial	position	on	pad

Figure	2.47

Some	representative	IO	devices.

Simultaneous	requests	for	access	to	some	unit	or	bus	result	from	the	fact	thatcommunication	between	processor-level	components	is	generally	asynchronous	inthat	the
components	cannot	be	synchronized	directly	by	a	common	clock	signal.This	synchronization	problem	can	be	attributed	to	several	causes.

•	A	high	degree	of	independence	exists	among	the	components.	For	example,CPUs	and	IOPs	execute	different	types	of	programs	and	interact	relatively	infre-quently	and
at	unpredictable	times.

•	Component	operating	speeds	vary	over	a	wide	range.	CPUs	operate	from	1	to	10times	faster	than	main-memory	devices,	while	main-memory	speeds	can	bemany	orders
of	magnitude	faster	than	IO-device	speeds.

•	The	physical	distance	separating	the	components	can	be	too	large	to	permit	syn-chronous	transmission	of	information	between	them.

Bus	control	is	one	of	the	functions	of	a	processor	such	as	a	CPU	or	an	IOP.	AnIOP	controls	a	common	IO	bus	to	which	many	IO	devices	are	connected.	The	IOPis
responsible	for	selecting	a	device	to	be	connected	to	the	IO	bus	and	from	there	tomain	memory.	It	also	acts	as	a	buffer	between	the	relatively	slow	IO	devices	andthe
relatively	fast	main	memory.	Larger	systems	have	special	processors	whosesole	function	is	to	supervise	data	transfers	over	shared	buses.

2.3.2	Processor-Level	Design

Processor-level	design	is	less	amenable	to	formal	analysis	than	is	design	at	the	reg-ister	level.	This	is	due	in	part	to	the	difficulty	of	giving	a	precise	description	of
thedesired	system	behavior.	To	say	that	the	computer	should	execute	efficiently	allprograms	supplied	to	it	is	of	little	help	to	the	designer.	The	common	approach	to



design	at	this	level	is	to	take	a	prototype	design	of	known	performance	and	modifyit	where	necessary	to	accommodate	new	technologies	or	meet	new
performancerequirements.	The	performance	specifications	usually	take	the	following	form:

•	The	computer	should	be	capable	of	executing	a	instructions	of	type	b	per	second.

•	The	computer	should	be	able	to	support	c	memory	or	10	devices	of	type	d.

•	The	computer	should	be	compatible	with	computers	of	type	e.

•	The	total	cost	of	the	system	should	not	exceed/

Even	when	a	new	computer	is	closely	based	on	a	known	design,	it	may	not	be	pos-sible	to	predict	its	performance	accurately.	This	is	due	to	our	lack	of	understandingof	the
relation	between	the	structure	of	a	computer	and	its	performance.	Perfor-mance	evaluation	must	generally	be	done	experimentally	during	the	design	pro-cess,	either	by
computer	simulation	or	by	measurement	of	the	performance	of	acopy	of	the	machine	under	working	conditions.	Reflecting	its	limited	theoreticalbasis,	only	a	small	amount
of	useful	performance	evaluation	can	be	done	via	math-ematical	analysis	[Kant	1992].

Prototype	structures.	We	view	the	design	process	as	involving	two	majorsteps:	First	select	a	prototype	design	and	adapt	it	to	satisfy	the	given	performanceconstraints.
Then	determine	the	performance	of	the	proposed	system.	If	unsatisfac-tory,	modify	the	design	and	repeat	this	step;	continue	until	an	acceptable	design	isobtained.	This
conservative	approach	to	computer	design	has	been	widely	followedand	accounts	in	part	for	the	relatively	slow	evolution	of	computer	architecture.	It	israre	to	find	a
successful	computer	structure	that	deviates	substantially	from	thenorm.	The	need	to	remain	compatible	with	existing	hardware	and	software	stan-dards	also	influences
the	adherence	to	proven	designs.	Computer	owners	areunderstandably	reluctant	to	spend	money	retraining	users	and	programmers,	orreplacing	well-tested	software.

The	systems	of	interest	here	are	general-purpose	computers,	which	differ	fromone	another	primarily	in	the	number	of	components	used	and	their	autonomy.	Thevariety	of
interconnection	or	communication	structures	used	is	fairly	small.	Wewill	represent	these	structures	by	means	of	block	diagrams	that	are	basically	graphs(section	2.1.1).
Figure	2.48	shows	the	structure	that	applies	to	first-generation	com-puters	and	many	small,	modern	microprocessor-based	systems.	The	addition	ofspecial-purpose	10
processors	typical	of	the	second	and	subsequent	generations	is
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Centralocessing	unit CPU M Main	memory

Systembus ICN

IO

devices
D, D2 D*

Figure	2.48

Basic	computer	structure
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Centralprocessing	unit

Cachememory

Systembus

IO

processors

IO

devices

CPU

CM

IOP,

Mainmemory

ICN

IOP,

Figure	2.49

Computer	with	cache	and	IOprocessors.

shown	in	Figure	2.49.	Here	ICN	denotes	an	interconnection	(switching)	networkthat	controls	memory-processor	communication.	Figure	2.50	shows	a	prototypestructure
employing	two	CPUs;	it	is	therefore	a	multiprocessor.	The	uniprocessorsystems	of	Figures	2.48	and	2.49	are	special	cases	of	this	structure.	Even	morecomplex	structures
such	as	computer	networks	can	be	obtained	by	linking	severalcopies	of	the	foregoing	prototype	structures.

Performance	measurement.	Many	performance	figures	for	computers	arederived	from	the	characteristics	of	its	CPU.	As	observed	in	section	1.3.2,	CPU

Centralprocessing	units

Cachememories

Crossbarswitchingnetwork

CPU,	—|

CM,

CPU,	—i

CM,

Main	memory

M, M2

ICN

IOdevices



IOprocessors IOP, IOP2 IOP„

D, D2 D3 D*

Figure	2.50

Computer	with	multiple	CPUs	and	main	memory	banks.

speed	can	be	measured	easily,	but	roughly,	by	its	clock	frequency/in	megahertz.Other,	and	usually	better,	performance	indicators	are	MIPS,	which	is	the
averageinstruction	execution	speed	in	millions	of	instructions	per	second,	and	CPI,	whichis	the	average	number	of	CPU	clock	cycles	required	per	instruction.	As
discussedin	section	1.3.2,	these	performance	measures	are	related	to	the	average	time	7*	inmicroseconds	(us)	required	to	execute	N	instructions	by	the	formula

NxCPI

Hence	the	average	time	tE	to	execute	an	instruction	is

tE=T/N=	CPI/f	us

While	/	depends	mainly	on	the	IC	technology	used	to	implement	the	CPU,	CPIdepends	primarily	on	the	system	architecture.

We	can	get	another	perspective	on	tE	by	considering	the	distribution	of	instruc-tions	of	different	types	and	speeds	in	typical	program	workloads.	Let	/,,	I2,	...,	/„be	a	set	of
representative	instruction	types.	Let	f,	denote	the	average	execution	time(us)	of	an	instruction	of	type	/,	and	let	pi	denote	the	occurrence	probability	of	type-/,	instructions
in	representative	object	code.	Then	the	average	instruction	executiontime	tE	is	given	by
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PA	us

(2.20)

The	/,	figures	can	be	obtained	fairly	easily	from	the	CPU	specifications,	but	accu-rate	Pj	data	must	usually	be	obtained	by	experiment.

The	set	of	instruction	types	selected	for	(2.20)	and	their	occurrence	probabili-ties	define	an	instruction	mix.	Numerous	instruction	mixes	have	been	publishedthat
represent	various	computers	and	their	workloads	[Siewiorek,	Bell,	and	Newell1982].	Figure	2.51	gives	some	recent	data	collected	for	two	representative

Probability	ol occurrence

Program	A Program	B

Instruction	type (commercial) (scientific)

Memory	load 0.24 0.29

Memory	store 0.12 0.15

Fixed-point	operations 0.27 0.15

Floating-point	operations 0.00 0.19

Branch 0.17 0.10

Other 0.20 0.12

Figure	2.51

Representative	instruction-mix	data.Source:	McGrory,	Carlton,	and	Askins	1992.
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122	programs	running	on	computers	employing	the	Hewlett-Packard	PA-RISC	archi-

tecture	under	the	UNIX	operating	system	[McGrory,	Carlton,	and	Askins	1992].The	execution	probabilities	are	derived	from	counting	the	number	of	times	aninstruction	of
each	type	is	executed	while	running	each	program;	instructions	fromboth	the	application	program	and	the	supporting	system	code	are	included	in	thiscount.	Program	A	is
a	program	TPC-A	designed	to	represent	commercial	on-linetransaction	processing.	Program	B	is	a	scientific	program	FEM	that	performsfinite-element	modeling.	In	each
case,	memory-access	instructions	(load	andstore)	account	for	more	than	a	third	of	all	the	instructions	executed.	The	computa-tion-intensive	scientific	program	makes
heavy	use	of	floating-point	instructions,whereas	the	commercial	program	employs	fixed-point	instructions	only.	Condi-tional	and	unconditional	branch	instructions	account
for	1	in	6	instructions	in	pro-gram	A	and	for	1	in	10	instructions	in	program	B.	Other	published	instructionmixes	suggest	that	as	many	as	1	in	4	instructions	can	be	of	the
branch	type.

A	few	performance	parameters	are	based	on	other	system	components,	espe-cially	memory.	Main	memory	and	cache	size	in	megabytes	(MB)	can	provide	arough
indication	of	system	capacity.	A	memory	parameter	related	to	computingspeed	is	bandwidth,	defined	as	the	maximum	rate	in	millions	of	bits	per	second(Mb/s)	at	which
information	can	be	transferred	to	or	from	a	memory	unit.	Memorybandwidth	affects	CPU	performance	because	the	latter's	processing	speed	is	ulti-mately	limited	by	the
rate	at	which	it	can	fetch	instructions	and	data	from	its	cacheor	main	memory.

Perhaps	the	most	satisfactory	measure	of	computer	performance	is	the	cost	ofexecuting	a	set	of	representative	programs	on	the	target	system.	This	cost	can	bethe	total
execution	time	T,	including	contributions	from	the	CPU,	caches,	mainmemory,	and	other	system	components.	A	set	of	actual	programs	that	are	represen-tative	of	a
particular	computing	environment	can	be	used	for	performance	evalua-tion.	Such	programs	are	called	benchmarks	and	are	run	by	the	user	on	a	copy(actual	or	simulated)
of	the	computer	being	evaluated	[Price	1989].	It	is	also	usefulto	devise	artificial	or	synthetic	benchmark	programs,	whose	sole	purpose	is	toobtain	data	for	performance
evaluation.	The	program	TPC-A	providing	the	data	forprogram	A	in	Figure	2.51	is	an	example	of	a	synthetic	benchmark.

EXAMPLE	2.8	PERFORMANCE	COMPARISON	OF	SEVERAL	COMPUTERS

[MCLELLAN	1993].	Figure	2.52	presents	some	published	data	on	the	performanceof	three	machines	manufactured	by	Digital	Equipment	Corp.	in	the	early	1990s,based
on	various	versions	of	its	64-bit	Alpha	microprocessor.	The	SPEC	(StandardPerformance	Evaluation	Cooperative)	ratings	are	derived	from	a	set	of	benchmarkprograms
that	computer	companies	use	to	compare	their	products.	The	SPECint92and	SPECfp92	parameters	indicate	instruction	execution	speed	relative	to	a	standard-ized	1-MIPS
computer	(a	1978-vintage	Digital	VAX	11/780	minicomputer)	whenexecuting	benchmark	programs	involving	integer	(fixed	point)	and	floating-pointoperations,
respectively.	Hence	the	SPEC	figures	approximate	MIPS	measurementsfor	two	major	classes	of	application	programs	like	those	of	Figure	2.51.	The	remain-ing	data	in
Figure	2.52	are	relative	performance	figures	for	executing	some	otherwell-known	benchmark	programs,	most	aimed	at	scientific	computing.

Data	of	this	sort	are	better	suited	to	measuring	relative	rather	than	absolute	perfor-mance.	For	example,	suppose	we	wish	to	compare	the	performance	of	the	Digital
3000and	10000	machines	listed	in	Figure	2.52.	The	ratio	of	their	SPECint92	MIPS	numbersis	104.3/63.8	=	1.65.	The	corresponding	ratios	for	the	other	five	benchmarks
range



DEC	3000 DEC	4000 DEC	10000

Performance	measure Model	400 Model	610 Model	610

CPU	clock	frequency	(MHz) 133 160 200

Cache	size	(MB) 0.5 1 4

SPECint92 63.8 81.2 104.3

SPECfp92 112.2 143.1 200.4

Linpack	1000	x	1000 90 114 155

Perfect	BM	suite 18.1 22.9 28.6

Cernlib 16.9 21.0 26.0

Livermore	loops 18.7 22.9 28.1

Figure	2.52

Performance	comparison	of	three	computers	based	on	the	Digital	Alpha

processor.

Source:	McLellan	1993.

from	1.50	to	1.79,	suggesting	that	the	Digital	10000	is	about	two-thirds	faster	than	theDigital	3000.	Note	also	that	the	ratio	of	their	clock	frequencies	is	200/133	=	1.50.

Queueing	models.	In	order	to	give	a	flavor	of	analytic	performance	modeling,we	outline	an	approach	based	on	queueing	theory.	The	origins	of	this	branch	ofapplied
probability	theory	are	usually	traced	to	the	analysis	of	congestion	in	tele-phone	systems	made	by	the	Danish	engineer	A.	K.	Erlang	(1878-1929)	in	1909.Our	treatment	is
quite	informal;	the	interested	reader	is	referred	to	[Allen	1980;Robertazzi	1994]	for	further	details.

The	queueing	model	that	we	will	consider	is	the	single-queue,	single-servercase	depicted	in	Figure	2.53;	this	is	known	as	the	M/M/l	model	for	historical	rea-sons.	It
represents	a	"server"	such	as	a	CPU	or	a	computer	with	a	set	of	tasks	(pro-grams)	to	be	executed.	The	tasks	are	activated	or	arrive	at	random	times	and	arequeued	in
memory	until	they	can	be	processed	or	"serviced"	by	the	CPU	on	a	first-come	first-served	basis.	The	key	parameters	of	the	model	are	the	rate	at	whichtasks	requiring
service	arrive	and	the	rate	at	which	the	tasks	are	serviced,	both	mea-sured	in	tasks/s.	The	mean	or	average	arrival	and	service	rates	are	conventionallydenoted	by	A
(lambda)	and	p	(mu),	respectively.	The	actual	arrival	and	servicerates	vary	randomly	around	these	mean	values	and	are	represented	by	probability
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124	distributions.	The	latter	are	chosen	to	approximate	the	actual	behavior	of	the	sys-

_____.,	_	,	tem	being	modeled;	how	well	they	do	so	must	be	determined	by	observation	and

SECTION	1.5	J	J

measurement.

The	symbol	p	(rho)	denotes	A/p	and	represents	the	mean	utilization	of	theserver,	that	is,	the	fraction	of	time	it	is	busy,	on	average.	For	example,	if	an	averageof	two	tasks
arrive	per	second	(X	=	2)	and	the	server	can	process	them	at	an	averagerate	of	eight	tasks	per	second	(p	=	8),	then	p	=	2/8	=	0.25.

The	arrival	of	tasks	at	the	system	is	a	random	process	characterized	by	theinterarrival	time	distribution	px{t)	defined	as	the	probability	that	at	least	one	taskarrives
during	a	period	of	length	t.	The	M/M/l	case	assumes	a	Poisson	arrival	pro-cess—named	after	the	French	mathematician	Simeon-Denis	Poisson	(1781-1840)—for	which	the
probability	distribution	is

Pl(t)	=	l-e~h

This	exponential	distribution	has	px(t)	=	0	when	t	=	0.	As	t	increases,	px(t)	increasessteadily	toward	1	at	a	rate	determined	by	X.	Exponential	distributions	characterizethe
randomness	of	many	queueing	models	quite	well.	They	are	also	mathematicallytractable	and	lead	to	simple	formulas	for	various	performance-related	quantities	ofinterest.
It	is	therefore	usual	to	model	the	behavior	of	the	server	(the	service	pro-cess)	by	an	exponential	distribution	also.	Let	ps(t)	be	the	probability	that	the	ser-vice	required	by
a	task	is	completed	by	the	CPU	in	time	t	or	less	after	its	removalfrom	the	queue.	Then	the	service	process	is	characterized	by

ps(t)=\-e^'

Various	performance	parameters	can	characterize	the	steady-state	performanceof	the	single-server	queueing	system	under	the	foregoing	assumptions.

•	The	utilization	p	=	A/p	of	the	server,	that	is,	the	average	fraction	of	time	it	isbusy.

•	The	average	number	of	tasks	queued	in	the	system,	including	tasks	waiting	forservice	and	those	actually	being	served.	The	parameter	is	called	the	mean	queuelength
and	is	denoted	by	/Q.	It	can	be	shown	[Robertazzi	1994]	that

/Q	=	p/(1-P)	(2.21)

•	The	average	time	that	arriving	tasks	spend	in	the	system,	both	waiting	for	serviceand	being	served,	which	is	called	the	mean	waiting	time	tQ.	The	quantities	rQ	and/q
are	related	directly	as	follows.	An	average	task	X	passing	through	the	systemunder	steady-state	conditions	should	encounter	the	same	number	of	waiting	tasks/q	when	it
enters	the	system	as	it	leaves	behind	when	it	departs	from	the	systemafter	being	serviced.	The	number	left	behind	is	Xtq,	which	is	the	number	of	tasksthat	enter	the



system	at	rate	X	during	the	period	tQ	when	X	is	present.	Hence	weconclude	that	/Q	=	Xtq,	in	other	words,

tQ	=	Iq/X	(2.22)

Equation	(2.22)	is	called	Little's	equation.	It	is	valid	for	all	types	of	queueing	sys-tems,	not	just	the	M/M/l	model.	Combining	(2.21)	and	(2.22),	we	get

tQ	=	l/(p	-	X)	(2.23)

The	quantities	/Q	and	tQ	refer	to	tasks	that	are	either	waiting	for	access	to	theserver	or	are	actually	being	served.	The	mean	number	of	tasks	waiting	in	thequeue
excluding	those	being	served	is	denoted	by	/w,	while	rw	denotes	the	meantime	spent	waiting	in	the	queue,	excluding	service	time.	(The	subscript	W	standsfor	"waiting.")
The	mean	utilization	of	the	server	in	an	M/M/l	system,	that	is,	themean	number	of	tasks	being	serviced,	is	X/\i;	hence	subtracting	this	from	/Qyields	/w:

^2

'w	=	'o	-	P	=

\l(\L-X)

(2.24)

Similarly
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'w	=	'o	-	1/M-	=

H(H-k)

(2.25)

where	1/p	is	the	mean	time	it	takes	to	service	a	task.	Comparing	(2.24)	and	(2.25)we	see	that	fw	=	lw/X;	therefore,	Little's	equation	holds	for	both	the	Q	and	the
Wsubscripts.

To	illustrate	the	use	of	the	foregoing	formulas,	consider	a	server	computer	thatis	processing	jobs	in	a	way	that	can	be	approximated	by	the	M/M/l	model.	Arrivingjobs	are
queued	in	main	memory	until	they	are	fully	executed	in	one	step	by	theCPU,	which	therefore	is	the	server.	New	jobs	arrive	at	an	average	rate	of	10	perminute,	and	the
computer	is,	on	the	average,	idle	25	percent	of	the	time.	We	ask	twoquestions:	What	is	the	average	time	T	that	each	job	spends	in	the	computer?	What	isthe	average
number	of	jobs	N	in	main	memory	that	are	waiting	to	begin	execution?To	answer,	we	assume	that	steady-state	conditions	prevail,	from	which	it	followsthat	T	is	tq,	and	N
is	/w.	Since	the	system	is	busy	75	percent	of	the	time,	p	=	X/]i	=0.75.	We	are	given	that	X	=	10	jobs/min;	hence	the	service	rate	p.	is	40/3	jobs/min.Substituting	into	(2.23)
yields	T=	tQ=	1/(40/3	-	10)	=	0.3	min.	From	Little's	equa-tion,	N=lQ	=	XtQ	=	3;	hence	by	(2.25),	/w	=	3	-	0.75	=	2.25	jobs.

EXAMPLE	2.9	ANALYSIS	OF	SHARED	COMPUTER	USAGE	[ALLEN	1980].	A	small

company	has	a	computer	system	with	a	single	terminal	that	is	shared	by	its	engineeringstaff.	An	average	of	10	engineers	use	the	terminal	during	an	eight-hour	work	day,
andeach	user	occupies	the	terminal	for	an	average	of	30	minutes,	mostly	for	simple	androutine	calculations.	The	company	manager	feels	that	the	computer	is
underutilized,since	the	system	is	idle	an	average	of	three	hours	a	day.	The	users,	however,	complainthat	it	is	overutilized,	since	they	typically	wait	an	hour	or	more	to	gain
access	to	the	ter-minal;	they	want	the	manager	to	purchase	new	terminals	and	add	them	to	the	system.We	will	now	attempt	to	analyze	this	apparent	contradiction	using
basic	queueing	the-ory.

Assume	that	the	computer	and	its	users	are	adequately	represented	by	an	M/M/lqueueing	system.	Since	there	are	10	users	per	eight	hours	on	average,	we	set	X	=10/8
users/hour	=	0.0208	users/min.	The	system	is	busy	an	average	of	five	out	ofeight	hours;	hence	the	utilization	p	=	5/8,	implying	that	u	=	1/30	=	0.0333.	Substitut-ing	these
values	for	X	and	u	into	(2.25)	yields	fw	=	50	mm,	which	confirms	theusers'	estimate	of	their	average	waiting	time	for	terminal	access.

The	manager	is	now	convinced	that	the	company	needs	additional	terminals	andagrees	to	buy	enough	to	reduce	rw	from	50	to	10	min.	The	question	then	arises:	Howmany
new	terminals	should	he	buy?	We	can	approach	this	problem	by	representing

126	each	terminal	and	its	users	by	an	independent	M/M/l	queueing	system.	Let	m	be	the

minimum	number	of	terminals	needed	to	make	tw	<	10	or,	equivalents,	tn	<	40.	TheSECTION	2	4

arriving	users	are	assumed	to	divide	evenly	into	m	queues,	one	for	each	terminal.	The

arrival	rate	X*	per	terminal	is	taken	to	be	X/m	=	0.0208/m	users/min.	If,	as	indicatedabove,	the	computer's	CPU	is	lightly	utilized,	then	a	few	additional	terminals
shouldnot	affect	the	response	time	experienced	at	a	terminal*,	hence	we	assume	that	each	ter-minal's	mean	service	rate	is	u*	=	p.	=	0.0333	users/min.	To	meet	the
desired	perfor-mance	goal,	we	require

t*Q	=	l/(u*	-	X*)	=	i/(n	-	X/m)	<	40

from	which	it	follows	that	m	>	2.5.	Hence	three	terminals	are	needed,	so	two	new	ter-minals	should	be	acquired.	This	result	is	pessimistic,	since	the	users	are	unlikely
toform	three	separate	queues	for	three	terminals	or	to	maintain	the	independence	of	thequeues	by	not	jumping	from	one	queue	to	another	whose	terminal	has	become
avail-able.	Nevertheless,	this	simple	analysis	gives	the	useful	result	that	m	should	be	2	or	3.

2.4SUMMARY

The	central	problem	facing	the	digital	system	designer	is	to	a	devise	a	structure	(acircuit,	network,	or	system)	from	given	components	that	exhibits	a	specifiedbehavior	or
performs	a	specified	range	of	operations	at	minimum	cost.	Variousmethods	exist	for	describing	structure	and	behavior,	including	block	diagrams	(forstructure),	truth	and
state	tables	(for	behavior),	and	HDLs	(for	behavior	and	struc-ture).	Computer	systems	can	be	viewed	at	several	levels	of	abstraction,	where	eachlevel	is	determined	by	its
primitive	components	and	information	units.	Three	levelshave	been	presented	here:	the	gate,	register,	and	processor	levels,	whose	compo-nents	process	bits,	words,	and
blocks	of	words,	respectively.	Design	at	all	levels	isa	complex	process	and	depends	heavily	on	CAD	tools.

The	gate	level	employs	logic	gates	as	components	and	has	a	well-developedtheory	based	on	Boolean	algebra.	A	combinational	circuit	implements	logic	orBoolean	functions
of	the	form	z{xx,	x2,	...,	xn),	where	z	and	the	x,'s	assume	the	val-ues	0	and	1.	The	circuit	can	be	constructed	from	any	functionally	complete	set	ofgate	types	such	as	{AND,
OR,	NOT}	or	{NAND}.	Every	logic	function	can	berealized	by	a	two-level	circuit	that	can	be	obtained	using	exact	or	heuristic	minimi-zation	techniques.	Sequential
circuits	implement	logic	functions	that	depend	ontime;	unlike	combinational	circuits,	sequential	circuits	have	memory.	They	arebuilt	from	gates	and	1-bit	storage	elements
(flip-flops)	that	store	the	circuit's	stateand	are	synchronized	by	means	of	clock	signals.

Register-level	components	include	combinational	devices	such	as	word	gates,multiplexers,	decoders,	and	adders,	as	well	as	sequential	devices	such	as	(parallel)registers,
shift	registers,	and	counters.	Various	general-purpose	programmable	ele-ments	also	exist,	including	PLAs,	ROMs,	and	FPGAs.	Little	formal	theory	existsfor	the	design	and
analysis	of	register-level	circuits.	They	are	often	described	byHDLs	whose	fundamental	construct	is	the	register-transfer	statement

cond:	Z	:=	F,(X1,X2,...,Xit);

denoting	the	conditional	transfer	of	data	from	registers	Xl,X2,...,Xk	to	register	Z	viaa	combinational	processing	circuit	F{.	Register-level	circuits	often	consist	of	adatapath
unit	and	a	control	unit.	The	first	step	in	register-level	design	is	to	con-struct	a	formal	(HDL)	description	of	the	desired	behavior	from	which	the	compo-nents	and
connections	for	the	datapath	unit	can	be	determined.	The	logic	signalsneeded	to	control	the	datapath	are	then	identified.	Finally,	a	control	unit	is	designedthat	generates
these	control	signals.

The	components	recognized	at	the	processor	level	are	CPUs	and	other	proces-sors,	memories,	10	devices,	and	interconnection	networks.	The	behavior	of	proces-sor-level
systems	is	complex	and	is	often	specified	in	approximate	terms	usingaverage	or	worst-case	behavior.	Processor-level	design	is	heavily	based	on	the	useof	prototype
structures.	A	prototype	design	is	selected	and	modified	to	meet	thegiven	performance	specifications.	The	actual	performance	of	the	system	is	thenevaluated,	and	the
design	is	further	modified	until	a	satisfactory	result	is	achieved.Typical	performance	measures	are	millions	of	instructions	executed	per	second(MIPS)	and	clock	cycles	per
instruction	(CPI).	A	few	analytical	methods	for	perfor-mance	evaluation	exist—notably	queueing	theory—but	their	usefulness	is	limited.Instead,	experimental	approaches
using	computer-based	simulation	or	performancemeasurements	on	an	actual	system	are	used	extensively.
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2.5PROBLEMS

2.1.	Explain	the	difference	between	structure	and	behavior	in	the	digital	system	context.	Il-lustrate	your	answer	by	giving	(a)	a	purely	structural	description	and	(b)	a
purely	be-havioral	description	of	a	half-subtracter	circuit	that	computes	the	1-bit	difference	d	=x	-	v	and	also	generates	a	borrow	signal	b	whenever	x	<	y.

2.2.	(a)	Following	the	example	of	Figure	2.4,	construct	a	behavioral	VHDL	description	ofthe	full-adder	circuit	of	Figure	2.9b.	(b)	Following	Figure	2.5,	construct	a
structuralVHDL	description	of	the	full	adder.

2.3.	Construct	both	structural	and	behavioral	descriptions	in	VHDL	of	the	EXCLUSIVE-OR	circuit	appearing	in	Figure	2.2.

2.4.	Figure	2.54	describes	a	half	adder	in	the	widely	used	Verilog	HDL.	The	Verilog	sym-bols	for	the	logic	operations	AND,	OR,	EXCLUSIVE-OR,	and	NOT	are	&,	I.	\	and
~.respectively,	(a)	Is	this	description	behavioral	or	structural?	(b)	Construct	a	similar	de-scription	in	Verilog	for	a	full	adder.

module	half	judder	(xQ,	v0,	s0,	co)'Input	x0.	yy;	output	s0,	c0;

assign	s0	=	x0	A	y0;

assign	c0	=	x0	&	y0;endmodule

Figure	2.54

Verilog	description	of	a	half	adder.
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Figure	2.55

Truth	table	of	a	full	subtracter.

2.5.	Assign	each	of	the	following	components	to	one	of	the	three	major	design	levels—pro-cessor,	register,	or	gate—and	justify	your	answers,	(a)	A	multiplier	of	two	n-bit
num-bers	jV,	and	N2.	(b)	An	identity	circuit	that	outputs	a	1	if	all	its	n	inputs	(which	representa	number	AO	are	the	same;	it	outputs	a	0	otherwise,	(c)	A	negation	circuit
that	convertsN	to	-N.	(d)	A	first-in	first-out	(FIFO)	memory,	that	stores	a	sequence	of	numbers	inthe	order	received;	it	also	outputs	the	numbers	in	the	same	order.

2.6.	Certain	very	small-scale	ICs	contain	a	single	two-input	gate.	The	ICs	are	manufacturedin	three	varieties—NAND,	OR,	and	EXCLUSIVE-OR—as	indicated	by	a	printed
labelon	the	ICs	package.	By	mistake,	a	batch	of	all	three	varieties	is	manufactured	withouttheir	labels,	(a)	Devise	an	efficient	test	that	a	technician	can	apply	to	any	IC
from	thisbatch	to	determine	which	gate	type	it	contains,	(b)	Suppose	the	batch	of	unlabeled	ICscontains	NOR	gates,	as	well	as	NAND,	OR,	and	EXCLUSIVE-OR.	Devise	an
efficienttesting	procedure	to	determine	each	ICs	gate	type.

2.7.	Construct	a	logic	circuit	implementing	the	1-bit	(full)	subtracter	defined	in	Figure	2.55using	as	few	gates	as	you	can.

2.8.	{a)	Obtain	an	efficient	all-NAND	realization	for	the	following	four-variable	Booleanfunction:

fx(a,b,c,d)	=	a(b	+	c)d	+	a(b	+	d)(b	+	c)(c	+	d)+	b	c	d

(b)	Construct	an	efficient	all-NOR	design	ioxfx{a,b,c,d).

2.9.	Design	a	two-level	combinational	circuit	in	the	sum-of-products	style	that	computesthe	3-bit	sum	of	two	2-bit	binary	numbers.	The	circuit	is	to	be	implemented	using
ANDand	OR	gates.

2.10.	Consider	the	D	flip-flop	of	Figure	2.11.	(a)	Explain	why	the	glitch	does	not	affectthe	flip-flop's	state	y.	(b)	This	flip-flop	is	said	to	be	positive	edge-triggered	becauseit
triggers	on	the	positive	(rising	or	0	to	1)	edge	of	the	clock	CK.	A	negative	edge-triggered	flip-flop	triggers	on	the	negative	(falling	or	1	to	0)	edge	of	CK,	which	isindicated
by	placing	an	inversion	bubble	at	the	CK	input	like	that	at	the	y	output.Redraw	the	y	part	of	Figure	2.11	for	a	negative	edge-triggered	flip-flop.

2.11.	Figure	2.56	defines	a	1-bit	storage	device	called	a	JK	flip-flop.	It	has	the	same	edge-triggered	clocking	as	the	D	flip-flop	of	Figure	2.11	but	has	two	data	inputs
insteadof	one.	The	J	input	is	activated	to	store	a	1	in	the	flip-flop;	that	is,	JK	=	10	sets	y	=

SetClock	-Reset	—

J

yCKK

Inputs	JK00	01	10	11

State	0>'(')	1
0	0	11	Next	state

ioio	y('	+	D
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(a)

Figure	2.56

JK	flip-flop:	(a)	graphic	symbol;	(b)	state	table.

(b)

1.	Similarly,	the	K	input	is	activated	to	store	a	0	in	the	flip-flop;	that	is,	JK	=	01	re-sets	>•	to	0.	The	input	combination	JK	=	00	leaves	the	state	unchanged,	while	JK	=11



always	changes,	or	toggles,	the	state,	(a)	What	is	the	characteristic	equation	for	aJK	flip-flop,	analogous	to	(2.5)?	(b)	Show	how	to	build	a	JK	flip-flop	from	a	D	flip-flop	and
a	few	NAND	gates.

2.12.	Derive	a	state	table	for	a	synchronous	sequential	circuit	that	acts	as	a	serial	incre-menter.	An	unsigned	number	N	of	arbitrary	length	is	entered	serially	on	input	line
x,causing	the	circuit	to	output	serially	the	number	N	+	\	on	its	output	line	z.	Give	theintuitive	meaning	of	each	state	and	identify	the	reset	state.

2.13.	An	alternative	to	a	state	table	for	representing	the	behavior	of	a	sequential	circuitSC	is	a	state	diagram	or	state	transition	graph,	whose	nodes	denote
states{S^Sj,...^}	and	whose	edges,	which	are	indicated	by	arrows,	denote	transitionsbetween	states.	A	transition	arrow	from	5,	to	&	is	labeled	XJZV	if,	when	SC	is	instate
5,	and	input	Xu	is	applied,	the	(present)	output	Zv	is	produced	and	SC's	nextstate	is	Sj.	(a)	Construct	a	state	table	equivalent	to	the	state	diagram	for	SC	appear-ing	in
Figure	2.57.	(b)	How	many	flip-flops	are	needed	to	implement	5C?

2.14.	Design	the	sequential	circuit	SC	whose	behavior	is	defined	in	Figure	2.57	using	Dflip-flops	and	NAND	gates.	SC	has	a	single	primary	input	line	and	a	single
primaryoutput	line.	Your	answer	should	include	a	complete	logic	diagram	for	SC.	Use	asfew	gates	and	flip-flops	as	you	can	in	your	design.

2.15.

2.16,

Implement	the	sequential	circuit	SC	specified	in	the	preceding	problem,	this	timeusing	JK	flip-flops	(see	problem	2.11)	and	NOR	gates.	Derive	a	logic	diagram	forSC	and
use	as	few	gates	and	flip-flops	as	you	can.

Design	a	serial	subtracter	analogous	to	the	serial	adder.	The	subtracter's	inputs	aretwo	unsigned	binary	numbers	nx	and	n2;	the	output	is	the	difference	n,	-	n2.	Construct

Reset

Figure	2.57

State	diagram	for	a	sequential	circuit	SC.

130	a	state	table,	an	excitation	table,	and	a	logic	circuit	that	uses	JK	flip-flops	and	NOR

gates	only.

SECTION	2.5

problems	2.YI.	Design	a	sequential	circuit	that	multiplies	an	unsigned	binary	number	N	of	arbitrary

length	by	3.	N	is	entered	serially	via	input	line	x	with	its	least	significant	bit	first.The	result	representing	3/V	emerges	serially	from	the	circuit's	output	line	z.	Con-struct	a
state	table	for	your	circuit	and	give	a	complete	logic	circuit	that	uses	D	flip-flops	and	NAND	gates	only.

2.18.	An	important	property	of	gates	is	functional	completeness,	which	ensures	that	acomplete	gate	set	is	adequate	for	all	types	of	digital	computation,	(a)	It	has	been	as-
serted	that	functional	completeness	is	irrelevant	at	the	register	level	when	dealingwith	components	such	as	multiplexers,	decoders,	and	PLDs.	Explain	concisely	whythis	is
so.	(b)	Suggest	a	logical	property	of	sets	of	such	components	that	might	besubstituted	for	completeness	as	an	indication	of	the	components'	general	usefulnessin	digital
design.	Give	a	brief	argument	supporting	your	position.

2.19.	Redraw	the	gate-level	multiplexer	circuit	of	Figure	2.20	at	the	register	level	usingword	gates.	Use	as	few	such	gates	as	you	can	and	mark	all	bus	sizes.	Observe	that
asignal	such	as	e	that	fans	out	to	m	lines	can	be	considered	to	create	an	m-bit	bus	car-rying	the	w-bit	word£	=	(e,e,...,e).

2.20.	Figure	2.55	gives	the	truth	table	for	a	full	subtracter,	which	computes	the	differenceXj	-	>',	-	bi_i,	where	bt_x	denotes	the	borrow-in	bit.	The	subtracter's	outputs	are
bt,d{,	where	b{	denotes	the	borrow-out	bit.	Show	how	to	use	(a)	an	eight-input	multi-plexer	and	(b)	a	four-input	multiplexer	to	realize	the	full	subtracter.

2.21.	Show	how	to	design	a	1/16	decoder	using	the	1/4	decoder	of	Figure	2.236	as	yoursole	building	block.

2.22.	Describe	how	to	implement	the	priority	encoder	of	Figure	2.25	by	(a)	a	two-levelAND-OR	circuit	and	(b)	a	multiplexer	of	suitable	size.	Demonstrate	that	one	designis
much	less	costly	than	the	other	and	derive	a	logic	diagram	for	the	less	expensivedesign.

2.23.	Design	a	16-bit	priority	encoder	using	two	copies	of	an	8-bit	priority	encoder.	Youmay	use	a	few	additional	gates	of	any	standard	types	in	your	design,	if	needed.

2.24.	A	magnitude-comparator	circuit	compares	two	unsigned	numbers	X	and	Y	and	pro-duces	three	outputs	z,,	z2,	and	z3,	which	indicate	X=	Y,X>Y,	and	X	<	Y,
respectively.(a)	Show	how	to	implement	a	magnitude	comparator	for	2-bit	numbers	using	a	single16-input,	3-bit	multiplexer	of	appropriate	size,	(b)	Show	how	to
implement	the	samecomparator	using	an	eight-input,	2-bit	multiplexer	and	a	few	(not	more	than	five)two-input	NOR	gates.

2.25.	Commercial	magnitude	comparators	such	as	the	74X85	have	three	control	inputsconfusingly	labeled	X	=	Y,	X	>	Y.	and	X	<	Y,	like	the	comparator's	output	lines.These
inputs	permit	an	array	of	k	copies	of	a	4-bit	magnitude	comparator	to	be	ex-panded	to	form	a	Ak-hil	magnitude	comparator	as	shown	in	Figure	2.58.	Modify	the4-bit
magnitude	comparator	of	Figure	2.27	to	add	the	three	new	control	inputs	andexplain	briefly	how	they	work.	[Hint:	The	unused	carry	input	lines	denoted	cin	inFigure	2.27
play	a	central	role	in	the	modification.]

2.26.	Show	how	to	connect	n	half	adders	(Figure	2.5)	to	form	an	«-bit	combinational	in-crementer	whose	function	is	to	add	one	(modulo	2")	to	an	«-bit	number	X.	For	ex-
ample,	if	X	=	10100111.	the	incrementer	should	output	Z	=	10101000;	if	X	=11111111,	it	should	output	Z	=	00000000.

2.27.	Show	how	the	register	circuit	of	Figure	2.29	can	be	simplified	by	using	theLOAD	line	to	enable	and	disable	the	register's	clock	signal	CLOCK.	Explain	clear-

2.28.

2.29.

ly	why	this	gated-clocking	technique	is	often	considered	a	violation	of	good	de-sign	practice.

A	useful	operation	related	to	shifting	is	called	rotation.	Left	rotation	of	an	ra-bitregister	is	defined	by	the	register-transfer	statement
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(Zm-2>Zn

(2.26)

•'^0'Zm-l)	:_	(Zm-l»Zin_2v.>Zi.Zo)

(a)	Give	an	assignment	statement	similar	to	(2.26)	that	defines	right	rotation.	Showhow	the	4-bit	right-shift	register	SR	of	Figure	2.30	can	easily	be	made	to
implementright	rotation,	(b)	Using	as	few	additional	components	and	control	lines	as	possible,show	how	to	extend	SR	to	implement	both	right	shifting	and	right	rotation.

Design	an	8-bit	counter	using	only	the	following	component	types:	4-bit	D-type	reg-isters,	half	adders,	full	adders,	and	two-input	NAND	gates.	The	counter's	inputs	area
CLEAR	signal	that	resets	it	to	the	all-0	state	and	a	COUNT	signal	whose	0-to-l(positive)	edge	causes	the	current	count	to	be	incremented	by	one.	Use	as	few	com-ponents
as	you	can,	assuming	for	simplicity	that	each	component	type	has	the	samecost.

2.30.	Assuming	that	input	variables	are	available	in	true	form	only,	show	how	to	makethe	Actel	FPGA	cell	of	Figure	2.35a	realize	two-input	versions	of	the	NAND,	NOR,and
EXLCLUSIVE-OR	functions.

2.31.	(a)	Assuming	that	input	variables	are	available	in	true	form	only,	what	is	the	fan-inof	the	largest	NAND	gate	that	can	be	implemented	with	a	single	Actel	FPGA
cell(Figure	2.35a)?	(b)	What	is	the	largest	NAND	if	both	true	and	complemented	inputsare	available	and	we	allow	some	or	all	of	the	inputs	to	the	NAND	to	be	inverted?

2.32.	Show	how	to	implement	the	full	subtracter	defined	in	Figure	2.55	using	as	few	cop-ies	as	you	can	of	the	Actel	C-module.	Again	assume	that	the	input	variables	are
sup-plied	in	true	form	only.

2.33.	Figure	2.59	shows	the	Actel	FPGA	S-module,	which	adds	a	D	flip-flop	to	the	out-put	of	the	C-module	discussed	in	the	text.	Show	how	to	use	one	copy	of	this	cell
toimplement	the	edge-triggered	JK	flip-flop	defined	in	problem	2.11,	assuming	onlythe	true	output	y	is	needed	and	that	either	one	of	the	flip-flop's	J	or	K	inputs	can
becomplemented.
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Figure	2.58

Expansion	of	a	4-bit	magnitude	comparator	to	form	a	16-bit	comparator.
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x]	Four-input.

1-bitX2	multiplexer

>	CK

CLR

Figure	2.59

S-module	from	the	Actel	FPGA	series.

2.34.	Reconsider	the	FPGA	implementation	of	the	serial	adder	given	in	Figure	2.37.	Sup-pose	that	it	can	now	be	implemented	using	two	cell	types:	the	original	Actel	C-
module	and	the	more	recent	sequential	S-module	defined	in	Figure	2.59.	Construct	anew	version	of	the	adder	in	the	style	of	Figure	2.37	using	as	few	modules	as	youcan.

2.35.	The	4-bit-stream	serial	adder	4ADDX	of	Figure	2.40a	contains	three	flip-flops,	onein	each	serial	adder,	so	it	can	have	up	to	eight	internal	states.	However,	according
tothe	analysis	in	Example	2.2,	only	four	states	are	needed	for	4-bit-stream	serial	addi-tion.	Does	this	imply	that	one	flip-flop	can	be	removed	from	4ADDX	and,	if	so,which
one?	Explain	your	reasoning	clearly.

2.36.	Consider	the	operation	of	the	serial	adder	pipeline	4ADD3	shown	in	Figure	2.40c.	Itis	reset	to	the	all-0	state	in	clock	cycle	0.	and	the	following	data	is	entered	into
thepipeline	at	the	indicated	times:

Clock	cycle: 0 1 2 3 4 5 6 7 g

xv 0 1 0 1 1 0 0 0 0

x2: 0 1 1 1 1 0 0 0 0

x3: 0 0 0 1 1 0 0 0 0

x4: 0 1 1 1 0 0 0 0 0

":

Determine	the	value	of	z	for	each	clock	cycle	in	the	above	table.

2.37.	Suppose	that	the	pipelined	serial	adder	of	Figure	2.40c	is	reset	in	clock	cycle	0.	Theleast	significant	bits	of	four	serial	numbers	(integers)	Nx,	N2,	N3,	N4	to	be
added	areapplied	to	the	adder	in	clock	cycle	1,	and	four	new	data	bits	are	applied	in	each	sub-sequent	clock	cycle.	If	each	number	consists	of	thirty-two	1-bits	and
therefore	repre-sents	232	-	1,	in	what	clock	cycle	will	the	most	significant	bit	of	the	sum	N}	+	N2	+7V3	+	N4	be	loaded	into	the	output	z	flip-flop?

2.38.	Construct	a	pipelined	adder	in	the	style	of	Figure	2.40c	that	can	add	six	instead	offour	separate	bit	streams.

2.39.	Design	at	the	register	level	a	modulo-16	binary	counter	CAT/?.	The	counter	has	twofunction	control	input	lines:	LOAD,	which	loads	the	counter	with	an	initial
valuefrom	a	4-bit	external	bus	BUS,	and	COUNT,	which	increments	the	counter	by	one.The	available	component	types	(use	as	many	of	each	as	you	need)	for	buildingCNTR
are	the	4-bit	D	register	of	Figure	2.28;	the	4-bit	adder	of	Figure	2.26a;	thetwo-input,	4-bit	multiplexer	of	Figure	2.20;	and	the	two-input,	m-bit	NAND	wordgate	of	Figure
2.17	with	m	=	1,2,	and	4.

2.40.	Consider	the	counter	described	in	the	preceding	problem.	Suppose	that	there	is	an-other	control	input	DOWN	which,	when	set	to	1,	causes	the	counter	to	count
down(decrement)	instead	of	up.	When	DOWN	=	0,	CNTR	behaves	like	an	up-counter,	asin	the	original	design.	In	each	case	a	suitable	pulse	applied	to	the	COUNT	line	in-
crements	or	decrements	the	counter.	Using	the	same	set	of	register-level	componenttypes,	design	this	modulo-16	up-down	counter.

2.41.	Figure	2.60	is	an	HDL	description	of	an	algorithm	for	multiplication	in	low-speeddigital	systems.	It	is	implemented	by	three	up-down	counters	CQ,	CM,	and	CPwhich
store	the	multiplier,	multiplicand,	and	product,	respectively,	and	the	product	Pis	formed	by	incrementing	the	counter	CP	a	total	of	P	times.	Although	this	multipli-cation
method	is	slow,	it	requires	a	simple	logic	circuit	and	can	easily	accommodatecomplicated	number	codes.	Suppose	that	the	numbers	to	be	multiplied	are	four-digitintegers
in	sign-magnitude	BCD	code.	For	example,	the	number	-1709	is	represent-ed	by	the	bit	sequence	1	0001	0111	0000	1001.	CQ,	CM,	and	CP	are	to	be	con-structed	from
modulo-10	up-down	counters	with	parallel	input-output	capability.Carry	out	the	logic	design	of	this	multiplier	at	the	register	level.

2.42.	Devise	a	counting	algorithm	similar	to	that	of	Figure	2.60	to	perform	integer	divi-sion	on	unsigned	four-digit	BCD	integers.	The	inputs	are	a	dividend	Y	and	a
divisorX;	the	outputs	are	a	quotient	Q	and	a	remainder	R,	which	must	satisfy	the	followingequation:



Y=QxX	+	R,	with	0	<	R	<	X
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multiplierbc(IOBUS[	16:0]);

register	<2[15:0].	C015:O],	CA/[15:0],	CP[3\:0],	QS,	MS;BEGIN:	Q	:=	IOBUS[\5:0],	QS	:=	IOBUS[\6);

CM	:=	IOBUS[15:0],	MS	:=	IOBUS[\6),	CQ	:=	Q,	CP	:=	0;TEST!:	if	CM	:=	0	or	CQ	=	0	then	go	to	DONE,

ADD:	CQ:=CQ-l,CP:=CP+\

TEST2:	\fCQ*0	then	go	to	ADD,

SUB:	CM	=CM-\,CQ.=	Q,

TEST3:	if	CM	*	0	then	go	to	ADD,

DONE:	lOBUS[\6]	:=	QSxorMS,	IOBUS[15:0)	:=	CP[31:16];

IOBUS[\5:0]	:=	CP[\5:0];

Figure	2.60

A	multiplication	algorithm	using	counters.

134	Describe	your	algorithm	formally	by	means	of	our	HDL.	Carry	out	the	register-level

logic	design	of	a	machine	that	performs	division	on	four-digit	BCD	integers	using	theSECTION	2.5	counting	approach.

Problems

2.43.	(a)	Name	the	various	types	or	levels	of	memory	found	in	a	typical	computer.	Whyis	more	than	one	memory	type	needed?	(b)	Identify	all	the	places	in	a
computerwhere	instructions	are	stored	at	various	times,	(c)	Explain	why	secondary-memoryunits	such	as	hard-disk	drives	are	part	of	the	10	system,	whereas	main
memory	isnot.

2.44.	Let	P	be	a	processor	that	operates	at	a	clock	frequency	of	100	MHz.	Suppose,	fur-ther,	that	advances	in	VLSI	technology	allow	P	to	be	replaced	by	a	new	CPU
Fwhose	architecture	and	organization	are	identical	to	those	of	P,	but	whose	clock	rateis	125	MHz.	How	does	replacing	P	by	P1	in	the	execution	of	a	set	of
benchmarkprograms	Q	affect	(a)	the	value	of	its	CPI	and	(b)	the	total	CPU	time	required	to	ex-ecute	Ql

2.45.	A	possible	measure	of	the	performance	of	a	CPU	P	that	employs	instruction-levelparallelism	is	the	average	number	of	instructions	per	cycle	or	IPC	needed	to
executea	benchmark	program	set	Q.	Suppose	that	a	total	of	N	instructions	are	executed	inthe	processing	of	Q	by	P.	Further	suppose	that	P	has	a	clock	cycle	time	of
7"clock,and	T	is	the	total	CPU	time	required	for	P	to	execute	Q.	Obtain	an	expression	forIPC	in	terms	of	N,	T,	and	Tdock.

2.46.	Consider	the	instruction	mixes	appearing	in	Figure	2.51.	Suppose	that	the	system'sclock	frequency	is	100	MHz,	and	all	instructions	except	floating-point
instructionshave	an	average	execution	time	of	10	ns.	(a)	What	is	the	average	execution	time	offloating-point	instructions,	if	the	overall	average	execution	time	per
instruction	forprogram	B	is	18.1	ns?	(b)	What	is	the	CPI	for	program	B?

2.47.	Suppose	that	the	instructions	listed	in	Figure	2.51	have	the	following	average	exe-cution	characteristics:	load,	store,	and	floating-point	instructions	require	four
clockcycles	each;	fixed-point	instructions	require	two	clock	cycles;	all	others	require	oneclock	cycle.	If	both	programs	involve	the	execution	of	2.5	million
instructions,which	of	the	two	completes	execution	sooner?

2.48.	The	MIPS	performance	measure	is	often	considered	useful	only	when	used	to	com-pare	members	of	the	one	processor	family	from	the	same	manufacturer,	as	in
Figure2.52.	Give	some	reasons	why	this	is	generally	true.	(Misuse	of	this	measure	has	ledto	the	suggestion	that	MIPS	really	means	"meaningless	information	from
pushysalesmen!")

2.49.	What	happens	in	a	single-server	queue	like	that	of	Figure	2.53	if	X	>	|i?

2.50.	Suppose	that	CPU	behavior	in	a	multiprogramming	system	can	be	analyzed	usingthe	M/M/l	queueing	model.	Programs	are	sent	to	the	CPU	for	execution	at	a
meanrate	of	eight	programs	per	minute	and	are	executed	on	a	first-come	first-served	ba-sis.	The	average	program	requires	six	seconds	of	CPU	execution	time,	(a)	What
isthe	mean	time	between	program	arrivals	at	the	CPU?	(b)	What	is	the	mean	numberof	programs	waiting	for	CPU	execution	to	be	completed?	(c)	What	is	the	mean	timea
program	must	wait	for	its	execution	to	be	completed?

2.51.	Suppose	that	people	arrive	at	a	public	telephone	booth	at	an	average	rate	of	10	perhour.	The	lengths	of	the	calls	made	from	the	booth	are	found	to	have	a	negative
ex-ponential	distribution	with	a	mean	length	of	2.5	minutes,	(a)	What	is	the	probabilitythat	someone	arriving	at	the	telephone	booth	will	find	it	occupied?	(b)	The	tele-
phone	company	will	install	a	second	booth	if	a	customer	must	wait	an	average	of

Queuelength	5

m

Time	t

Figure	2.61

Observed	queue	lengths	in	a	single-server	queueing	system.

four	minutes	or	more	to	gain	access	to	the	first	telephone.	By	how	much	must	theflow	of	customers	to	the	first	telephone	increase	in	order	for	the	telephone	companyto
install	the	second	phone?

2.52.	A	certain	computer	system	executes	a	stream	of	tasks	in	a	manner	that	can	be	accu-rately	modeled	by	an	M/M/l	queueing	system.	The	computer	is	busy	75	percent
ofthe	time,	and	the	average	job	spends	four	minutes	in	the	computer,	(a)	How	manyjobs	are	in	the	computer	on	average?	(b)	What	is	the	maximum	rate	at	which	jobsmay
arrive	at	the	system	before	it	becomes	overloaded?	State	clearly	your	definitionof	overloaded.

2.53.	Figure	2.61	shows	the	queue	lengths	observed	in	a	single-server	queueing	systemover	a	"typical"	operating	period	of	25	time	units.	Each	value	of	/(?)	represents
theobserved	queue	length,	including	the	item	being	served,	at	time	t.	Stating	your	as-sumptions,	answer	the	following	questions	about	this	system,	(a)	What	is	the
meanqueue	length	/Q?	(b)	What	is	the	mean	utilization	of	the	server?

2.54.	This	problem	involves	manual	simulation	of	a	computer	system	that	is	executing	astream	of	jobs.	The	jobs	arrive	randomly,	are	queued	until	selected	for
execution,and	depart	immediately	after	execution	is	completed.	The	arrival	and	executiontimes	for	a	particular	job	stream	are	given	by	the	following	table:
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Job	number

1



S

10	11	12

Arrival	time:

Execution	time	(min):

Departure	time:

System	response	time	(min)

9:00	9:05	9:08	9:09	9:16	9:21	9:24	9:26	9:32	9:39	9:40	9:43	AM258165824137

Assuming	that	jobs	are	executed	on	a	first-come	first-served	basis,	find	the	meanresponse	time	fQ	of	the	system	by	completing	the	above	table.	What	is	the
computer'sutilization	factor	p	from	9:00	am	until	the	last	job	departs?

2.55.	Consider	the	computer	job	stream	in	the	preceding	problem.	Suppose	the	FCFSqueueing	discipline	is	replaced	by	shortest	job	first	(SJF).	in	which	the	next	job	se-
lected	for	execution	is	the	one	in	the	queue	with	the	shortest	execution	time.	(Assume

136	that	all	execution	times	are	known	in	advance.)	Using	the	data	given	above,	deter

mine	the	system	utilization	p	and	mean	response	time	tQ	with	SJF	replacing	FCFS

References

Provide	a	brief	intuitive	explanation	for	the	difference	(or	lack	of	difference)	in	thevalues	of	p	and	fQ	obtained	with	the	two	methods.
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CHAPTER	3

Processor	Basics

This	chapter	considers	the	overall	design	of	instruction-set	processors	as	exempli-fied	by	the	central	processing	unit	(CPU)	of	a	computer.	The	fundamentals	of
CPUorganization	and	operation	are	examined,	along	with	the	selection	and	formats	ofinstruction	and	data	types.	Various	representative	microprocessors	of	both	theRISC
and	CISC	types	are	presented	and	discussed.

3.1

CPU	ORGANIZATION

We	begin	by	considering	the	organization	of	the	central	processor	(microproces-sor)	of	a	computer	and	the	methods	used	to	represent	the	information	it	is	intendedto
process.

3.1.1	Fundamentals

The	primary	function	of	the	CPU	and	other	instruction-set	processors	is	to	executesequences	of	instructions,	that	is,	programs,	which	are	stored	in	an	external
mainmemory.	Program	execution	is	therefore	carried	out	as	follows:

1.	The	CPU	transfers	instructions	and,	when	necessary,	their	input	data	(operands)from	main	memory	to	registers	in	the	CPU.

2.	The	CPU	executes	the	instructions	in	their	stored	sequence	except	when	the	exe-cution	sequence	is	explicitly	altered	by	a	branch	instruction.

3.	When	necessary,	the	CPU	transfers	output	data	(results)	from	the	CPU	registersto	main	memory.
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Figure	3.1

Processor-memory	communication:	(a)	without	a	cache	and	(b)	with	a	cache.

Consequently,	streams	of	instructions	and	data	flow	between	the	external	memoryand	the	set	of	registers	that	forms	the	CPU's	internal	memory.	The	efficient	man-
agement	of	these	instruction	and	data	streams	is	a	basic	function	of	the	CPU.

External	communication.	If,	as	in	Figure	3.1a,	no	cache	memory	is	present,the	CPU	communicates	directly	with	the	main	memory	M,	which	is	typically	ahigh-capacity
multichip	random-access	memory	(RAM).	The	CPU	is	significantlyfaster	than	M:	that	is.	it	can	read	from	or	write	to	the	CPU's	registers	perhaps	5	to10	times	faster	than	it
can	read	from	or	write	to	M.	VLSI	technology,	especially	thesingle-chip	microprocessor,	has	tended	to	increase	the	processor/main-memoryspeed	disparity.

To	remedy	this	situation,	many	computers	have	a	cache	memory	CM	posi-tioned	between	the	CPU	and	main	memory.	The	cache	CM	is	smaller	and	fasterthan	main
memory	and	may	reside,	wholly	or	in	part,	on	the	same	chip	as	the	CPU.It	typically	permits	the	CPU	to	perform	a	memory	load	or	store	operation	in	a	sin-gle	clock	cycle,
whereas	a	memory	access	that	bypasses	the	cache	and	is	handledby	main	memory	takes	many	clock	cycles.	The	cache	is	designed	to	be	transparentto	the	CPU's
instructions,	which	"see"	the	cache	and	main	memory	as	forming	asingle,	seamless	memory	space	consisting	of	2'"	addressable	storage	locationsM(0),	M(l),	...,	M(2m-1).
In	this	chapter	we	will	take	this	viewpoint	and	use	M	torefer	to	the	external	memory,	whether	or	not	a	cache	is	present.	A	specific	memorylocation	in	M	with	address	adr
is	referred	to	as	M(adr)	or	simply	as	adr.	Whennecessary,	we	will	use	MM	to	distinguish	the	main	memory	from	the	cache	mem-ory	CM,	as	in	Figure	3.1fr.	The	structure	of
caches	and	their	interactions	with	mainmemory	are	further	studied	in	Chapter	6.

The	CPU	communicates	w	ith	IO	devices	in	much	the	same	way	as	it	communi-cates	with	external	memory.	The	IO	devices	are	associated	with	addressable	regis-ters
called	IO	ports	to	which	the	CPU	can	store	a	word	(an	output	operation)	or	fromwhich	it	can	load	a	word	(an	input	operation).	In	some	computers	there	are	no	IO

instructions	per	se;	all	10	data	transfers	are	implemented	by	memory-referencing	139instructions,	an	approach	called	memory-mapped	10.	This	approach	requires
thatmemory	locations	and	10	ports	share	the	same	set	of	addresses,	so	an	address	bitpattern	that	is	assigned	to	memory	cannot	also	be	assigned	to	an	10	port,	and
viceversa.	Other	computers	employ	10	instructions	that	are	distinct	from	memory-refer-encing	instructions.	These	instructions	produce	control	signals	to	which	10
ports,but	not	memory	locations,	respond.	This	second	approach	is	sometimes	called	10-mapped	10.

User	and	supervisor	modes.	The	programs	executed	by	a	general-purpose	com-puter	fall	into	two	broad	groups:	user	programs	and	supervisor	programs.	A	user
orapplication	program	handles	a	specific	application,	such	as	word	processing,	ofinterest	to	the	computer's	users.	A	supervisor	program,	on	the	other	hand,
managesvarious	routine	aspects	of	the	computer	system	on	behalf	of	its	users;	it	is	typicallypart	of	the	computer's	operating	system.	Examples	of	supervisory	functions
arecontrolling	a	graphics	interface	and	transferring	data	between	secondary	and	mainmemory.	In	normal	operation	the	CPU	continually	switches	back	and	forth
betweenuser	and	supervisor	programs.	For	example,	while	executing	a	user	program,	theneed	often	arises	for	information	that	is	available	only	on	some	hard	disk	unit	in
thecomputer's	IO	system.	This	condition	causes	the	supervisor	to	temporarily	suspendexecution	of	the	user	program,	execute	a	routine	that	initiates	the	required	10	data-
transfer	operation,	and	then	resume	execution	of	the	user	program.

It	is	generally	useful	to	design	a	CPU	so	that	it	can	receive	requests	for	super-visor	services	directly	from	secondary	memory	units	and	other	10	devices.	Such	arequest	is
called	an	interrupt.	In	the	event	of	an	interrupt,	the	CPU	suspends	execu-tion	of	the	program	that	it	is	currently	executing	and	transfers	to	an	appropriateinterrupt-
handling	program.	As	interrupts,	particularly	from	IO	devices,	require	arapid	response	from	the	CPU,	it	checks	frequently	for	the	presence	of	interruptrequests.

CPU	operation.	The	flowchart	in	Figure	3.2	summarizes	the	main	functions	ofa	CPU.	The	sequence	of	operations	performed	by	the	CPU	in	processing	aninstruction
constitutes	an	instruction	cycle.	While	the	details	of	the	instructioncycle	vary	with	the	type	of	instruction,	all	instructions	require	two	major	steps:	afetch	step	during
which	a	new	instruction	is	read	from	the	external	memory	M	andan	execute	step	during	which	the	operations	specified	by	the	instruction	are	exe-cuted.	A	check	for
pending	interrupt	requests	is	also	usually	included	in	theinstruction	cycle,	as	shown	in	Figure	3.2.

The	actions	of	the	CPU	during	an	instruction	cycle	are	defined	by	a	sequenceof	microoperations,	each	of	which	typically	involves	a	register-transfer	operation.The	time
required	for	the	shortest	well-defined	CPU	microoperation	is	the	CPUcycle	time	or	clock	period	Tdock	and	is	a	basic	unit	of	time	for	measuring	CPUactions.	Recall	that/,
the	CPU's	clock	frequency	(in	MHz)	is	related	to	Tdodt	(infis)	by	rclock	=	1//.	As	we	will	see,	the	number	of	CPU	cycles	required	to	process	aninstruction	varies	with	the
instruction	type	and	the	extent	to	which	the	processingof	individual	instructions	can	be	overlapped.	For	the	moment	we	will	assume	thateach	instruction	is	fetched	from	M
in	one	CPU	clock	cycle	(this	is	usually	truewhen	M	is	a	cache)	and	can	be	executed	in	another	CPU	cycle.
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Figure	3.2

Overview	of	CPU	behavior.

Accumulator-based	CPU.	Despite	the	improvements	in	IC	technology	overthe	years,	CPU	design	continues	to	be	based	on	the	premise	that	the	CPU	shouldbe	as	fast	as	the
available	technology	and	overall	design	requirements	allow.Since	cost	generally	increases	with	circuit	complexity,	the	number	of	compo-nents	in	the	CPU	must	be	kept
relatively	small.	The	CPU	organization	proposedby	von	Neumann	and	his	colleagues	for	the	IAS	computer	(section	1.2.2)	is	thebasis	for	most	subsequent	designs.	It
comprises	a	small	set	of	registers	and	thecircuits	needed	to	execute	a	functionally	complete	set	of	instructions.	In	manyearly	designs,	one	of	the	CPU	registers,	the
accumulator,l	played	a	central	role,being	used	to	store	an	input	or	output	operand	(result)	in	the	execution	of	manyinstructions.

Figure	3.3	shows	at	the	register	level	the	essential	structure	of	a	small	accu-mulator-oriented	CPU.	This	organization	is	typical	of	first-generation	computers(compare
Figure	1.12)	and	low-cost	microcontrollers.	Assume	for	simplicity	thatinstructions	and	data	have	some	fixed	word	size	n	bits	and	that	instructions	can	beadequately
expressed	by	means	of	register-transfer	operations	in	our	HDL.	Instruc-tions	are	fetched	by	the	program	control	unit	PCU,	whose	main	register	is	the	pro-

'The	term	accumulator	originally	meant	a	device	that	combined	the	functions	of	number	storage	and	addi-tion.	Any	quantity	transferred	to	an	accumulator	was
automatically	added	to	its	previous	contents.	Accumula-tor	is	still	often	used	in	this	restricted	sense.
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Figure	33

A	small	accumulator-based	CPU.

gram	counter	PC.	They	are	executed	in	the	data	processing	unit	DPU.	whichcontains	an	n-bit	arithmetic-logic	unit	(ALU)	and	two	data	registers	AC	and	DR.Most
instructions	perform	operations	of	the	form

xi:=y;.(xi,x2)

where	XI	and	X2	denote	a	CPU	register	(AC,	DR,	or	PC)	or	an	external	memorylocation	M(adr).	The	operations	fl	performed	by	the	ALU	are	limited	to	fixed-point	(integer)
addition	and	subtraction,	shifting,	and	logical	(word-gate)	opera-tions.

Some	insti	actions	have	an	operand	in	an	external	memory	location	M(adr).and	must	therefore	include	the	address	part	adr.	Memory	addresses	are	stored	intwo	address
registers	in	the	PCU:	the	program	counter	PC,	which	stores	instructionaddresses	only,	and	the	general-purpose	(data)	address	register	AR.	An	instruction/	that	refers	to	a
data	word	in	M	contains	two	parts,	an	opcode	op	and	a	memoryaddress	adr,	and	may	be	written	as	/	=	op.adr.	Each	instruction	cycle	begins	withthe	instruction	fetch
operation

IR.AR	:=	M(PC);

(3.1)

which	transfers	the	instruction	word	/	from	M	to	the	CPU.	The	opcode	op	is	loadedinto	the	PCU's	instruction	register	IR,	and	the	address	adr	is	loaded	into	addressregister
AR.	Hence	(3.1)	is	equivalent	to

IR	:=	op,	AR	:=	adr,
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Instructions	that	do	not	reference	M	do	not	use	AR;	their	opcode	part	specifies	theCPU	registers	to	use,	as	well	as	the	operation/;	to	be	carried	out.	Once	it	has	placedthe
opcode	of	/	in	IR,	the	CPU	proceeds	to	decode	and	execute	it.	Note	that,	at	thispoint,	the	CPU	can	increment	PC	in	order	to	obtain	the	address	of	the	next	instruc-tion.

The	two	essential	memory-addressing	instructions	are	called	load	and	store.The	load	instruction	for	our	sample	CPU	is

AC	:=	M(adr);

which	transfers	a	word	from	the	memory	location	with	address	adr	to	the	accumu-lator.	It	is	often	written	in	assembly-language	programs	as	LD	adr.	The	corre-sponding
store	instruction	is

M(adr)	:=	AC;



which	transfers	a	word	from	AC	to	M	and	may	be	written	as	ST	adr.	Note	how	theaccumulator	AC	serves	as	an	implicit	source	or	destination	register	for	data	words.

Programming	considerations.	Data-processing	operations	normally	require	upto	three	operands.	For	example,	the	addition

Z:=X+Y

(3.2)

has	three	distinct	operands	X,	Y,	and	Z.	The	accumulator-based	CPU	of	Figure	3.3supports	only	single-address	instructions,	that	is,	instructions	with	one	explicitmemory
address.	However,	AC	and	DR	can	serve	as	implicit	operand	locations	sothat	multioperand	operations	can	be	implemented	by	executing	several	instructionsin	sequence.
For	example,	a	program	to	implement	(3.2),	assuming	that	X,	Y,	and	Zall	refer	to	data	words	in	M,	can	take	the	following	form:

HDL Assemblv- Narrative

format language	format format	(comment)

AC	:=	M(X); LDX Load	X	from	M	into	accumulator	AC.

DR	:=	AC; MOV	DR,	AC Move	contents	of	AC	to	DR.

AC:=M(10; LD	Y Load	Y	into	accumulator	AC.

AC:=AC	+	DR; ADD Add	DR	to	AC.

M(Z):=AC; ST	Z Store	contents	of	AC	in	M.

The	preceding	program	fragment	uses	only	the	load	and	store	instructions	toaccess	memory,	a	feature	called	load/store	architecture.	It	is	common	(but	as	wewill	see,	not
always	desirable)	to	allow	other	instructions	to	specify	operands	inmemory.	A	CPU	like	that	of	Figure	3.3	can	be	designed	to	implement	memory-referencing	instructions
of	the	form

AC	:=y;(AC,	M(adr))

whose	execution	requires	two	steps:	one	to	move	M{adr)	to	or	from	DR	and	one	toperform	the	designated	operation	fr	With	an	add	instruction	of	this	form,	we	canreduce
the	foregoing	program	from	five	to	three	instructions.

143

CHAPTER	3Processor	Basics

HDL

Format

Assembly-language	format

Narrativeformat	(comment)

AC	:=	M(X);	LD	X

AC:=AC	+	M(K);	ADD	YM(Z)	:=	AC;	ST	Z

Load	X	from	M	into	accumulator	AC.Load	Y	into	DR	and	add	to	AC.Store	contents	of	AC	in	M.

The	memory-referencing	ADD	Y	instruction	can	be	expected	to	take	longer	to	exe-cute	than	the	original	ADD	instruction	that	references	only	CPU	registers.
Memoryreferences	also	complicate	the	instruction-decoding	logic	in	the	PCU.	However,overall	execution	time	should	be	reduced	because	we	have	eliminated	an	LD	and
aMOV	instruction	completely.	As	we	will	see	later,	the	cost-performance	impact	ofreplacing	a	simple	instruction	with	a	more	complex	one	has	subtle	implications	thatlie	at
the	heart	of	the	RISC-CISC	debate.

Instruction	set.	Figure	3.4	gives	a	possible	instruction	set	for	our	simpleaccumulator-based	CPU,	assuming	a	load/store	architecture.	These	10	instruc-tions	have	the	flavor
of	the	instruction	sets	of	some	recent	RISC	machines,	whichdemonstrate	that	small	instruction	sets	can	be	both	complete	and	efficient.	We	are,however,	ignoring	some
important	practical	implementation	issues	in	the	interestof	simplicity.	We	have	not,	for	instance,	specified	the	precise	instruction	or	dataformats	to	be	used,	and	we	do	not
consider	such	problems	as	numerical	over-flow—this	condition	occurs	when	an	arithmetic	instruction	produces	a	result	thatis	too	big	to	fit	in	its	destination	register.

Type Instruction HDL Assembly- Narrative

format language	format format	(comment)

Data	transfer Load AC	:=	M(X) LDX Load	X	from	M	into	AC.

Store M(X)	:=	AC STX
Store	contents	of	AC	in	M

asX.Copy	contents	of	AC	to	DR.

Move	register DR	:=	AC MOV	DR.	AC

Move	register AC	:=	DR MOV	AC,	DR Copy	contents	of	DR	to	AC.

Data Add AC	:=	AC	+	DR ADD Add	DR	to	AC.

processing Subtract AC	:=	AC	-	DR SUB Suhtract	DR	from	AC.

And AC	:=	AC	and	DR AND And	hitwise	DR	to	AC.

Not AC	:=	not	AC NOT Complement	contents	of	U

Program Branch PC	:=	M(adr) BRA	adr Jump	to	instruction	«ith

control address	adr.

Branch	zero
if	AC	=	0	then

PC	:=M(adr)
BZadr Jump	to	instruction	adr	itAC	=	0.



Figure	3.4

Instruction	set	for	the	CPU	of	Figure	3.3. -
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The	load	and	store	instructions	obviously	suffice	for	transferring	data	betweenthe	CPU	and	main	memory.	We	know	from	Boolean	algebra	that	the	AND	andNOT
operations	are	functionally	complete,	implying	that	the	instruction	setenables	any	logical	operation	to	be	programmed.	We	also	know	that	addition	andsubtraction	suffice
for	implementing	most	arithmetic	operations.	Consider,	forexample,	the	arithmetic	operation	negation,	for	which	many	CPUs	have	a	singleinstruction	of	the	type	AC	:=	-
AC.	We	can	easily	implement	negation	by	a	three-instruction	sequence	as	follows:

HDL Assembly- Narrative

format language	format format	(comment)

DR	:=	AC; MOV	DR,	AC Copy	contents	X	of	AC	to	DR.

AC	:=	AC	-	DR; SUB Compute	AC	=	X	-	X	=	0.

AC	:=	AC	-	DR; SUB Compute	AC	=	0	-	X	=	-X.

Figure	3.4	also	gives	a	small	set	of	program	control	instructions:	an	unconditionalbranch	instruction	BRA	and	a	conditional	branch-on-zero	instruction	BZ	that	teststhe
contents	of	AC.	Observe	that	these	instructions	load	a	new	address	into	the	pro-gram	counter	PC,	thus	altering	the	instruction	execution	sequence.	The	BZ	instruc-tion
allows	more	powerful	program	control	operations	such	as	procedure	call	andreturn	to	be	implemented;	it	also	facilitates	complex	operations	such	as	multiplica-tion,	as	we
demonstrate	in	Example	3.1.

example	3.1	a	multiplication	program.	Suppose	we	want	to	use	thetiny	instruction	set	of	Figure	3.4	to	program	the	multiplication	operation

AC	:=	AC	x	N

where	the	multiplicand	is	the	initial	contents	of	the	accumulator	AC	and	the	multiplierN	is	a	variable	stored	in	memory.	We	will	assume	that	the	multiplier	and
multiplicandare	both	unsigned	numbers	and	that	they	are	sufficiently	small	that	the	product	will	fitin	a	single	word.	We	can	construct	the	desired	program	along	the
following	lines.	Wewill	execute	the	basic	ADD	instruction	N	times	to	implement	AC	x	N	in	the	form	AC	+AC	+	...	+	AC.	We	will	treat	the	memory	location	storing	N	as	a
count	register	and,after	each	addition	step,	decrement	it	by	one	until	it	reaches	zero.	We	will	test	for	N	=	0by	means	of	the	BZ	instruction,	and	so	we	will	have	to	transfer
N	to	AC	in	order	to	per-form	this	test.	We	will	also	have	to	use	some	memory	locations	as	temporary	registersfor	storing	intermediate	results	and	some	other	quantities,
such	as	the	initial	value	Y	ofAC.	In	particular,	we	will	use	memory	locations	one,	mult,	ac,	and	prod	to	store	theconstant	1,	N,	Y,	and	the	partial	product	P,	respectively.
Here	one,	mult,	ac,	and	prodare	symbolic	names	for	certain	memory	addresses	that	we	have	arbitrarily	assigned.They	are	translated	into	numerical	memory	addresses	by
an	assembler	program	prior	toexecution.

An	assembly-language	program	implementing	this	plan	appears	in	Figure	3.5.	Itsmain	body	(lines	5	to	17)	is	traversed	N	times	in	the	course	of	a	multiplication.	At	theend
the	result	P	is	in	memory	location	prod.	The	first	two	instructions	(lines	5	and	6)	ofthe	program	check	the	value	of	N	by	reading	it	into	AC	and	testing	it	with	the
BZinstruction.	If	the	initial	value	of	N	is	zero,	the	program	exits	immediately	with	the	cor-rect	result	P	=	0.	If	N	is	nonzero,	the	instructions	in	lines	7	to	11	load	it	from
mult	intoAC,	subtract	one	from	it,	and	then	return	the	new,	decremented	value	of	N	to	mult.	The
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0 one 00...	001 The	constant	one. CHAPTER	3

1 mult N The	multiplier. Processor	Basics

2 ac 00...	000 Location	for	initial	value	Y	of	AC.

3 prod 00.	.000 Location	for	(partial)	product	P.

4 ST	ac Save	initial	value	yof	AC.

5 loop LD	mult Load	N	into	AC	to	test	for	termination.

6 BZ	exit Exit	if	N	=	0:	otherwise	continue.

7 LD	one Load	1	into	AC.

8 MOV	DR.	AC Move	1	from	AC	to	DR.

9 LD	mult Load	N	into	AC	to	decrement	it.

10 SUB Subtract	1	from	N.

11 ST	mult Store	decremented	N.

12 LD	ac Load	initial	value	yof	AC.

13 MOV	DR.	AC Move	Kfrom	AC	to	DR.

14 LD	prod Load	current	partial	product	P.

15 ADD Add	Y	to	P.

16 ST	prod Store	the	new	partial	product	P.

17 BRA	loop Branch	to	loop.

18 exit



Figure	3.5

A	program	for	the	multiplication	operation	AC	:=	AC	x	N.

main	step	of	adding	Y	to	the	accumulating	partial	product,	that	is,	P	:-	P	+	Y.	is	imple-mented	in	straightforward	fashion	by	lines	12	to	16	of	the	program.	Finally,	a	return
ismade	to	loop	via	the	unconditional	branch	BRA	(line	17).

This	program	uses	most	of	the	available	instruction	types	and	illustrates	severalweaknesses	of	an	accumulator-based	CPU.	Because	there	are	only	a	few	data	registersin
the	CPU,	a	considerable	amount	of	time	is	spent	shuttling	the	same	information	backand	forth	between	the	CPU	and	memory.	Indeed,	most	of	the	instructions	in	this	pro-
gram	are	of	the	data-transfer	type	(ST,	LD.	and	MOV),	which	do	bookkeeping	for	thefew	instructions	that	actually	compute	the	product	P.	It	would	both	shorten	the	pro-
gram	and	speed	up	its	execution	if	we	could	store	the	quantities	1.	/V,	Y.	and	P	in	theirown	CPU	registers,	as	they	are	repeatedly	required	by	the	CPU.

Program	execution.	We	now	examine	the	execution	process	for	the	multipli-cation	program	of	Figure	3.5.	Of	course,	the	program	must	be	translated	into	exe-cutable
object	code	prior	to	execution,	but	we	can	treat	the	assembly-languageprogram	as	a	symbolic	representation	of	the	object	code.	Recall	that	we	areassuming	that	every
instruction	is	one	word	long	and	can	be	fetched	from	M	in	asingle	CPU	clock	cycle.	We	further	assume	that	every	instruction	is	also	exe-cuted	in	a	single	clock	cycle.
Hence	each	instruction	requires	two	CPU	clockcycles—one	to	fetch	the	instruction	from	M	and	one	to	execute	it.	At	the	entl	of
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SECTION	3.1	cycle	cycle	PC	AR	PCU	actions	DPU	actions

CPU	Organization	i	ST	ac	1004	IR.AR	:=	M(PC),	PC	:=	PC	+	1

2	1002	M(AR)	:=	AC

3	LD	mult	1005	IR.AR	:=	M(PC),	PC	:=	PC	+	1

4	1001	AC	:=	M(AR)

5	BZ	exit	1006	IR.AR	:=	M(PC).	PC	:=	PC	+	1

6	1001	Test	A;	no	further	action	if	A	*	0	None

7	LD	one	1007	IR.AR	:=	M(PC).	PC	:=	PC	+	1

8	1000	AC	:=	M(AR)

9	MOV	DR,	AC	1008	IR.AR	:=	M(PC).	PC	:=	PC	+	1

10	dddd	DR	:=	AC

11	LD	mult	1009	IR.AR	:=	M(PC),	PC	:=	PC	+	1

12	1001	AC:=M(AR)

13	SUB	1010	IR.AR	:=	M(PC),	PC	:=	PC	+	1

14	dddd	AC:=AC-DR

15	ST	mult	1011	IR.AR	:=	M(PC),	PC	:=	PC	+	1

16	1001	M(AR):=AC

17	LD	ac	1012	IR.AR	:=	M(PC),	PC	:=	PC	+	1

18	1002	AC:=M(AR)

19	MOVDR,	AC	1013	IR.AR	:=	M(PC).	PC	:=	PC	+	1

20	dddd	DR	:=	AC

21	LD	prod	1014	IR.AR	:=	M(PC),	PC	:=	PC	+	1

22	1003	AC	:=	M(AR)

23	ADD	1015	IR.AR	:=	M(PC),	PC	:=	PC	+	1

24	dddd	AC	:=	AC	+	DR

25	ST	prod	1016	IR.AR	:=	M(PC).	PC	:=	PC	+	1

26	1003	M(AR)	:=	AC

27	BRA	loop	1017	IR.AR	:=	M(PC),	PC	:=	PC	+	1

28	1005	PC:=AR	None

29	LD	mult	1005	IR.AR	:=	M(PC),	PC	:=	PC	+	1

30	1001	AC:=M(AR)

31	BZ	exit	1006	IR.AR	:=	M(PC).	PC	:=	PC	+	1

32	1018	Test	A:	PC	:=	AR	if	A	=	0	None

33	1018

Figure	3.6

Cycle-by-cycle	execution	trace	of	the	multiplication	program	of	Figure	3.5.

the	fetch	step,	the	PCU	decodes	the	instruction's	opcode	to	determine	what	oper-	147ation	to	perform	during	the	execution	stage.	It	can	also	increment	PC	in	prepara-tion
for	the	next	instruction	fetch.	Recall	that	an	edge-triggered	register	can	beboth	read	from	and	written	into	in	the	same	clock	cycle	so	that	the	new	data	isready	for	use	at
the	beginning	of	the	next	clock	cycle.	Hence	every	fetch	cycleincludes	the	following	pair	of	register-transfer	operations:

IR.AR	:=	M(PC),	PC	:=	PC	+	1	(3.3)

The	subsequent	execution	cycle	depends	on	the	instruction	opcode	placed	in	IR.

Figure	3.6	depicts	all	the	main	actions	taken	by	the	CPU,	including	the	mem-ory	addresses	it	generates,	during	execution	of	the	program	of	Figure	3.5.	Data	ofthis	type	is
referred	to	as	an	execution	trace	and	is	often	obtained	by	simulation	ofthe	target	CPU.	(In	effect,	Figure	3.6	is	a	hand	simulation	of	the	multiplication	pro-gram.)	Execution
traces	are	useful	for	analyzing	program	behavior	and	executionspeed.	In	this	example	the	program's	data	and	instructions	have	been	assigned	to	aconsecutive	sequence	of
memory	locations	1000,	1001,	1002,	.	.	.	,	where	1001	isthe	location	named	one	in	Figure	3.5.	The	first	executable	instruction	is	ST	ac,which	is	in	location	1004,	so
execution	begins	when	PC	is	set	to	1004.	Observehow	the	contents	of	the	program	counter	PC	are	incremented	steadily	until	a	branchinstruction	is	encountered,	at	which
point	the	branch	address	contained	in	thebranch	instruction	may	replace	the	incremented	contents	of	PC.

3.1.2	Additional	Features

Next	we	examine	some	more	advanced	features	of	CPUs	and	look	at	representativecommercial	microprocessors	of	the	RISC	and	CISC	types.

Architecture	extensions.	There	are	many	ways	in	which	the	basic	design	ofFigure	3.3	can	be	improved.	Most	recent	CPUs	contain	the	following	extensions,which
significantly	improve	their	performance	and	ease	of	programming.

•	Multipurpose	register	set	for	storing	data	and	addresses:	These	replace	the	accumu-lator	AC	and	the	auxiliary	registers	DR	and	AR	of	our	basic	CPU.	The	resulting
CPUis	sometimes	said	to	have	the	general	register	organization	exemplified	by	the	third-generation	IBM	System/360-370	(Figure	1.17),	which	has	32	such	registers.	The
setof	general	registers	is	now	usually	referred	to	as	a	register	file.

•	Additional	data,	instruction,	and	address	types:	Most	CPUs	have	instructions	to	han-dle	data	and	addresses	with	several	different	word	sizes	and	formats.	Although



somemicroprocessors	have	only	add	and	subtract	instructions	in	the	arithmetic	category,relatively	little	extra	circuitry	is	required	for	(fixed-point)	multiply	and
divideinstructions,	which	simplify	many	programming	tasks.	Call	and	return	instructionsalso	simplify	program	design.

•	Register	to	indicate	computation	status:	A	status	register	(also	called	a	conditioncode	or	flag	register)	indicates	infrequent	or	exceptional	conditions	resulting	fromthe
instruction	execution.	Examples	are	the	appearance	of	an	all-zero	result	or	aninvalid	instruction	like	divide	by	zero.	A	status	register	can	also	indicate	the	user
andsupervisor	states.	Conditional	branch	instructions	can	test	the	status	register,	whichsimplifies	the	programming	of	conditional	actions.
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•	Program	control	stack:	Various	special	registers	and	instructions	facilitate	the	trans-fer	of	control	among	programs	due	to	procedure	calling	or	external	interrupts.
ManyCPUs	use	a	flexible	scheme	for	program-control	transfer,	which	employs	part	of	theexternal	memory	M	as	a	push-down	stack	(see	also	Example	1.5).	The	stack
memoryis	intended	for	saving	key	information	about	an	interrupted	program	via	push	opera-tions	so	that	the	saved	information	can	be	retrieved	later	via	pop	operations.
A	CPUaddress	register	called	a	stack	pointer	automatically	keeps	track	of	the	stack's	entrypoint.

Figure	3.7	shows	the	organization	of	a	processor	with	the	foregoing	features.	Ithas	a	register	file	in	the	DPU	for	data	and/or	address	storage.	The	ALU	obtainsmost	of	its
operands	from	the	register	file	and	also	stores	most	of	its	results	there.	Astatus	register	monitors	the	output	of	the	ALU	and	other	key	points.	The	principalspecial-purpose
address	registers	are	the	program	counter	and	the	stack	pointer.Special	circuits	are	included	for	address	computation,	although	the	main	ALU	canalso	be	used	for	this
purpose.	The	control	circuits	in	the	PCU	derive	their	inputsfrom	the	instruction	register,	which	stores	the	opcode	of	the	current	instruction,	and

Data	processing	unit	DHL*

To	M	andIO	system

Registerfile

Arithmetic-logic	unit

Dataregister

Statusregister

System	bus

Programcontrolunit	PCU

Addressregister

Programcounter

Stackpointer

Instructionregister

Address-generationlogic

Controlcircuits

VInternal	control	signals

Figure	3.7

A	typical	CPU	with	the	general	register	organization.

the	status	register.	Communication	with	the	outside	world	is	via	a	system	bus	thattransmits	address,	data,	and	control	information	among	the	CPU,	M,	and	the	10system.
Various	nonprogrammable	"buffer"	registers	serve	as	temporary	storagepoints	between	the	system	bus	and	the	CPU.

Pipelining.	As	discussed	in	Chapter	1,	modern	CPUs	employ	a	variety	ofspeedup	techniques,	including	cache	memories,	and	several	forms	of	instruction-level	parallelism.
Such	parallelism	may	be	present	in	the	internal	organization	ofthe	DPU	or	in	the	overlapping	of	the	operations	carried	out	by	the	DPU	and	PCU.These	features	add	to	the
CPU's	complexity	and	will	be	explored	in	depth	later	inthis	book.

The	considerable	potential	for	parallel	processing	at	the	instruction	level	is	evi-dent	even	in	the	simple	CPU	of	Figure	3.3.	We	see	from	the	execution	trace	of	Fig-ure	3.6
that	the	main	PCU	and	DPU	activities	take	place	in	different	clock	cycles.If	these	activities	do	not	share	a	resource	such	as	the	system	bus,	they	can	be	car-ried	out	at	the
same	time.	In	other	words,	while	the	current	instruction	is	being	exe-cuted	in	the	DPU,	the	next	instruction	can	be	fetched	by	the	PCU.	For	example,	thethree-instruction
negation	routine	we	gave	earlier	to	change	AC	to	-AC	would	beexecuted	as	follows	in	the	style	of	Figure	3.6:
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Clockcycle

Instructioncycle

PC

PCU	actions

DPU	actions

1	MOV	DR,	AC	2000	IR.AR	:=	M(PC),	PC	:=	PC	+	1

2	2001	DR:=AC

3	SUB	2001	IR.AR	:=	M(PC),	PC	:=	PC	+	1

4	2002	AC	:=	AC	-	DR

5	SUB	2002	IR.AR	:=	M(PC),	PC	:=	PC	+	1

6	2003	AC	:=	AC	-	DR

By	merging	the	execution	part	of	each	instruction	cycle	with	the	fetch	part	of	thefollowing	instruction	cycle,	we	can	reduce	the	overall	execution	time	from	sixclock	cycles
to	four,	as	shown	below.	(We	use	subscripts	to	distinguish	the	first	andsecond	SUB	instructions.)

Clock Instruction

cycle cycle PC PCU	actions DPU	actions

1 MOV 2000 IR.AR	:=	M(PC),	PC =	PC+	1

2 MOV/SUB, 2001 IR.AR	:=	M(PC),	PC =	PC+	1 DR	:=	AC

3 SUB,/SUB2 2002 IR.AR	:=	M(PC),	PC =	PC+	1 AC	:=	AC	-	DR

4 SUB2 2003 AC	:=	AC	-	DR



This	overlapping	of	instruction	fetching	and	execution	is	an	example	ofinstruction	pipelining,	which	is	an	important	speedup	feature	of	RISC	processors.Figure	3.8
illustrates	graphically	the	type	of	two-stage	pipelining	discussed	abpve.Each	instruction	can	be	thought	of	as	passing	through	two	consecutive	stages	of
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Figure	3.8

Overlapping	instructions	in	a	two-stage	instruction	pipeline.

Fetch

Execute

processing:	a	fetch	stage	implemented	mainly	by	the	PCU	and	an	execution	stageimplemented	mainly	by	the	DPU.	Hence	two	instructions	can	be	processed	simul-
taneously	in	every	CPU	clock	cycle,	with	one	completing	its	fetch	phase	and	theother	completing	its	execute	phase.	A	two-stage	pipeline	can	therefore	double	theCPU's
performance	from	one	instruction	every	two	clock	cycles	to	one	instructionevery	clock	cycle.

A	problem	arises	when	a	branch	instruction	is	encountered,	such	as	the	BRAloop	instruction	stored	in	address	(line)	17	of	the	multiplication	program	(Figure3.5).
Immediately	before	this	instruction	is	fetched	in	some	clock	cycle	i	the	pro-gram	counter	PC	stores	the	address	17.	PC	is	then	incremented	to	18	in	preparationfor	clock
cycle	i	+	1.	Clearly	in	clock	cycle	i	+1,	the	CPU	should	not	fetch	theinstruction	stored	at	address	18—that	instruction	is	not	even	in	the	multiplicationprogram.	In	clock
cycle	i	+	1,	BRA	is	executed,	which	causes	loop	=	5	to	be	loadedinto	PC,	implying	that	the	next	instruction	should	be	taken	from	location	5.	Thefetching	of	this	instruction
can't	begin	until	cycle	i	+	2,	however,	as	illustrated	inFigure	3.8	with	i	=	4.	It	follows	that	we	cannot	overlap	the	branch	instruction	andthe	instruction	that	follows	it	(73
and	74	in	the	case	of	Figure	3.8).

Thus	we	see	that	branch	instructions	reduce	the	efficiency	of	instruction	pipe-lining,	although	we	will	see	later	that	steps	can	be	taken	to	reduce	this	problem.	Wewill	also
see	that	instruction	processing	is	usually	broken	into	more	than	two	stagesto	increase	the	level	of	the	parallelism	attainable.

EXAMPLE	3.2	THE	ARM6	MICROPROCESSOR	[VAN	SOMEREN	AND	ATACK

1994].	We	now	examine	in	some	detail	the	architecture	of	a	microprocessor	familythat	embodies	the	RISC	design	philosophy	in	a	relatively	direct	and	elegant	form.
TheARM	has	its	origins	in	the	Acorn	RISC	Machine,	a	microprocessor	developed	in	theUnited	Kingdom	in	the	1980s	to	serve	as	the	CPU	of	a	personal	computer.	Subse-
quently,	the	family	name	was	changed—without	changing	its	acronym,	however—toAdvanced	RISC	Machine.	The	ARM	family	is	primarily	aimed	at	low-cost,	low-
powerapplications	such	as	portable	computers	and	games.	For	example,	the	Newton,	a	hand-held	"personal	digital	assistant"	introduced	by	Apple	Corp.	in	1993	employs
theARM6	microprocessor,	whose	main	features	are	described	below.

The	ARM6	is	a	32-bit	processor	in	that	both	its	data	words	and	its	address	wordsare	32	bits	(4	bytes)	long.	It	has	a	load/store	architecture,	so	only	its	load	and
storeinstructions	can	address	external	memory	M.	As	in	most	computers	since	the	IBM	Sys-tem/360,	main	memory	is	organized	as	an	array	of	individually	addressable
bytes.	Thus
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the	maximum	memory	size	of	an	ARM6	computer	is	232	bytes,	also	referred	to	as	4	151

gigabytes	(4G	bytes).	The	ARM6	employs	an	instruction	pipeline	to	meet	the	goal	of

one	instruction	executed	per	CPU	clock	cycle.	Note	that	it	shares	all	these	features	with	CHAPTa	more	powerful	(and	more	expensive)	RISC	microprocessor,	the	PowerPC
(Example1.7).	The	ARM6's	instruction	set	is	much	smaller	than	the	PowerPC's,	however—ithas	no	floating-point	instructions,	for	example.

The	internal	organization	of	the	ARM's	CPU	is	shown	in	Figure	3.9.	It	has	a	32-bitALU	and	a	file	of	32-bit	general-purpose	registers.	To	permit	direct	interaction
betweendata	and	control	registers,	the	ARM	has	the	unusual	feature	of	placing	its	PC	and	statusregisters	in	the	register	file;	conceptually,	we	will	continue	to	view	these
registers	aspart	of	the	PCU.	There	are	several	modes	of	operation,	including	the	normal	user	andsupervisor	modes,	and	four	special	modes	associated	with	interrupt
handling.	In	usermode	the	register	file	appears	to	contain	sixteen	32-bit	registers	designated	R0:R15.where	R15	is	also	the	program	counter	PC,	as	well	as	a	current
program	status	registerdesignated	CPSR.	(Additional	registers,	which	we	will	not	discuss	here,	are	used	whenthe	CPU	is	in	other	operating	modes;	they	are	"invisible"	in
user	mode.)	The	ALU	isdesigned	to	perform	basic	arithmetic	operations	on	32-bit	integers.	It	employs	combina-tional	logic	for	addition	and	subtraction	and	a	sequential
shift-and-add	method	similarto	that	described	in	Example	2.7	for	multiplication.	A	combinational	shift	circuit	isattached	to	the	ALU	to	support	multiplication	and	other
operations.	A	separate	address-incrementer	circuit	implements	address-manipulation	operations	such	as	PC	:=	PC	+	1independently	of	the	ALU.	Access	to	external
memory	M	(a	cache	or	main	memory)	isstraightforward.	The	address	of	the	desired	location	in	M	is	placed	in	the	PCU's	addressregister.	In	the	case	of	a	store	instruction,
the	data	to	be	stored	is	also	placed	in	theDPU's	write	data	register.	A	load	instruction	causes	a	data	word	to	be	fetched	frommemory	and	placed	in	the	read	data	register.
Several	internal	buses	transfer	data	effi-ciently	among	the	DPU's	registers	and	data	processing	circuits.

All	ARM6	instructions	are	32	bits	long,	and	they	have	a	variety	of	formats	andaddressing	modes.	There	are	about	25	main	instruction	types,	which	are	listed	in	Fig-ure
3.10.	(We	have	omitted	block	move	and	coprocessor	instructions.)	This	number	isdeceptively	small,	however,	as	instructions	have	options	that	substantially	increase
thenumber	of	operations	they	can	perform.	Most	instructions	can	be	applied	either	to	32-bit	operands	(words)	or	to	8-bit	operands	(bytes).	Operands	and	addresses	are
usuallystored	in	registers	that	can	be	referred	to	by	short.	4-bit	names,	allowing	a	singleARM6	instruction	to	specify	as	many	as	four	operands.	The	available	address
spaceis	shared	between	memory	and	10	devices	(memory-mapped	IO).	Consequently,	theload/store	instructions	used	for	CPU-memory	transfers	are	also	used	for	10	opera-
tions.

Any	instruction	can	be	conditionally	executed,	meaning	that	execution	may	ormay	not	occur	depending	on	the	value	of	designated	status	bits	(flags)	in	the	CPSR.The
status	flags	are	set	by	a	previous	instruction	and	include	a	negative	flag	N	(the	pre-vious	result	R	computed	by	the	ALU	was	a	negative	number),	a	zero	flag	Z	(/?	waszero),
a	carry	flag	C	(R	generated	an	output	carry),	and	an	overflow	flag	V	(/?	generateda	sign	overflow).	Hence	every	ARM6	instruction	is	effectively	combined	with	a	condi-
tional	branch	instruction.	The	basic	unconditional	move	instruction	MOV	RO.	Rl	canhave	any	of	15	conditions	attached	to	it	to	determine	if	it	is	to	be	executed	(see
problem3.8).	Some	examples:

MOVCC	RO,	Rl	;IfflagC	=	0,	then	RO	:=	R	1

MOVCS	RO.	Rl	;IfflagC=	l.thenRO:=Rl

MOVHI	RO.	R1	;	If	nag	C	=	1	and	flag	Z	=	0.	then	RO	:=	R1
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processingunitDPU

ToM

and	I/O

Register	file

Status	registers

Program	counter	PC
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Bbus

Shifter

Arithmetic-logic	unit

ALU	bus

Write	data	register

Read	data	register	1

System	bus

Address	register

Instruction	register

Address	incrementer

Program	control	unit	PCU

Controlcircuits

Figure	3.9

Overall	organization	of	the	AJIM6.

An	ARM6	instruction	can	also	include	a	shift	or	rotation	operation	that	is	appliedto	one	of	its	operands.	For	instance:

MOV	RO,	R1,LSL#2

R0:=R1	x4

(3.4)

means	logically	left	shift	(LSL)	the	contents	of	Rl	by	2	bits	and	move	the	result	to	RO.This	shift	is	tantamount	to	multiplying	R1	by	four	before	the	move.

The	opcode	suffix	S	specifies	whether	or	not	an	instruction	affects	the	status	flags.If	S	is	present,	appropriate	flags	are	changed;	otherwise,	the	flags	are	not	affected.
Forexample,	the	ARM6's	move	instructions	affect	the	N,	Z,	and	C	flags,	so	appending	S
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Type

Instruction

HDL

format

Assembly-language	format

Narrativeformat	(comment)

Data	Move	register

transfer	Move	register

Move	invertedLoad

Store

Data	Add

processing	Add	with	carry

SubtractSubtract	with

carryReverse	subtractReverse	subtract

with	carryMultiply

R3	:=	R9R0:=12

R7:=	ROR5	:=	M(adr)

M(adr)	:=	R8

R3	:=	R5	+	25R3	:=	R5	+	R6	+	C

R3	:=R5-9R3	:=	R5	-	9	-	C

R3	:=	9	-	R5R3	:=	9	-	R5	-	C

Rl	:=R3xR2

MOVMOV

R3.R9R0,#12

Multiply	and	add	R1	:=	(R3	x	R2)	+	R4

AndOr

Exclusive-orBit	clear

Program	Branchcontrol	Branch	and	link

R4:=Rlla/i</25l6R4:=R11	or25l6R4:=Rllxor25,6R4:=R11	a	25I6

PC	:=	PC	+	adrR14:=PC.PC	:=	PC	+	adr

Flags	:=R1	-	14

Software	interrupt

Compare

Compare	inverted	Flags	:=	Rl	+	14

Logical	compare	Flags	:=	Rl	xor	14

Compare	inverted	Flags	:=	Rl	or	14

MVN	R7.R0LDR	R5,	adr



STR	R8,adr

ADD	R3,R5,#25ADC	R3,R5,R6

SUB	R3,R5,#9SBC	R3,R5,#9

RSB	R3.R5,#9RSC	R3,R5,#9

MUL	R1,R2,R3MLA	R1,R2,R3,R4

AND	R4.R	11.0x25

ORR	R4,R	11.0x25

EOR	R4.R	11,0x25

BIC	R4,R11,#25

BadrBL	adr

SWI

CMP	rl.#14CMN	rl.#14TEQ	rl.#14TST	rl.#14

Copy	contents	of	register	R9	to	register	R3Copy	operand	(decimal	number	12)	to	reg-ister	RO.Copy	bitwise	inverted	contents	of	RO	to	R7Load	R5	with	contents	of	memory
location

adr.Store	contents	of	R8	in	memory	locationadr.

Add	25	to	R5;	place	sum	in	R3.

Add	R6	and	carry	bit	C	to	R5:	place	sum	in

R3.Subtract	9	from	R5;	place	difference	in	R3.Subtract	9	and	borrow	bit	from	R5;	place

difference	in	R3.Subtract	R5	from	9;	place	difference	in	R3.Subtract	R5	and	borrow	bit	from	9;	place

difference	in	R3.Multiply	R3	by	R2;	place	result	in	Rl.Multiply	R3	by	R2:	add	R4;	place	result	in

Rl.Bitwise	AND	Rl	1	and	25,6;	place	result	in

R4.Bitwise	OR	Rl	1	and	2516;	place	result	in

R4.Bitwise	XOR	Rl	1	and	2516;	place	result	in

R4.Bitwise	invert	25;	AND	it	to	R11.	place

result	in	R4.

Jump	to	designated	instruction.

Save	old	PC	in	"link"	register	R14;	then

jump	to	designated	instruction.Enter	supervisor	mode.Subtract	14	from	R1	and	set	(lags.Add	14	to	Rl	and	set	flagsXOR	14	to	Rl	and	set	flags.AND	14	to	R1	and	set	flags.

Figure	3.10

Core	instruction	set	of	the	ARM6.

154	to,	say,	MOVCS,	yields	MOVCSS.	which	checks	the	moved	data	item	D.	It	sets	N	=	1

(0)	if	D,,	=	1	(0),	it	sets	Z	=	1	(0)	if	D	is	zero	(nonzero),	and	it	sets	C	to	the	shifter's

SECTION	3.1	output	value.

CPU	Organization	Like	Qther	rjsCs,	the	arm6	has	an	instruction	pipeline	that	permits	the	various

stages	of	instruction	processing	to	be	overlapped.	The	pipeline	has	three	stages:	fetch,decode,	and	execute;	in	effect,	the	ARM6	breaks	the	first	stage	of	the	two-stage
pipe-line	of	Figure	3.8	in	two.	This	structure	permits	the	CPU	to	check	every	instruction'scondition	code	in	stage	2	to	determine	whether	the	instruction	should	be
executed	instage	3.	Some	instructions	such	as	multiply	require	more	than	one	cycle	for	execution,but	most	require	only	one.	Note	that	inclusion	of	an	operand	shift	in	an
instruction	as	in(3.4)	does	not	require	an	additional	cycle,	thanks	to	the	fast	(combinational)	shifter.

A	CISC	machine.	We	turn	next	to	a	widely	used	CPU	family,	the	Motorola680X0	family,	which	was	introduced	in	1979	with	the	68000	microprocessor.	Thisexample	of	an
older	CISC	architecture	is	more	streamlined	and	"RISC-like"	thanother	CISCs.	Later	members	of	the	family	such	as	the	68060	[Circello	et	al.	1995]have	speedup	features
such	as	instruction	pipelining,	floating-point	executionunits,	and	superscalar	instruction	issue.	We	examine	an	intermediate	member	ofthe	series,	the	68020,	a	32-bit
machine	whose	design	broadly	resembles	that	of	athird-generation	mainframe	computer	[Motorola	1989].

The	68020	is	a	one-chip	microprocessor	introduced	in	1985	to	serve	as	theCPU	of	a	general-purpose	computer	such	as	a	personal	computer	or	workstation.Figure	3.11
outlines	the	organization	of	the	68020.	It	is	designed	to	handle	32-bitwords	(termed	long	words	in	680X0	literature)	efficiently,	but	instructions	are	alsoprovided	to	handle
operands	of	1,	8,	16,	and	64	bits.	As	in	the	ARM6,	memoryaddresses	are	32	bits	long,	permitting	a	total	of	232	different	memory	locations,each	storing	1	byte.	Memory-
mapped	IO	is	also	used	in	the	680X0	series.	The	data-processing	unit	has	a	register	file	containing	sixteen	32-bit	registers,	half	of	whichare	data	registers	designated
D0:D7	and	half	are	address	registers	designatedA0:A7.	The	ALU	can	execute	a	large	set	of	fixed-point	(but	not	floating-point)instructions.	Instruction	interpretation	and
other	control	functions	of	the	CPU	areimplemented	by	a	microprogrammed	control	unit.

The	68020	has	about	70	distinct	instruction	types	(or	around	200	if	all	opcodevariants	are	distinguished),	which	are	summarized	in	Figure	3.12.	A	given	instruc-tion	such
as	MOVE	can	be	defined	with	several	different	types	of	operands,	andthe	operands	can	be	addressed	in	various	ways.	For	example,	the	following	move-register	instruction
written	in	680X0	assembly-language	format

MOVE.L	DLA6	(3.5)

causes	the	entire	contents	(a	long	word	as	indicated	by	the	opcode	suffix	.L)	of	dataregister	Dl	to	be	copied	to	address	register	A6.	In	other	words,	(3.5)	implementsthe
register	transfer	A6	:=	Dl.	If	.L	is	replaced	by	.B,	then	the	resulting	instruction

MOVE.B	D1,A6

causes	only	the	byte	stored	in	the	low-order	position	(bits	0:7)	of	Dl	to	be	copiedto	the	corresponding	part	of	A6.

Besides	the	direct	addressing	mode	illustrated	by	the	preceding	example,	the68020	has	several	other	addressing	modes	that	give	the	programmer	considerable

Program	control	unit	PCU

Control	memory(microrom)

Control	memory	2(nanorom)

Addresssequencer

Instructionqueue

Instructioncache
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Main	control	signals

Data



processingunitDPU

Arithmetic-logic

Data	registers

Address	registers

DODlD2

D3D4D5DbD7

AOAlA2A3A4A5A6

User-programmableregisters

A7	|	User	stack	pointer	|

PC	[	Program	counterUser	status	register(condition	code)	|	CC	|

A7'	System	stack	pointer

System	status	registerSupervisor	registers

Buscontrol

circuits

ToMand	10

r=C

System	bus

Figure	3.11

Organization	of	the	68020.

flexibility	in	accessing	data.	Most	instructions	can	address	memory	as	well	as	CPUregisters.	For	example,	if	(3.5)	is	replaced	by

MOVE.L	D1.(A6)	(3.6)

the	resulting	operation	is	M(A6)	:=	D1,	that	is,	a	store	operation	with	A6	serving	asthe	memory-address	register.	This	is	an	instance	of	indirect	addressing.	Note	thatwhile
(3.5)	takes	4	clock	cycles	to	execute,	(3.6)	takes	12	cycles	because	of	thetime	required	to	access	external	memory.	The	68020's	data-processing	instructionscan	also	access
M	directly,	so	the	68020	does	not	have	the	load/store	architecture
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Type

Opcode	Description

SECTION	3.1CPU	Organization

Data	transfer	EXGMOVEMOVEAMOVECMOVEMMOVEPMOVEQMOVES

Dataprocessing

SWAP

ABCD

ADD

ADDA

ADDI

ADDQ

ADDX

AND*

AS*

CLR

DIVx

EORjc

EXT

LSjc

MULx

NBCD

NEG

NEGX

NOT

OR*

PACK*

ROx

ROXx

SBCD

SUB

SUBA

SUBI

SUBQ

SUBX

UNPK*

Exchange	(swap)	contents	of	two	registers.



Move	(copy)	data	unchanged	from	source	to	destination	in	CPU	or	M.Copy	data	to	address	register.

Copy	data	to	or	from	control	register	(privileged	instruction).Copy	multiple	data	items	to	or	from	specified	list	of	registers.Copy	data	between	register	and	alternate	bytes
of	memory.Copy	"quick"	(8-bit)	immediate	data	to	register.Copy	data	using	address	space	specified	by	a	control	register	(privi-leged	instruction).Swap	left	and	right	halves
of	register.

Add	decimal	(BCD)	numbers	with	carry	(extend)	flag.

Add	binary	(twos-complement)	numbers.

Add	to	address	register	(unsigned	binary	addition).

Add	immediate	binary	operand.

Add	"quick"	(3-bit)	immediate	binary	operand.

Add	binary	with	carry	(extension)	flag.

Bitwise	logical	AND	(x	=	I	denotes	immediate	operand).

Arithmetic	left	(x	=	L)	or	right	(x	=	R)	shift	with	extension.

Clear	operand	by	resetting	all	bits	to	0.

Divide	signed	(x	=	S)	or	unsigned	(x	=	U)	binary	numbers.

Bitwise	logical	EXCLUSIVE	OR	(x	=	I	denotes	immediate	operand).

Extend	the	sign	bit	of	subword	to	fill	register.

Logical	(simple)	left	(x	=	L)	or	right	(x	=	R)	shift.

Multiply	signed	(x	=	S)	or	unsigned	(x	=	U)	binary	numbers.

Negate	decimal	number	(subtract	with	carry	from	zero).

Negate	binary	number	(subtract	from	zero).

Negate	binary	number	(subtract	with	carry	from	zero).

Bitwise	logical	complement.

Bitwise	logical	OR	(x	=	I	denotes	immediate	operand).

Convert	number	from	unpacked	to	packed	BCD	format.

Rotate	(circular	shift)	left	(x	=	L)	or	right	(x	=	R).

Rotate	left	(x	=	L)	or	right	(x	=	R)	including	the	X	(extend)	flag.

Subtract	decimal	(BCD)	numbers.

Subtract	binary	(twos-complement)	numbers.

Subtract	from	address	register	(unsigned	binary	subtraction).

Subtract	immediate	binary	operand.

Subtract	"quick"	(3-bit)	immediate	binary	operand.

Subtract	binary	with	borrow	(extend)	flag.

Convert	number	from	packed	to	unpacked	BCD	format.

Figure	3.12

Instruction	set	of	the	68020.

characteristic	of	a	RISC.	For	example:

ADD	(A0),	DOspecifies	the	memory-to-register	add	operation	DO	:=	M(A0)	+	DO.

EXAMPLE	3.3	680X0	PROGRAM	FOR	VECTOR	ADDITION.	Figure	3.13	gives

an	example	of	680X0	assembly-language	code	that	illustrates	several	of	its	basicinstruction	types	and	addressing	methods.	This	program	adds	two	1000-element	vec-tors
A	and	B	to	produce	a	third	vector	C.	Each	vector	is	assumed	to	be	a	decimal

Type	Opcode	Description

Program	Bcc	Branch	relative	to	PC	if	specified	condition	code	cc	is	set.

control	Bxcx	Test,	modify,	and/or	transfer	(depending	on	xxx)	a	specified	bit;	set	Z	flag	to

indicate	old	bit	value.BExxt*	Test,	modify,	and/or	transfer	(depending	on	xxx)	a	specified	bit	field;	set	flags

to	indicate	old	bit-field	value.BKPT*	Execute	a	breakpoint	trap	(used	for	debugging).BRA	Branch	unconditionally	relative	to	PC.

BSR	Call	(branch	to)	subroutine	at	address	relative	to	PC;	save	old	PC	in	stack.

CALLM*	Call	subroutine	(program	module)	saving	specified	control	information	in	stack.CASx*	Compare	specified	operands	and	update	register.CHKx	Check	register
against	specified	values	(address	bounds);	trap	if	bounds	are

exceeded.CMP*	Compare	two	operand	values;	set	flags	based	on	result;	x	indicates	operand

type.DBcc	Loop	instruction:	Test	condition	cc	and	perform	no	operation	if	condition	is

met;	otherwise,	decrement	specified	register	and	branch	to	specified	address.ILLEGAL*	Perform	trap	operation	corresponding	to	an	illegal	opcode.JMP	Branch
unconditionally	to	specified	(nonrelative)	address.

JSR	Call	(jump	to)	subroutine	at	specified	(nonrelative)	address;	save	old	PC	in

stack.LEA	Compute	effective	address	and	load	into	address	register.

LINK	Allocate	local	data	and	parameter	region	in	the	stack.

NOP	No	operation	(except	increment	PC);	instruction	execution	continues.

PEA	Compute	effective	address	and	push	into	stack.

RTD	Return	from	subroutine	and	deallocate	stack	parameter	region.

RTE	Return	from	exception	(privileged	instruction).

RTM*	Return	and	restore	control	(module	state)	information.RTR	Return	and	restore	condition	codes.

RTS	Return	from	subroutine.

Sec	Set	operand	to	Is	(Os)	if	condition	code	cc	is	true	(false).



STOP	Load	status	register	and	halt	(privileged	instruction).

TRAP	Begin	exception	processing	at	specified	address.

TRAPcc	If	condition	cc	is	true,	then	begin	exception	processing.TST	Test	an	operand	by	comparing	it	to	zero	and	setting	flags.

UNLK	Deallocate	local	data	and	parameter	area	in	the	stack.

External	cpxwr*	If	condition	holds,	then	branch	with	external	coprocessor	as	specified	by	xxx.synchro-	RESET	Reset	or	restart	external	device	(privileged
instruction),nization	TAS	Test	operand	and	set	one	of	its	bits	to	1	using	an	indivisible	memory-access

cycle.

♦Instruction	not	in	the	original	68000	instruction	set.

Figure	3.12

(continued).
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number	composed	of	1000	two-digit	bytes.	Each	vector	is	stored	in	a	fixed	block	ofmain	memory	whose	location	is	known.	For	example,	vector	A	is	stored	in
memorylocations	1001,1002,1003,	...,1999,2000.

The	desired	addition	is	accomplished	by	executing	the	ABCD	(add	using	the	BCDnumber	format)	instruction	1000	times.	The	address	registers	A0,	Al,	and	A2	are	usedas
pointers	to	the	current	1-byte	operands,	and	they	are	initialized	to	the	required	start-ing	values	using	the	first	three	MOVE	instructions.	These	instructions	use
immediateaddressing	denoted	by	the	prefix	#	to	specify	instruction	fields	that	contain	'actualaddress	values,	while	a	register	name	such	as	A0	indicates	that	the	desired
operand	is
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Location	Instruction

Comment

MOVE.L	#2001,	A0

MOVE.L	#3001,	A1

MOVE.L	#4001.	A2

START	ABCD	-<A0),-(A1)

MOVE.B	(A1),-(A2)

TEST	CMPA	#1001,	A0

BNE

START

Load	address	2001	into	register	A0	(pointer	to	vector	A).

Load	address	3001	into	register	A1	(pointer	to	vector	B).

Load	address	4001	into	Kgister	A2	(pointer	to	vector	C).

Decrement	contents	of	A0	and	Al	by	1,	then	add	M(A0)	toM(A1)	using	1-byte	decimal	addition.

Decrement	A2	and	then	store	the	1-byte	sum	M(A1)	inlocation	M(A2)	of	vector	C.

Compare	1001	to	address	in	A0.	If	equal,	set	the	Z	flag(condition	code)	to	1;	otherwise,	reset	Z	to	0.

Branch	to	START	if	Z	is	not	equal	to	1.

Figure	3.13

680X0	assembly-language	program	for	vector	addition.

the	contents	of	the	named	register—this	is	direct	addressing.	The	ABCD	and	MOVE.B(move	byte)	instructions	use	indirect	addressing,	indicated	by	parentheses.	In	this
casethe	data	specified	by	(A0)	is	the	content	of	the	memory	location	whose	address	isstored	in	A0.	that	is,	the	data	in	M(A0).	Finally	the	minus	prefix	in	the	operand	-
(A0)means	that	A0	is	decremented	by	one	before	it	is	used	to	access	main	memory,	a	modeof	addressing	called	autoindexing.

The	program	of	Figure	3.13	loads	three	starting	addresses	into	the	selected	addressregisters.	Since	the	ABCD	and	MOVE.B	instructions	begin	by	automatically	decre-
menting	these	registers,	their	initial	values	are	made	one	bigger	than	the	biggestaddress	assigned	to	the	corresponding	vector.	The	ABCD	instruction	performs	the	fol-
lowing	set	of	operations:

A0:=A0-	1,A1	:=A1-1;M(A1):=M(A1)	+	M(A0);	set	flags

which	are	relatively	slow	because	of	the	memory	access	required.	The	MOVE.Binstruction	implements	the	memory-to-memory	move	operation	with	autoindexing

A2:=A2-	1;	M(A2):=M(A1);	set	flags

The	compare-address	instruction	CMPA	checks	for	program	termination	by	comparingthe	current	address	in	A0	to	1001,	the	lowest	address	assigned	to	vector	A.	It
actuallysubtracts	its	first	operand	(1001	in	this	case)	from	its	second	and	sets	the	status	flags(condition	code)	based	on	the	result.	Hence	if	A0	>	1001,	then	A0	-	1001	>	0
andCMPA	sets	the	zero	flag	Z	to	0,	indicating	a	nonzero	result.	(It	also	sets	various	otherflags	not	used	by	this	program).	When	A0	finally	reaches	1001,	A0	-	1001	=	0,
soCMPA	sets	Z	to	1.	Now	the	last	instruction	BNE,	which	stands	for	branch	if	not	equalto	zero,	is	a	conditional	branch	instruction	whose	operation	is	described	by

ifZ*l	then	PC:	=	START

It	therefore	transfers	execution	back	to	the	ABCD	instruction	in	location	START	aslong	as	A0	>	1001.	When	A0	finally	reaches	1001,	Z	becomes	1,	and	PC	is
incrementednormally	to	exit	from	the	program.

It	is	interesting	to	compare	this	680X0	program	with	the	similar	programs	givenearlier	for	the	IAS	(Figure	1.15)	and	PowerPC	(Figure	1.27)	computers.

Coprocessors.	The	built-in	instruction	repertoire	of	the	68020	includes	fixed-point	multiplication	and	division	and	stack-based	instructions	for	transferring	con-trol
between	programs.	Hardware-implemented	floating-point	instructions	are	notavailable	directly;	however,	they	are	provided	indirectly	by	means	of	an	auxiliaryIC,	the
68881	floating-point	coprocessor.	(The	ARM6	also	has	provisions	forexternal	coprocessors.)	In	general,	a	coprocessor	P	is	a	specialized	instruction	exe-cution	unit	that	can
be	coupled	to	a	microprocessor	so	that	instructions	to	be	exe-cuted	by	P	can	be	included	in	programs	fetched	by	the	microprocessor.	Thus	thecoprocessor	serves	as	an
extension	to	the	microprocessor	and	forms	part	of	theCPU	as	indicated	in	Figure	3.14.

The	68881	(and	the	similar	but	faster	68882)	contains	a	set	of	eight	80-bitregisters	for	storing	floating-point	numbers	of	various	formats,	including	32-	and64-bit	numbers
conforming	to	the	standard	IEEE	754	format	(presented	later).Additional	control	registers	in	the	68881	allow	it	to	communicate	with	the68020.	A	set	of	coprocessor
instructions	are	defined	for	the	68020;	they	containcommand	fields	specifying	floating-point	operations	that	the	68881	can	execute.When	the	68020	fetches	and	decodes
such	an	instruction,	it	transfers	the	com-mand	portion	to	the	coprocessor,	which	then	executes	it.	Further	exchanges	takeplace	between	the	main	processor	and	the
coprocessor	until	the	coprocessor	com-pletes	execution	of	its	current	operation,	at	which	point	the	68020	proceeds	toits	next	instruction.	The	commands	executed	by	the
68881	include	the	basic
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Figure	3.14

68020-based	microcomputer	with	floating-point	coprocessor.

IO	device

160	arithmetic	operations	(add.	subtract,	multiply,	and	divide),	square	root,	loga-

rithms,	and	trigonometric	functions.	Other	types	of	coprocessors	may	be

Data	Representation	attached	to	the	68020	in	similar	fashion.	Later	members	of	the	680X0	familytake	advantage	of	advances	in	VLSI	to	integrate	a	floating-point
(co)processorinto	the	CPU	chip.

Other	design	features.	Like	the	IBM	System/360-370	and	the	ARM6,	the	CPUhas	a	supervisor	state	intended	for	operating	system	use	and	a	user	state	for	appli-cation
programs.	As	Figures	3.11	and	3.12	indicate,	certain	"privileged"	controlregisters	and	instructions	can	be	used	only	in	the	supervisor	state.	User	and	super-visory
programs	are	thus	clearly	separated—for	example,	they	employ	differentstack	pointers—thereby	improving	system	security.	680X0-based	computers	arealso	designed	to
allow	easy	implementation	of	virtual	memory,	whereby	the	oper-ating	system	makes	the	main	memory	appear	larger	to	user	programs	than	it	reallyis.	Hardware	support
for	virtual	memory	is	provided	by	the	68851	memory	man-agement	unit	(MMU),	another	680X0	coprocessor.

Provided	they	meet	certain	independence	conditions,	up	to	three	68020	instruc-tions	can	be	processed	simultaneously	in	pipeline	fashion.	This	pipelining	is	com-plicated
by	the	fact	that	instruction	lengths	and	execution	times	vary,	a	problem	thatRISCs	try	to	eliminate.	Another	speedup	feature	found	in	the	68020	is	a	smallinstruction-only
cache	(I-cache).	The	68020	prefetches	instructions	from	mainmemory	while	the	system	bus	is	idle;	the	instructions	can	subsequently	be	readmuch	more	quickly	from	the
on-chip	cache	than	from	the	off-chip	main	memory.An	unusual	feature	of	the	68020	noted	in	Figure	3.11	is	its	use	of	two	levels	ofmicroprogramming	to	implement	the
CPU's	control	logic.	For	the	manufacturer,this	feature	increases	design	flexibility	while	reducing	IC	area	compared	with	con-ventional	(one-level)	microprogrammed
control.

3.2

DATA	REPRESENTATION

The	basic	items	of	information	handled	by	a	computer	are	instructions	and	data.We	now	examine	the	methods	used	to	represent	such	information,	focusing	on	theformats
for	numerical	data.

3.2.1	Basic	Formats

Figure	3.15	shows	the	fundamental	division	of	information	into	instructions	(oper-ation	or	control	words)	and	data	(operands).	Data	can	be	further	subdivided
intonumerical	and	nonnumerical.	In	view	of	the	importance	of	numerical	computation,computer	designs	have	paid	a	great	deal	of	attention	to	the	representation	of	num-
bers.	Two	main	number	formats	have	evolved:	fixed-point	and	floating-point.	Thebinary	fixed-point	format	takes	the	form	bAb^)c..	.bK,	where	each	bx	is	0	or	1	and	abinary
point	is	present	in	some	fixed	but	implicit	position.	A	floating-point	num-ber,	on	the	other	hand,	consists	of	a	pair	of	fixed-point	numbers	M,E,	whichdenote	the	number	M
x	BE,	where	B	is	a	predetermined	base.	The	many	formatsused	to	encode	fixed-point	and	floating-point	numbers	will	be	examined	later	in
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the	chapter.	Nonnumerical	data	usually	take	the	form	of	variable-length	characterstrings	encoded	in	one	of	several	standard	codes,	such	as	ASCII	(American	Stan-dards
Committee	on	Information	Exchange)	code.

Word	length.	Information	is	represented	in	a	digital	computer	by	means	ofbinary	words,	where	a	word	is	a	unit	of	information	of	some	fixed	length	n.	An	n-bit	word	allows
up	to	2"	different	items	to	be	represented.	For	example,	with	n	=4,	we	can	encode	the	10	decimal	digits	as	follows:

0	=	0000	1=0001	2	=	0010	3	=	0011	4	=	0100

5	=	0101	6	=	0110	7	=	0111	8=1000	9=1001	(3'7)

To	encode	alphanumeric	symbols	or	characters,	8-bit	words	called	bytes	are	com-monly	used.	As	well	as	being	able	to	encode	all	the	standard	keyboard	symbols,	abyte
allows	efficient	representation	of	decimal	numbers	that	are	encoded	in	binaryaccording	to	(3.7).	A	byte	can	store	two	decimal	digits	with	no	wasted	space.	Mostcomputers
have	the	8-bit	byte	as	the	smallest	addressable	unit	of	information	intheir	main	memories.	The	CPU	also	has	a	standard	word	size	for	the	data	it	pro-cesses.	Word	size	is



typically	a	multiple	of	8,	common	CPU	word	sizes	being	8,16,	32,	and	64	bits.

No	single	word	length	is	suitable	for	representing	every	kind	of	informationencountered	in	a	typical	computer.	Even	within	a	single	domain	such	as	a	com-puter's
instruction	set,	we	often	find	several	different	word	sizes.	For	example,instructions	such	as	load	and	store	that	reference	memory	need	long	address	fields.Instructions
whose	operands	are	all	in	the	CPU	need	not	contain	memory	addressesand	so	can	be	shorter.	The	precision	of	a	number	word	is	determined	by	its	length;it	is	common
therefore	to	have	numbers	of	various	sizes.	Figure	3.16	gives	a	sam-pling	of	data	sizes	used	by	the	Motorola	680X0.	As	here,	the	term	word	is	oftenrestricted	to	mean	a
32-bit	(4	byte)	word.	(680X0	literature	refers	to	32-bit	wordswith	the	nonstandard	term	long	word.)	Fixed-point	numbers	come	in	lengths	of	1,2,	4,	or	more	bytes.	Floating-
point	numbers	also	come	in	several	lengths,	the	short-est	(single	precision)	number	being	one	word	(32	bits)	long.

The	circuits	of	a	CPU	must	be	carefully	designed	to	permit	various	informa-tion	formats	to	coexist	smoothly.	For	example,	if	instruction	length	varies,	as	is	thecase	in	many
CISC	microprocessors,	the	program	control	unit	must	be	designed	todetermine	an	instruction's	length	from	its	opcode	and	to	fetch	a	variable	number	ofinstruction	bytes
from	memory.	It	must	also	increment	the	program	countenby	a
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Figure	3.16

Some	information	formats	of	the	Motorola	680X0	microprocessor	series.

variable	amount	to	obtain	the	address	of	the	next	consecutive	instruction.	Thuswhile	the	ARM6	has	instructions	of	length	4	bytes	only,	the	68020's	instructionsrange	in
length	from	2	to	10	bytes.

Instruction	sets	commonly	have	features	to	make	it	easy	to	apply	instructionsto	nonstandard-length	operands.	An	example	is	the	add-with-carry	(ADC)	instruc-tion	and	its
counterpart	subtract	with	carry,	which	enable	add	and	subtract	instruc-tions	to	apply	to	long	fixed-point	numbers	by	adding	them	in	short	segments	andpropagating
carries	from	segment	to	segment.	Suppose,	for	example,	that	we	wantto	add	two	unsigned	64-bit	(double	word)	binary	integers	A	and	B	using	theARM6	instruction	set
(Figure	3.10),	which	is	designed	to	add	32-bit	words.	Let	Abe	placed	in	registers	R0	and	R1,	with	the	right	(least	significant)	half	of	A	in	R0.Similarly,	let	B	be	placed	in
registers	R2	and	R3,	with	its	right	half	in	R2.	Wefirst	apply	the	ADD	instruction	with	inputs	R0	and	R2	and	place	the	resulting	sumin	R4.	We	also	instruct	ADD	to	activate
the	status	flags,	which	requires	an	5	suf-fix	to	the	ARM6	opcode,	changing	it	to	ADDS.	(In	most	other	computers	theflags	are	set	automatically	by	all	data-processing
instructions.)	ADDS	results	inthe	carry	flag	C	assuming	the	value	of	the	carry-out	bit	produced	by	the	additionR0	+	R2.	Then	we	apply	the	ADC	(add	with	carry)
instruction	with	inputs	Rland	R3	to	compute	the	sum	Rl	+	R3.	In	the	following	ARM6	code,	the	final	sumA	+	B	is	placed	in	R4	and	R5.

HDL	format

ARM6

assembly-languageformat

Narrative	format	(comment)

C.R4	:=	R0	+	R2	ADDS	R4.R0.R2

R5:	=	R1+R3+C	ADC	R5,R1,R3

Add	right	words	and	store	carry	signal	C.Add	left	words	plus	C.

Storage	order.	A	small	but	important	aspect	of	data	representation	is	the	wayin	which	the	bits	of	a	word	are	indexed.	We	will	usually	follow	the	conventionillustrated	in
Figure	3.17,	where	the	right-most	bit	is	assigned	the	index	0	and	thebits	are	labeled	in	increasing	order	from	right	to	left.	The	advantage	of	this	conven-tion	is	that	when
the	word	is	interpreted	as	an	unsigned	binary	integer,	the	low-order	indexes	correspond	to	the	numerically	less	significant	bits	and	the	high-orderindexes	correspond	to
the	numerically	more	significant	bits.	Similarly,	we	label	the

Byte	3	Byte	2

i	i	i	i	i	i	i	I	i	i	i	i	i	i	i

Byte	1

i	i	i	i	i	i

ByteO

'
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bytes	of	a	word	from	right	to	left,	with	index	0	assigned	to	the	numerically	leastsignificant	byte.	Figure	3.17	therefore	shows	the	format	used	to	store	a	4-byte	wordin	a
one-word	register.

Since	words	are	stored	as	individually	addressable	bytes	in	memory	M,	a	ques-tion	arises	as	to	the	storage	order	in	M	of	the	bytes	within	each	word.	Suppose	thata



sequence	W0,Wl,...,Wmof	m	4-byte	number	words	is	to	be	stored.	Suppose	fur-ther	that	we	write	W(	as	Bl3,Bj2,BiA,BlQ,	where	as	in	Figure	3.17,	we	place	the
leastsignificant	byte	BiQ	on	the	right	and	assign	it	the	lowest	index	0.	Now	the	entiresequence	can	be	rewritten	as

W0,Wx,...,Wm	=	BQ3,B02,B0l,B00,Bl3,Bl2,BluBl0,...,

Bm,3>Bm,2>Bm,l>Bm,0	(3-8)

Suppose	we	store	these	4(m	+	1)	bytes	in	M	using	the	"natural"	order	defined	by(3.8);	that	is,	we	assign	a	sequence	of	increasing	memory	addresses

adr0,	adrx,	adr2,	adr3,	...,	adr4m+2,	adr4m+3

to	the	bytes	as	listed	in	(3.8).	This	storage	sequence,	which	is	illustrated	in	Figure3.18a,	is	a	byte-storage	convention	called	big-endian.2	It	is	so	named	because	themost
significant	(biggest)	byte	Bj3	of	word	Wt	is	assigned	the	lowest	address	and	theleast	significant	byte	BiQ	is	assigned	the	highest	address.	In	other	words,	the	big-endian
scheme	assigns	the	highest	address	to	byte	0.	The	alternative	byte-storagescheme	called	little-endian	assigns	the	lowest	address	to	byte	0.	This	corresponds	to

^0,^,...,!^	=	#o.O'fiO,l'fiO,2'fiO,3'5l,0'5l,l'fl1.2'#1.3	BmfrBm,\iBm2'Bm3

and	is	illustrated	by	Figure	3.18&.

Interestingly,	computer	manufacturers	have	never	agreed	on	this	issue,	so	boththe	big-endian	and	little-endian	conventions	are	in	widespread	use.	For	example,the
Motorola	680X0	uses	the	big-endian	method,	whereas	the	Intel	80X86	series	islittle-endian.	Some	computers	including	the	ARM	family	can	switch	between	thetwo	endian
conventions.

Tags.	In	the	von	Neumann	computer,	instruction	and	data	words	are	storedtogether	in	main	memory	and	are	indistinguishable	from	one	another—this	is	theclassic	"stored
program"	concept.	An	item	plucked	at	random	from	memory	cannotbe	identified	as	an	instruction	or	data.	Different	data	types	such	as	fixed-point	andfloating-point
numbers	also	cannot	be	distinguished	by	inspection.	A	word's	typeis	determined	by	the	way	a	processor	interprets	it.	In	principle,	the	same	word	canbe	treated	as	an
instruction	and	data	at	different	times,	for	example,	the	word	X	in

2The	allusion	is	to	an	argument	appearing	in	Gulliver's	Travels	on	whether	an	egg	should	be	opened	at	it>	bigor	little	end	[Cohen	1981].
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Figure	3.18

Basic	byte	storage	methods:	(a)	big-endian	and	(b)	little-endian.

02
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00

Wordaddress

the	instruction	sequence

X:=X	+	Y;

go	to	X;

It	is	the	programmer's	(and	compiler's)	responsibility	to	ensure	that	data	are	notinterpreted	as	instructions,	and	vice	versa.	A	reason	for	this	deliberate	indistin-
guishability	of	data	and	instructions	can	be	seen	in	the	design	of	the	IAS	computer(section	1.2.2).	The	LAS's	address-modify	instructions	alter	stored	instructions	inmain
memory.	The	ability	to	modify	instructions	in	this	way—in	effect,	treatingthem	as	data—is	useful	when	processing	indexed	variables,	as	illustrated	in	Exam-ple	1.4.
However,	this	type	of	instruction	modification	in	memory	became	obsoletewith	the	introduction	of	address-indexing	hardware.

A	few	computer	designers	have	argued	that	the	major	information	types	shouldbe	assigned	formats	that	identify	them	[Feustel	1973;	Myers	1982],	This	can	bedone	by
associating	with	each	information	word	a	group	of	bits,	called	a	tag,	thatidentifies	the	word's	type.	The	tag	may	be	considered	as	a	physical	implementationof	the	type
declaration	found	in	some	high-level	programming	languages.	One	ofthe	earliest	machines	to	use	tags	was	the	1960s-vintage	Burroughs	B6500/7500series,	which
employed	a	3-bit	tag	field	in	every	word	so	that	eight	word	typescould	be	distinguished.	The	52-bit	word	format	of	the	B6500/7500	and	the	inter-pretation	of	its	tag	appear
in	Figure	3.19.

Tagging	simplifies	instruction	specification.	In	conventional,	nontagged	com-puters,	an	instruction's	opcode	must	explicitly	or	implicitly	specify	the	type	of	dataon	which	it
operates.	The	PCU	must	know	the	operand	types	in	order	to	route	them

47

Parity-	Tagcheck	bit

VInformation	bits

Tag Interpretation

000 Single-precision	number.

001 Indirect	reference	word.

010 Double-precision	number

on Segment	descriptor.

100 Step-index	control	word.

101 Data	descriptor.

110 Uninitialized	operand.

111 Instruction.

Figure	3.19

Tagged-word	format	of	the	Burroughs	B6500/750O	series.

to	the	proper	arithmetic	circuits	and	registers.	It	is	therefore	necessary	to	providedistinct	instructions	for	each	data	type;	for	example,	add	binary	word,	add	binaryhalf-
word,	add	BCD	word,	add	floating-point	word,	and	add	floating-point	doubleword.	If,	on	the	other	hand,	tags	distinguish	the	operand	types,	then	a	single	ADDopcode
suffices	for	all	cases.	The	processor	merely	has	to	inspect	an	operand's	tagto	determine	its	type.	Furthermore,	tag	inspection	permits	the	hardware	to	checkfor	software
errors,	such	as	an	attempt	to	add	operands	whose	types	are	incompati-ble.	Tags	have	a	serious	cost	disadvantage,	however.	They	increase	memory	sizeand	add	to	the
system	hardware	costs	without	increasing	computing	performance.This	fact	has	severely	restricted	the	use	of	tagged	architectures.

Error	detection	and	correction.	Various	factors	like	manufacturing	defects	andenvironmental	effects	cause	errors	in	computation.	Such	errors	frequently	appearwhen
information	is	being	transmitted	between	two	relatively	distant	points	withina	computer	or	is	being	stored	in	a	memory	unit.	"Noise"	in	the	communication	linkcan	corrupt
a	bit	x	that	is	being	sent	from	A	to	B	so	that	B	receives	x	instead	of	x.To	guard	against	errors	of	this	type,	the	information	can	be	encoded	so	that	speciallogic	circuits	can
detect,	and	possibly	even	correct,	the	errors.

A	general	way	to	detect	or	correct	errors	is	to	append	special	check	bits	toevery	word.	One	popular	technique	employs	a	single	check	bit	c0	called	a	parity-bit.	The	parity
bit	is	appended	to	an	n-bit	word	X	=	(x0,	xu	.	..,	*„_,)	to	form	the(n	+	l)-bit	word	X*	=	(x0,	*,,	.	.	.	,	*„_,,%);	see	Figure	3.19.	Bit	c0	is	assigned	thevalue	0	or	1	that	makes	the
number	of	ones	in	X*	even,	in	the	case	of	even-paritycodes,	or	odd,	in	the	case	of	odd-parity	codes.	In	the	even-parity	case,	c0	isdefined	by	the	logic	equation

Cn	=	Xn	©	X,	©	...	©	X

n—1

(3.9)

where	©	denotes	EXCLUSIVE-OR,	while	in	the	odd-parity	case

Cr\	—	Xft

Suppose	that	the	information	X	is	to	be	transmitted	from	A	to	B.	The	value	of	c0	isgenerated	at	the	source	point	A	using,	say,	(3.9),	and	X*	is	sent	to	B.	Let	B	receivethe
word	X'	=	(x'Q,	x\,	.	.	.	,	xn_vc'Q).	B	then	determines	the	parity	of	the	receivedword	by	recomputing	the	parity	bit	according	to	(3.9)	thus:
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C*n	=	x'n	©	X	,

©•*'„-!
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The	received	parity	bit	c'0	and	the	reconstituted	parity	bit	c*0	are	then	compared.	Ifc'0	*	c*0,	the	received	information	contains	an	error.	In	particular,	if	exactly	1	bit	ofX*
has	been	inverted	during	the	transmission	process	(a	single-bit	error),	then	c'0	*c*0.	If	c'0	=	c*0,	it	can	be	concluded	that	no	single-bit	error	occurred,	but	the	possi-bility
of	multiple-bit	errors	is	not	ruled	out.	For	example,	if	a	0	changes	to	1	and	a	1changes	to	0	(a	double	error),	then	the	parity	of	X	is	the	same	as	that	of	X*	and	theerror	will
go	undetected.	The	parity	bit	c0	therefore	provides	single-errordetection.	It	does	not	detect	all	multiple	errors,	much	less	provide	any	informationabout	the	location	of	the
erroneous	bits.

The	parity-checking	concept	can	be	extended	to	the	detection	of	multipleerrors	or	to	the	location	of	single	or	multiple	errors.	These	goals	are	achieved	byproviding
additional	parity	bits,	each	of	which	checks	the	parity	of	some	subset	ofthe	bits	in	the	word	X*.	By	appropriately	overlapping	these	subsets,	the	correctnessof	every	bit	can
be	determined.	Suppose,	for	instance,	that	we	can	deduce	from	theparity	checks	the	identity	of	the	bit	x,	responsible	for	a	single-bit	error.	It	is	then	asimple	matter	to
introduce	logic	circuits	to	replace	xi	by	Jc,,	thus	providing	single-error	correction.	Let	c	be	the	number	of	check	bits	required	to	achieve	single-errorcorrection	with	n-b\t
data	words.	Clearly	the	check	bits	have	2C	patterns	that	mustdistinguish	between	n	+	c	possible	error	locations	and	the	single	error-free	case.Hence	c	must	satisfy	the
inequality

2C	>	n	+	c	+	1

(3.10)

For	n	=	16,	(3.10)	implies	that	c	>	5,	while	for	n	=	32	we	have	c	>	6.	A	variety	ofpractical	single-error-correcting	parity-check	codes	meet	the	lower	bound	on	cimplied	by
(3.10)	[Siewiorek	and	Swarz	1992].	Some	of	these	codes	can	also	detectdouble	errors	and	so	are	called	single-error-correcting	double-error-detecting(SECDED)	codes.	As
the	main	memories	of	computers	have	increased	in	storagecapacity	and	decreased	in	physical	size,	they	have	become	more	prone	to	transientfailures	that	are	often
correctable	via	SECDED	codes.	Figure	3.20	shows	the	struc-ture	of	a	typical	error	detection	and	correction	scheme	used	with	a	computer's	mainmemory.
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In	selecting	a	number	representation	to	be	used	in	a	computer,	the	following	factorsshould	be	taken	into	account:

•	The	number	types	to	be	represented;	for	example,	integers	or	real	numbers.

•	The	range	of	values	(number	magnitudes)	likely	to	be	encountered.

•	The	precision	of	the	numbers,	which	refers	to	the	maximum	accuracy	of	the	repre-sentation.

•	The	cost	of	the	hardware	required	to	store	and	process	the	numbers.

The	two	principal	number	formats	are	fixed-point	and	floating-point.	Fixed-pointformats	allow	a	limited	range	of	values	and	have	relatively	simple	hardwarerequirements.
Floating-point	numbers,	on	the	other	hand,	allow	a	much	larger	rangeof	values	but	require	either	costly	processing	hardware	or	lengthy	software	imple-mentations.

Binary	numbers.	The	fixed-point	format	is	derived	directly	from	the	ordinary(decimal)	representation	of	a	number	as	a	sequence	of	digits	separated	by	a	decimalpoint.	The
digits	to	the	left	of	the	decimal	point	represent	an	integer;	the	digits	tothe	right	represent	a	fraction.	This	is	positional	notation	in	which	each	digit	has	afixed	weight
according	to	its	position	relative	to	the	decimal	point.	If	i	>	1,	the	/thdigit	to	the	left	(right)	of	the	decimal	point	has	weight	10,_I	(10"')-	Thus	the	five-digit	decimal	number
192.73	is	equivalent	to

1	x	102	+	9	x	101	+	2	x	10°	+	7	x	10"1	+	3	x	1(T2

More	generally,	we	can	assign	weights	of	the	form	r\	where	r	is	the	base	or	radixof	the	number	system,	to	each	digit.

The	most	fundamental	number	representation	used	in	computers	employs	abase-two	positional	notation.	A	binary	word	of	the	form

bN...b-ib2bxbQ.	b_xb_2b_ib^...bM	(3.11)

represents	the	number

2V

When	unclear	from	the	context,	the	base	r	being	used	will	be	indicated	by	append-ing	r	as	a	subscript	to	the	number.	Thus	10102	denotes	the	binary	equivalent	of
thedecimal	number	1010,	whereas	102	denotes	210.	The	format	of	(3.11)	is	an	exampleof	a	fixed-point	binary	number	and	is	used	to	denote	unsigned	numbers.
Severaldistinct	methods	used	for	representing	signed	(positive	and	negative)	numbers	arediscussed	below.

Suppose	that	an	n-bit	word	is	to	contain	a	signed	binary	number.	One	bit	isreserved	to	represent	the	sign	of	the	number,	while	the	remaining	bits	indicate	itsmagnitude.	To
permit	uniform	processing	of	all	n	bits,	the	sign	is	placed	in	the	left-most	position,	and	0	and	1	are	used	to	denote	plus	and	minus,	respectively.	This

CHAPTER	3Processor	Basics

168	leads	to	the	format

SECTION	3.2	xn-\xn-2xn-2	■	■	■	*2*1*0	(3-12)



Data	Representation	|	*■	Y	'

Sign	Magnitude

<

The	precision	allowed	by	this	format	is	n	-	1	bits,	which	is	equivalent	to	(n	-	1)log	210	decimal	digits.	The	binary	point	is	not	explicitly	represented;	instead,	it	isimplicitly
assigned	to	some	fixed	location	in	the	word.	The	binary	point's	positionis	not	very	important	from	the	point	of	view	of	design.	In	many	situations	the	num-bers	being
processed	are	integers,	so	the	binary	point	is	assumed	to	lie	immediatelyto	the	right	of	the	least	significant	bit	jc0.	Monetary	quantities	are	often	expressed	asintegers;	for
instance,	S54.30	might	be	expressed	as	5430	cents.	Using	an	/i-bitinteger	format,	we	can	represent	all	integers	N	with	magnitude	\N\	in	the	range	0	<\N\	<	2"	-	1.	The
other	most	widely	used	fixed-point	format	treats	(3.12)	as	a	frac-tion	with	the	binary	point	lying	between	xn_x	and	xn_2.	The	fraction	format	denotesnumbers	with
magnitudes	in	the	range	0	<	IM	<	1	-	2~n.

Signed	numbers.	Suppose	that	both	positive	and	negative	binary	numbers	areto	be	represented	by	an	n-bit	word	X	=	x^x^yX^..	.x2xlx0.	The	standard	formatfor	positive
numbers	is	given	by	(3.12)	with	a	sign	bit	of	0	on	the	left	and	the	mag-nitude	to	the	right	in	the	usual	positional	notation.	This	means	that	each	magnitudebit	xh	0	<	/	<	n	-
2,	has	a	fixed	weight	of	the	form	2k+l,	where	k	depends	on	theposition	of	the	binary	point.	A	natural	way	to	represent	negative	numbers	is	toemploy	the	same	positional
notation	for	the	magnitude	and	simply	change	the	signbit	xn_\	to	1	to	indicate	minus.	Thus	with	n	=	8,	+75	=	01001011,	while	-75	=11001011.	This	number	code	is	called
sign	magnitude.	Note	that	humans	normallyuse	decimal	versions	of	sign-magnitude	code.	Nevertheless,	operations	like	sub-traction	are	costly	to	implement	by	logic
circuits	when	sign-magnitude	codes	areused.	However,	multiplication	and	division	of	sign-magnitude	numbers	is	almostas	easy	as	the	corresponding	operation	for
unsigned	numbers,	as	Example	2.7	(sec-tion	2.3.3)	shows.

Several	number	codes	have	been	devised	that	use	the	same	representation	forpositive	numbers	as	the	sign-magnitude	code	but	represent	negative	numbers	indifferent
ways.	For	example,	in	the	ones-complement	code,	-X	is	denoted	by	X,	thebitwise	logical	complement	of	X.	In	this	code	we	again	have	+75	=	01001011,	butnow	-75	=
10110100.	In	the	twos-complement	code,	-X	is	formed	by	adding	1	tothe	least	significant	bit	of	X	and	ignoring	any	carry	bit	generated	from	the	mostsignificant	(sign)
position.	If	X	=	xn_xxn_2.	■	.x0	is	an	n-bit	binary	fraction,	-X	can	beexpressed	as	follows:

-X=	xn_x	.xn_2xn_i...xlxQ+0.00	...0\	(modulo2)	(3.13)

I	•	I

Implicit	binary	point	Implicit	binary	point

where	the	use	of	modulo-2	addition	corresponds	to	ignoring	carries	from	the	signposition.	If	X	is	an	integer,	then	(3.13)	becomes

-X=xn_xxn_2xn_3...xxx0.+000...0\.	(modulo2")	(3.14)

I	I

Implicit	binary	point	Implicit	binary	point

For	example,	in	twos-complement	code	+75	=	01001011	and	-75	=	10110101.Note	that	in	both	complement	codes	x„_,	retains	its	role	as	the	sign	bit,	but	theremaining
bits	no	longer	form	a	simple	positional	code	when	the	number	is	nega-tive.

The	primary	advantage	of	the	complement	codes	is	that	subtraction	can	be	per-formed	by	logical	complementation	and	addition	only.	Consider	the	twos-complement	code.
To	subtract	X	from	Y,	just	add	-X	to	Y,	where	-X	is	obtained	bylogical	complementation	and	addition	of	a	1	bit,	as	in	(3.13)	and	(3.14).	As	we	willsee	later,	the	sign	bits	do
not	require	special	treatment;	consequently,	twos-complement	addition	and	subtraction	can	be	implemented	by	a	simple	adderdesigned	for	unsigned	numbers.
Multiplication	and	division	are	more	difficult	toimplement	if	twos-complement	code	is	used	instead	of	sign	magnitude.	The	addi-tion	of	ones-complement	numbers	is
complicated	by	the	fact	that	a	carry	bit	fromthe	most	significant	magnitude	bit	xn_2	must	be	added	to	the	least	significant	bitposition	x0.	Otherwise	ones-complement
codes	are	quite	similar	to	twos-comple-ment	codes	and	so	will	not	be	considered	further.

Figure	3.21	illustrates	how	integers	are	represented	using	all	three	codeswhen	n	=	4.	These	codes	are	all	referred	to	as	binary	codes	to	distinguish	themfrom	the	so-called
decimal	codes	discussed	below.	Observe	that	in	all	cases,	0000represents	zero.	Only	in	the	case	of	twos-complement	code,	however,	is	the	nega-
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Binary	code

Decimal Sign Ones Twos

representation magnitude complement complement

+7 0111 0111 0111

+6 0110 0110 0110

+5 0101 0101 0101

+4 0100 0100 0100

+3 0011 0011 0011

+2 0010 0010 0010

+	1 0001 0001 0001

+0 0000 0000 0000

-0 1000 mi 0000

-1 1001 1110 nn

-2 1010 1101 1110

-3 1011 1100 1101

-4 1100 1011 1100

-5 1101 1010 1011

-6 1110 1001 1010

-7 mi 1000 1001



Figure	3.21

Comparison	of	three	4-bit	codes	for	signed	binary	numbers.

170	tive	(numerical	complement)	of	0000	also	0000.	This	unique	representation	of

,,	zero	is	a	significant	advantage,	for	example,	in	implementing	instructions	like

Data	Representation	BNE	in	Figure	3.13	that	test	for	zero.	Consequently,	twos-complement	code	is	byfar	the	most	popular	code	for	representing	signed	binary	numbers	in
computers.

i

Exceptional	conditions.	If	the	result	of	an	arithmetic	operation	involving	n-bitnumbers	is	too	large	(small)	to	be	represented	by	n	bits,	overflow	(underflow)	issaid	to	occur.
It	is	generally	necessary	to	detect	overflow	and	underflow,	since	theymay	indicate	bad	data	or	a	programming	error.	Consider,	for	example,	the	additionoperation

Zn-\Zn-2-	■■^q'-=	Xn-\Xn-2-	■	-X0	+	Vn-l>'/i-2"	■	-^O

using	«-bit	twos-complement	operands.	Assume	that	bitwise	addition	is	performedwith	a	carry	bit	c,	generated	by	the	addition	of	xt,	y,,	and	c,_,.	The	output	bits	z,	andCj
can	be	computed	according	to	the	full-adder	logic	equations

c,	=	xft	+	x,-cM	+	yf^

Let	v	be	a	binary	variable	indicating	overflow	when	v	=	1.	Figure	3.22	shows	howthe	sign	bit	z„_,	and	v	are	determined	as	functions	of	the	sign	bits	xn_x,	yn_i	and	thecarry
bit	c„_2.	The	overflow	indicator	v	is	therefore	defined	by	the	logic	equation

v	=	•X/i-l>'/i-lC/i-2	+	xn-l>n-l	Cn-2

If	the	combinations	{.xn_x,yn_x,cn_i)	=	(0,0,1)	and	(1,1,0),	which	make	v	=	1,	areremoved	from	the	truth	table	of	Figure	3.22,	then	zn_x	is	defined	correctly	for	all
theremaining	combinations	by	the	equation

z„_i	=	*„_i	©	y„_i	©	c„_2

Consequently,	during	twos-complement	addition	the	sign	bits	of	the	operands	canbe	treated	in	the	same	way	as	the	remaining	(magnitude)	bits.

A	related	issue	in	computer	arithmetic	is	round-off	error,	which	results	fromthe	fact	that	every	number	must	be	represented	by	a	limited	number	of	bits.	An

Inputs Outputs

Xn-\ >Vi Cn-1 Zn-l	V

0 0 0 0	0

0 0 1 0	1

0 1 0 1	0

0 1 1 0	0

1 0 0 1	0

111

0

1

1

1

0

1

0	0

1	1

1	0

Figure	3.22

Computation	of	the	sign	bit	;,,_,	and	the	overflow

indicator	v	in	twos-complement	addition.

operation	involving	n-bit	numbers	frequently	produces	a	result	of	more	than	n	bits.	171For	example,	the	product	of	two	Ai-bit	numbers	contains	up	to	In	bits,	all	but	n
ofwhich	must	normally	be	discarded.	Retaining	the	n	most	significant	bits	of	theresult	without	modification	is	called	truncation.	Clearly	the	resulting	number	is	inerror	by
the	amount	of	the	discarded	digits.	This	error	can	be	reduced	by	a	processcalled	rounding.	One	way	of	rounding	is	to	add	r;/2	to	the	number	before	trunca-tion,	where	r7
is	the	weight	of	the	least	significant	retained	digit.	For	instance,	toround	0.346712	to	three	decimal	places,	add	0.0005	to	obtain	0.347212	and	thentake	the	three	most
significant	digits	0.347.	Simple	truncation	yields	the	less	accu-rate	value	0.346.	Successive	computations	can	cause	round-off	errors	to	build	upunless	countermeasures
are	taken.	The	number	formats	provided	in	a	computershould	have	sufficient	precision	that	round-off	errors	are	of	no	consequence	tomost	users.	It	is	also	desirable	to
provide	facilities	for	performing	arithmetic	to	ahigher	degree	of	precision	if	required.	Such	high	precision	is	usually	achieved	byusing	several	words	to	represent	a	single
number	and	writing	special	subroutines	toperform	multiword,	or	multiple-precision,	arithmetic.

Decimal	numbers.	Since	humans	use	decimal	arithmetic,	numbers	beingentered	into	a	computer	must	first	be	converted	from	decimal	to	some	binary	rep-resentation.
Similarly,	binary-to-decimal	conversion	is	a	normal	part	of	the	com-puter's	output	processes.	In	certain	applications	the	number	of	decimal-binaryconversions	forms	a
large	fraction	of	the	total	number	of	elementary	operationsperformed	by	the	computer.	In	such	cases,	number	conversion	should	be	carriedout	rapidly.	The	various	binary
number	codes	discussed	above	do	not	lend	them-selves	to	rapid	conversion.	For	example,	converting	an	unsigned	binary	numberxn-ixn-2---xot0	decimal	requires	a
polynomial	of	the	form

/i-i

Jfc+i

L*,2'

to	be	evaluated.

Several	number	codes	exist	that	facilitate	rapid	binary-decimal	conversion	byencoding	each	decimal	digit	separately	by	a	sequence	of	bits.	Codes	of	this	kind	arecalled
decimal	codes.	The	most	widely	used	decimal	code	is	the	BCD	{binary-coded	decimal)	code.	In	BCD	format	each	digit	di	of	a	decimal	number	is	denotedby	its	4-bit
equivalent	bi3bi2biAbj0	in	standard	binary	form,	as	in	(3.7).	Thus	theBCD	number	representing	971	is	100101110001.	BCD	is	a	weighted	(positional)number	code,	since
bLj	has	the	weight	10'27.	Signed	BCD	numbers	employ	decimalversions	of	the	sign-magnitude	or	complement	formats.	The	8-bit	ASCII	code	rep-resents	the	10	decimal
digits	by	a	4-bit	BCD	field;	the	remaining	4	bits	of	theASCII	code	word	have	no	numerical	significance.

Two	other	decimal	codes	of	moderate	importance	are	shown	in	Figure	3.23.The	excess-three	code	can	be	formed	by	adding	00112	to	the	corresponding	BCDnumber—
hence	its	name.	The	advantage	of	the	excess-three	code	is	that	it	ma\	beprocessed	using	the	same	logic	used	for	binary	codes.	If	two	excess-three	num-bers	are	added	like
binary	numbers,	the	required	decimal	carry	is	automaticallygenerated	from	the	high-order	bits.	The	sum	must	be	corrected	by	adding	+3.	For
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1/2 Decimaldigit Decimal	code

SECTION	3.2Data	Representation BCD ASCII Excess-three Two-out-of-five

0 0000 0011	0000 0011 11000



1 0001 0011	0001 0100 ooo	it

2 0010 0011	0010 0101 00101

3 0011 00110011 0110 00110

4 0100 0011	0100 0111 01001

5 0101 0011	0101 1000 01010

6 0110 00110110 1001 01100

7 0111 0011	0111 1010 10001

8 1000 0011	1000 1011 10010

9 1001 0011	1001 1100 10100

Figure	3.23

Some	important	decimal	number	codes.

example,	consider	the	addition	5	+	9	=	14	using	excess-three	code.

1000	=	5+	1100	=	9Carry	1	<—	0100	Binary	sum

+	0011	Correction

0111	=4	Excess-three	sum

Binary	addition	of	the	BCD	representations	of	5	and	9	results	in	1110	and	no	carrygeneration.	(The	binary	sum	of	two	BCD	numbers	can	also	be	corrected	to	give
theproper	BCD	sum	as	described	later.)	Some	arithmetic	operations	are	difficult	toimplement	using	excess-three	code,	mainly	because	it	is	a	nonweighted	code;	thatis,
each	bit	position	in	an	excess-three	number	does	not	have	a	fixed	weight.

The	final	decimal	code	illustrated	by	Figure	3.23	is	the	two-out-of-five	code.Each	decimal	digit	is	represented	by	a	5-bit	sequence	containing	two	Is	and	three0s;	there	are
exactly	10	distinct	sequences	of	this	type.	The	particular	merit	of	thetwo-out-of-five	code	is	that	it	is	single-error	detecting,	since	changing	any	one	bitresults	in	a	sequence
that	does	not	correspond	to	a	valid	code	word.	Its	drawbacksare	that	it	is	a	nonweighted	code	and	uses	5	rather	than	4	bits	per	decimal	digit.

The	main	advantage	of	the	decimal	codes	is	ease	of	conversion	between	theinternal	computer	representation	that	allows	only	the	symbols	0,	1	and	externalrepresentations
using	the	10	decimal	symbols	0,	1,	2,...,	9.	Decimal	codes	havetwo	disadvantages.

1.	They	use	more	bits	to	represent	a	number	than	the	binary	codes.	Decimal	codestherefore	require	more	memory	space.	An	n-bit	word	can	represent	2"	numbersusing
binary	codes;	approximately	10"/4	=	20830"	numbers	can	be	represented	ifa	4-bit	decimal	code	such	as	BCD	or	excess-three	is	used.

2.	The	circuitry	required	to	perform	arithmetic	using	decimal	operands	is	morecomplex	than	that	needed	for	binary	arithmetic.	For	example,	in	adding	BCD

numbers	bit	by	bit,	a	uniform	method	of	propagating	carries	between	adjacent	173positions	is	not	possible,	since	the	weights	of	adjacent	bits	do	not	differ	by	aconstant
factor.
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Hexadecimal	numbers.	One	or	two	other	numerical	codes	are	encountered	inthe	design	or	use	of	computers.	Of	particular	importance	is	hexadecimal	(hex)code,	which	is
characterized	by	a	base	r	=	16	and	the	use	of	16	digits,	consisting	ofthe	decimal	digits	0,1,...,9	augmented	by	the	six	digits	A,B,C,D,E,	and	F,	whichhave	the	numerical
values	10,	11,	12,	13,	14,	and	15,	respectively.	The	unsignedhexadecimal	integer	2FA0C	has	the	interpretation

2	x	164	+	F	x	163	+	A	x	162	+	0	x	161	+	C	x	16°

=	2	x	65,536	+	15	x	4,096	+	10	x	256	+	0	x	16	+	12	x	1=	195,084

Hence	2FA0C16	=	195,08410.

Hexadecimal	code	is	useful	for	representing	long	binary	numbers,	a	conse-quence	of	the	fact	that	the	base	16	is	a	power	of	two.	A	hexadecimal	number	isconverted	to
binary	simply	by	replacing	each	hex	digit	by	the	equivalent	4-bitbinary	form.	For	example,	we	can	convert	2FA0C16	to	binary	by	replacing	the	firstdigit	2	by	0010,	the
second	digit	F	by	1111,	the	third	digit	A	by	1010,	and	so	on,yielding

2FA0C16	=	001011111010000011002

Conversely,	we	can	convert	a	binary	number	to	hex	form	by	replacing	each	four-digit	group	by	the	corresponding	hex	digit.	Clearly	hexadecimal-binary	numberconversion
is	very	similar	to	BCD-binary	conversion.	By	treating	any	binary	wordas	an	unsigned	integer,	we	can	easily	convert	the	word	to	hex	form	as	indicatedabove.	Hex	code
provides	a	very	convenient	shorthand	for	binary	information.

3.2.3	Floating-Point	Numbers

The	range	of	numbers	that	can	be	represented	by	a	fixed-point	number	code	isinsufficient	for	many	applications,	particularly	scientific	computations	where	verylarge	and
very	small	numbers	are	encountered.	Scientific	notation	permits	us	torepresent	such	numbers	using	relatively	few	digits.	For	example,	it	is	easier	towrite	a	quintillion	as

1.0	xlO18	(3.15)

than	as	the	19-bit,	fixed-point	integer	1	000	000	000	000	000	000.	The	floating-point	codes	used	in	computers	are	binary	(or	binary-coded)	versions	of	(3.15).

Basic	formats.	Three	numbers	are	associated	with	a	floating-point	number:	amantissa	M,	an	exponent	E,	and	a	base	B.	The	mantissa	M	is	also	referred	to	as	thesignificand
or	fraction	in	the	literature.	These	three	components	together	representthe	real	number	M	x	BE.	For	example,	in	(3.15)	1.0	is	the	mantissa,	18	is	the	expo-nent,	and	10	is
the	base.	For	machine	implementation	the	mantissa	and	exponentare	encoded	as	fixed-point	numbers	with	a	base	r	that	is	usually	1	or	10.	The	base	B
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is	also	r,	or	some	power	of	r,	for	reasons	that	will	become	obvious.	Since	B	is	aconstant,	it	need	not	be	included	in	the	number	code;	it	is	simply	built	into	the	cir-cuits	that
process	the	numbers.	A	floating-point	number	is	therefore	stored	as	aword	(M,E)	consisting	of	a	pair	of	signed	fixed-point	numbers:	a	mantissa	M,which	is	usually	a
fraction	or	an	integer,	and	an	exponent	E,	which	is	an	integer.The	number	of	digits	in	M	determines	the	precision	o'f	(M,£);	B	and	E	determine	itsrange.	With	a	word	size
of	n	bits,	2"	is	the	most	real	numbers	that	(M,E)	can	repre-sent.	Increasing	B	increases	the	range	of	the	representable	real	numbers	but	resultsin	a	sparser	distribution	of
numbers	over	that	range.

As	a	small	example,	suppose	that	M	and	E	are	both	3-bit,	sign-magnitude	inte-gers	and	B	=	2.	Then	M	and	E	can	each	assume	the	values	±0,	±1,	±2,	and	±3.	Allbinary
words	of	the	form	(M,E)	=	(.x00,	xxx)	represent	zero,	where	x	denotes	either0	or	1.	The	smallest	nonzero	positive	number	is	(001,111),	denoting	1	x	2~3	=0.125;
(101,111)	denotes	-0.125.	The	largest	representable	positive	number	is(011,011),	which	denotes	3	x	23	=	24,	while	(111,011)	denotes	the	largest	negativenumber	-24.
Observe	that	the	left-most	bit,	which	is	the	sign	of	the	mantissa,	isalso	the	sign	of	the	floating-point	number.	Figure	3.24	illustrates	the	real	numbersrepresentable	by	this
6-bit,	floating-point	format.	As	the	figure	shows,	they	aresparsely	and	nonuniformly	distributed	over	the	range	±24.

The	floating-point	representation	of	most	real	numbers	is	only	approximate.For	instance,	the	6-bit	format	of	Figure	3.24	cannot	represent	the	number	1.25;	it
isapproximated	by	(011,101),	representing	1.5,	or	by	either	(001,000)	or	(001,100),representing	1.0.	Moreover,	the	results	of	most	calculations	with	floating-
pointarithmetic	only	approximate	the	correct	result.	For	example,	in	the	system	of	Fig-ure	3.24,	the	exact	result	(18)	of	the	addition	(011,001)	+	(011,010),	which	imple-
ments	6	+	12,	is	not	representable.	The	closest	representable	number,	that	is,	thebest	approximation	to	18,	is	(010,011)	=	16.	Overflow	occurs	in	this	small	systemwhen	a
result's	magnitude	exceeds	24,	and	underflow	occurs	when	a	nonzero	resulthas	a	magnitude	less	than	0.125.	In	practice,	floating-point	numbers	must	havelong	mantissas



(at	least	20	bits),	and	the	results	of	floating-point	operations	mustbe	carefully	rounded	off	to	minimize	the	errors	inherent	in	floating-point	represen-tation.	It	is	common
practice	for	floating-point	processing	circuits	to	include	a	fewextra	mantissa	digits	termed	guard	digits	to	reduce	approximation	errors;	the	guarddigits	are	removed
automatically	from	the	final	results.

-24

♦24

Figure	3.24

The	real	numbers	representable	by	a	hypothetical	6-bit,	floating-point	format.

Normalization	and	biasing.	Floating-point	representation	is	redundant	in	the	175sense	that	the	same	number	can	be	represented	in	more	than	one	way.	For	example,1.0	x
1018,	0.1	x	1019,	1000000	x	1012,	and	0.000001	x	1024	are	possible	represen-tations	of	a	quintillion.	It	is	generally	desirable	to	have	a	unique	or	normal	form	foreach
representable	number	in	a	floating-point	system.	Consider	the	common	casewhere	the	mantissa	is	a	sign-magnitude	fraction	and	a	base	of	r	is	used.	The	man-tissa	is	said
to	be	normalized	if	the	digit	to	the	right	of	the	radix	point	is	not	zero,that	is,	no	leading	zeros	appear	in	the	magnitude	part	of	the	number.	Thus,	forexample,	0.1	x	1019	is
the	unique	normal	form	of	a	quintillion	using	base	10,	a	dec-imal	mantissa,	and	a	decimal	exponent.	A	binary	fraction	in	twos-complementcode	is	normalized	when	the
sign	bit	differs	from	the	bit	to	its	right.	This	impliesthat	no	leading	Is	appear	in	the	magnitude	part	of	negative	numbers.	Normaliza-tion	restricts	the	magnitude	\M\	of	a
fractional	binary	mantissa	to	the	range

1/2	<	IMI	<	1

Normal	forms	can	be	defined	similarly	for	other	floating-point	codes.	An	unnor-malized	number	is	normalized	by	shifting	the	mantissa	to	the	right	or	left	andappropriately
incrementing	or	decrementing	the	exponent	to	compensate	for	themantissa	shift.

The	representation	of	zero	poses	some	special	problems.	The	mantissa	must,	ofcourse,	be	zero,	but	the	exponent	can	have	any	value,	since	0	x	BE	=	0	for	all	valuesof	E.
Often	in	attempting	to	compute	zero,	round-off	errors	result	in	a	mantissa	thatis	nearly,	but	not	exactly,	zero.	For	the	entire	floating-point	number	to	be	close	tozero,	its
exponent	must	be	a	very	large	negative	number	-K.	This	requirement	sug-gests	that	the	exponent	used	for	representing	zero	should	be	the	negative	numberwith	the
largest	magnitude	that	can	be	contained	in	the	exponent	field	of	the	num-ber	format.	If	k	bits	are	allowed	for	the	exponent	including	its	sign,	then	2k	expo-nent	bit
patterns	are	available	to	represent	signed	integers,	which	can	range	eitherfrom	-2*"1	to	2k~x	-	1	or	from	-2k~x	+	1	to	2k~x,	so	that	K	is	2k~x	or	2k~x	-	1.

A	second	complication	arises	from	the	desirability	of	representing	zero	by	asequence	of	0-bits	only.	This	convention	gives	zero	the	same	representation	in	bothfixed-	and
floating-point	formats,	which	facilitates	the	implementation	of	instruc-tions	that	test	for	zero.	These	considerations	suggest	that	floating-point	exponentsshould	be
encoded	in	excess-/^	code	similar	to	the	excess-three	code	of	Figure3.23,	where	the	exponent	field	E	contains	an	integer	that	is	the	desired	exponentvalue	plus	K.	The
quantity	K	is	called	the	bias,	and	an	exponent	encoded	in	thisway	is	called	a	biased	exponent	or	characteristic.	Figure	3.25	shows	the	possiblevalues	of	an	8-bit	exponent
with	bias	127	and	128.

Standards.	Until	the	1980s	floating-point	number	formats	varied	from	onecomputer	family	to	the	next,	making	it	difficult	to	transport	programs	between	dif-ferent
computers	without	encountering	small	but	significant	differences	in	suchareas	as	round-off	errors.	To	deal	with	this	problem,	the	Institute	of	Electrical	andElectronics
Engineers	(IEEE)	sponsored	a	standard	format	for	32-bit	and	largerfloating-point	numbers,	known	as	the	IEEE	754	standard	[IEEE	1985].	which	hasbeen	widely	adopted
by	computer	manufacturers.	Besides	specifying	the	permissi-ble	formats	for	M,	£,	and	B,	the	IEEE	standard	prescribes	methods	for	handlinground-off	errors,	overflow,
underflow,	and	other	exceptional	conditions

CHAPTER	3Processor	Basics

176

SECTION	3.2Data	Representation

Exponent	bitpattern	E

111111

000000

11

10

100...	01100.	.	.00Oil	...	11Oil	...	10

0100

Unsignedvalue

Number	represented

255254

129128127126

1

0

Bias	= 127 Bias	=	128

+	128 +	127

+	127 +126

+2 +	1

+1 0

0 -1

-1 -2

-126 -127

-127 -128

Figure	3.25

Eight-bit	biased	exponents	with	bias	=	127	(excess-127

code)	and	bias	=	128	(excess-128	code).



EXAMPLE	3.4	THE	IEEE	754	FLOATING-POINT	NUMBER	FORMAT	[IEEE

1985;	Goldberg	1991].	This	standard	format	for	32-bit	numbers	is	illustrated	inFigure	3.26.	It	comprises	a	23-bit	mantissa	field	M,	an	8-bit	exponent	field	E,	and	asign	bit
5.	The	base	B	is	two.	As	in	all	signed	binary	number	formats,	both	fixed-pointand	floating-point,	S	occupies	the	left-most	bit	position.	M	is	a	fraction	that	with	5forms	a
sign-magnitude	binary	number.	For	the	reasons	discussed	earlier,	floating-point	numbers	are	usually	normalized,	meaning	that	the	magnitude	field	should	con-tain	no
insignificant	leading	bits.	Hence	the	magnitude	part	of	a	normalized	sign-mag-nitude	number	always	has	1	as	its	most	significant	digit.	There	is	no	need	to	actuallystore
this	leading	1	in	floating-point	numbers,	since	it	can	always	be	inserted	by	thearithmetic	circuits	that	process	the	numbers.	Consequently,	in	the	IEEE	754	format
thecomplete	mantissa	(called	the	significand	in	the	standard)	is	actually	l.Af,	where	the	1to	the	left	of	the	binary	point	is	an	implicit	or	hidden	leading	bit	that	is	not	stored
withthe	number.	Use	of	the	hidden	1	means	that	the	precision	of	a	normalized	number	iseffectively	increased	by	1	bit.	The	exponent	representation	is	the	8-bit	excess-127
codeof	Figure	3.25;	hence	the	actual	exponent	value	is	computed	as	E-	127.	The	base	B	ofthe	floating-point	number	is	2,	so	that	a	1-bit	left	(right)	shift	of	M	corresponds
toincrementing	(decrementing)	E	by	one.

Consequently,	a	32-bit	floating-point	number	conforming	to	the	IEEE	754	stan-dard	represents	the	real	number	N	given	by	the	formula

N=(-l)s2E'n\l.M)

(3.16)

Sign	5

£'

i	i	i	i	ii

8-bit	exponent

(excess-127binary	integer)

23-bit	mantissa

(fraction	part	of	sign-magnitude

binary	significand	with	hidden	bit)

Figure	3.26

IEEE	754	standard	32-bit	floating-pointnumber	format.

provided	0	<E	<	255.	For	example,	the	number	N	=	-1.5	is	represented	by	177

1	01111111	10000000000000000000000	CHAPTER	3

where	S	=	1,	E	=	127,	and	M	=	0.5,	since	from	(3.16)	we	have	W	=	(-1)'2127-127(1.5)	=	Processor	Basics-1.5.	Nonzero	floating-point	numbers	in	this	format	have
magnitudes	ranging	from2"126(1.0)	to	2+127(2	-	2~23),	that	is,	from	1.18	x	10~38	to	3.40	x	1038	approximately.In	contrast,	32-bit,	fixed-point	binary	formats	for	integers
can	only	represent	nonzeronumbers	with	magnitudes	from	1	to	231	-	1	(approximately	2.15	x	109).	The	64-bitversion	of	the	IEEE	754	standard	is	a	straightforward
extension	of	the	32-bit	case.	Itemploys	an	11-bit	exponent	E	and	a	52-bit	mantissa	M	and	defines	the	number

7V=(-1)52£-1023(1.M)	(3.17)

where	0	<	E	<	2047.

The	IEEE	floating-point	standard	addresses	a	number	of	subtle	problems	encoun-tered	in	floating-point	arithmetic.	Well-defined	formats	are	specified	for	the	results
ofoverflow,	underflow,	and	other	exceptional	conditions,	which	often	yield	unpredictableand	unusable	numbers	in	computers	employing	other	floating-point	formats.	The
IEEEstandard's	exception	formats	are	intended	to	set	flags	in	the	host	processor,	which	sub-sequent	instructions	can	use	for	error	control,	in	many	cases	with	little	or	no
loss	ofaccuracy.	If	the	result	of	a	floating-point	operation	is	not	a	valid	floating-point	number,then	a	special	code	referred	to	as	not	a	number	(NaN)	is	used.	Examples	of
operationsthat	result	in	NaNs	are	dividing	zero	by	zero	and	taking	the	square	root	of	a	negativenumber.	NaN	formats	are	identified	in	the	standard	by	M	^	0,	and	E	=	255
(32-bit	for-mat)	or	E	=	2047	(64-bit	format).

When	overflow	occurs,	meaning	that	a	number	has	been	produced	whose	magni-tude	is	too	big	to	represent	by	the	usual	format,	the	result	is	referred	to	as	infinity,	oroo,
and	is	identified	by	M	=	0,	and	E	=	255	(32-bit	format)	or	E	=	2047	(64-bit	format).The	754	standard	stipulates	that	operations	using	the	floating-point	infinities	±°°should
follow	certain	properties	of	infinity	in	real-number	theory,	such	as	-<»	+	N	=	<»and	-oo	<	N	<	+°°	for	any	finite	N.	If	underflow	occurs,	implying	that	a	result	is	non-zero,
but	too	small	to	represent	as	a	normalized	number,	it	is	encoded	in	a	denonnal-izecP	form	characterized	by	E	=	0	and	a	significand	0.M	having	a	leading	0	instead	ofthe
usual	leading	1.	Denormalization	reduces	the	effect	of	underflow	to	a	systematicloss	of	precision	equivalent	to	a	small	round-off	error.	Finally,	floating-point	zero
isidentified	by	an	all-0	exponent	and	significand,	but	the	sign	5	may	be	0	or	1.	Note	thatas	the	tiny	denormalized	numbers	are	diminished,	they	eventually	reach	zero.

In	summary,	the	number	N	represented	by	a	32-bit	IEEE-standard,	floating-pointnumber	has	the	following	set	of	interpretations.

If	E	=	255	and	M	*	0,	then	N	=	NaN.If	E	=	255	and	M	=	0,	then	N	=	(-1	)VIf	0	<E	<	255,	then	N	=	{-\)S2E-X2\\.M).If	E	=	0	and	M	*	0,	then	N	=	(-1)S2£"126(0.M).If	E	=	0
and	M	=	0,	then	N	=	(-1	)s0.

The	interpretation	of	64-bit	and	larger	floating-point	numbers	is	similar.

3The	term	unnormalized	applies	to	numbers	with	any	value	of	E	and	a	leading	0	instead	of	a	leading	1	associ-ated	with	their	mantissas.	Such	numbers	are	encountered
only	as	intermediate	results	during	floating-pointcomputations	and	are	not	relevant	to	the	standard.
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178	Typical	of	other	floating-point	number	formats	still	in	use	is	that	of	the	IBM	Sys-

tem/360-370.	It	consists	of	a	sign	bit	S,	a	7-bit	exponent	field	E,	and	a	mantissa	fieldM	containing	24,56,	or	112	bits.	M	is	treated	as	a	fraction,	which	with	S	forms	a	sign-
magnitude	number;	there	is	no	hidden	leading	1.	E	is	an	integer	in	excess-64	code,corresponding	to	an	exponent	bias	of	64.	Unlike	the	IEEE	754	format	where	the	baseB
of	the	representation	is	two,	the	System/360-370	Has	B	=	16.	Consequently,	M	isinterpreted	as	a	hexadecimal	(base	16)	number	with	every	hexadecimal	digit	corre-
sponding	to	4	bits,	and	the	exponent	is	treated	as	a	power	of	16.	The	value	of	a	float-ing-point	number	in	the	normalized	System/360-370	format	is	therefore	given	by

N=(-1)516£-64(0.M)

where	M	is	a	6-,	14-,	or	28-digit	hexadecimal	number.	For	example,	the	number0.125	x	165	is	encoded	as

0	1000101	00100000...	0000

Note	that	the	left-most	four	bits	0010	of	the	mantissa	represent	the	nonzero	hexa-decimal	digit	2;	hence	the	above	number	is	normalized.	The	number	zero	is
alwaysrepresented	by	the	all-0	word,	making	the	floating-point	representation	of	zeroidentical	to	the	System/360-370	fixed-point	(twos-complement)	representation.There
are	no	equivalents	of	the	IEEE	754	standard's	NaN,	infinity,	and	denormal-ized	formats.	While	most	floating-point	instructions	are	performed	with	automaticnormalization
of	the	results,	a	few	may	be	specified	without	normalization,	thusproviding	some	of	the	advantages	of	denormalization.	Due	to	the	larger	value	of	Bbeing	used,	the
System/360-370	32-bit	format	can	represent	numbers	with	magni-tudes	ranging	from	5.40	x	10-79	to	7.24	x	1075	approximately.

3.3

INSTRUCTION	SETS

Next	we	turn	to	the	representation,	selection,	and	application	of	instruction	sets.This	topic	embraces	opcode	and	operand	formats,	the	design	of	the	instructiontypes	to
include	in	a	processor's	instruction	set,	and	the	use	of	instructions	in	exe-cutable	programs.

3.3.1	Instruction	Formats

The	purpose	of	an	instruction	is	to	specify	both	an	operation	to	be	carried	out	by	aCPU	or	other	processor	and	the	set	of	operands	or	data	to	be	used	in	the	operation.The
operands	include	the	input	data	or	arguments	of	the	operation	and	the	resultsthat	are	produced.

Introduction.	Most	instructions	specify	a	register-transfer	operation	of	the	formXx:=op{X{,X2,...,Xn)

which	applies	the	operation	op	to	n	operands	Xx,	X2,...,	Xn,	where	n	ranges	from	zeroto	four	or	so.	We	can	write	the	same	instruction	in	the	assembly-language	notation

op	X„X2,...,X„	(3.18)	179

which	defines	the	operation	and	its	operands	by	specific	"fields"	within	the	instruc-	chapter	3tion	word	(3.18).	The	operation	op	is	specified	by	a	field	called	the
Processoropcode	(operation	code).	The	n	X,,	X2,...,	Xn	fields	are	referred	to	as	addresses.	An	Basicsaddress	X,	typically	names	a	register	or	a	memory	location	that	stores



an	operandvalue.	In	some	instances	X,	itself	is	the	desired	value,	in	which	case	it	is	called	animmediate	address.

To	reduce	instruction	size	and	thereby	reduce	program	storage	space,	it	iscommon	to	specify	only	m	<	n	operands	explicitly	in	the	instruction;	the	remainingoperands	are
implicit.	The	explicit	address	fields	refer	to	general-purpose	CPU	reg-isters	or	memory	locations,	while	the	implicit	ones	refer	to	special-purpose	regis-ters.	If	m	is	the
normal	maximum	number	of	explicit	main-memory	addressesallowed	in	any	processor	instruction,	the	processor	is	called	an	m-addressmachine.	Implicit	input	operands
must	be	placed	in	known	locations	before	theinstruction	that	refers	to	them	is	executed.

Inside	the	computer,	instructions	are	stored	as	binary	words.	There	can	be	sev-eral	different	sizes	and	formats,	depending	on	the	instruction	type.	RISCs	tend	tohave	few
instruction	formats,	while	CISCs	tend	to	have	many	to	accommodatemore	opcode	types	and	operand	addressing	methods.	The	Motorola	680X0	(Exam-ple	3.3)	is	a	CISC
microprocessor	series	with	many	different	instruction	formatsand	sizes,	a	sampling	of	which	appear	in	Figure	3.27	[Motorola	1989].	Instructionlength	in	the	680X0	varies
from	2	to	10	bytes.	The	2-byte	opcode	field	of	the680X0	is	often	used	to	hold	one	or	two	3-bit	register	addresses,	blurring	the	dis-tinction	between	opcode	and	operand.

In	the	680X0	family,	simple	instructions	are	assigned	short	formats.	For	exam-ple,	the	add-register	instruction

ADD.L	D1.D2	(3.19)

denotes	register-to-register	addition	of	32-bit	(long	word)	operands,	that	is,

D2:=D2	+	D1

where	Dl	and	D2	are	two	of	the	680X0's	data	registers	(Figure	3.11).	This	instruc-tion	fits	in	the	third	2-byte	format	F3	of	Figure	3.27,	which	accommodates	tworegister-
address	fields.	A	variant	of	the	same	two-address	instruction	can	also	referto	an	operand	in	memory:

ADD.L	ADR1,	D2	(3.20)

This	instruction	specifies	the	memory-to-register	addition	operation

D2:=D2	+	M(ADR1)

and	so	combines	the	load	and	add	operations.	It	uses	the	6-byte	format	F6	to	con-tain	the	4-byte	immediate	address	field	ADR	1.	It	also	requires	a	memory	access	toobtain
one	of	its	input	operands,	the	4-byte	long	word	with	start	address	ADR1.Note	that	the	binary	(machine	language)	opcodes	corresponding	to	(3.19)	and(3.20)	have	to	be
different	to	distinguish	their	operand	types.

The	longest	(10	byte)	format	F8	of	the	680X0	is	employed	by	such	memory-to-memory	move	instructions	as

MOVE.B	ADR1,ADR2
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Figure	3.27

A	selection	of	instruction	formats	of	the	Motorola	680X0.

which	copies	(via	the	CPU)	the	byte	stored	in	memory	location	ADR1	to	memorylocation	ADR2,	that	is,

M(ADR2):=M(ADR1)

RISC	formats.	The	instruction	formats	of	the	680X0	accommodate	a	widevariety	of	operations	and	addressing	modes.	They	also	try	to	reduce	object-programsize	by
encoding	the	more	common	instructions	in	short	formats	and	the	less	fre-quent	and	more	complex	instructions	in	longer	formats.	Since	such	instructions	areoften
primitives	in	high-level	programming	languages,	they	serve	to	reduce	bothprogram	length	and	what	has	been	called	the	semantic	gap	between	the	user	and	thecomputer
languages.

Complex	instructions	lead	to	several	difficulties,	which	RISCs	with	theirsmaller	and	streamlined	instruction	sets	attempt	to	minimize.



•	The	many	instruction	types	and	formats	of	a	CISC	complicate	the	program-control	unit	that	decodes	instruction	opcodes	and	issues	the	control	signals	that

govern	their	execution.	The	68020	employs	a	large,	two-level	micropro-	181grammed	PCU	(Figure	3.11),	whereas	the	ARM6	has	a	smaller	hardwired	cir-cuit	as	its	PCU.•
Fast,	single-cycle	instruction	execution	is	harder	to	achieve	with	a	complexinstruction	set,	and	it	is	more	difficult	for	a	compiler	to	optimize	object-code	per-formance.

A	typical	RISC	employs	instructions	of	fixed	length.	Memory	addressing	isrestricted	to	load	and	store	instructions,	so	the	operands	of	most	instructions	are	reg-ister
addresses,	which	are	short	and	easy	to	accommodate	in	a	one-word	format.Figure	3.28	shows	the	single	32-bit	format	used	by	instructions	in	the	RISC	1	com-puter,	a
prototype	RISC	machine	designed	by	David	A.	Patterson	and	his	colleaguesat	the	University	of	California,	Berkeley,	around	1980	[Patterson	and	Sequin	1982].Most	of	the
31	instruction	types	defined	for	the	RISC	1	perform	register-to-registeroperations	of	the	form

Rd	:=	F(Rs,S2)

(3.21)

where	Rd	is	the	destination	register,	Rs	is	the	first	source	register,	and	the	right-most	5	bits	of	S2	define	a	second-source	register.	If	bit	13	of	the	instruction	is	set	toone,
then	S2	is	interpreted	as	an	immediate	address,	that	is,	as	a	13-bit	constant.The	instructions	of	the	ARM6	microprocessor	(Example	3.2),	like	those	of	theRISC	1,	are	all	32
bits	long,	but	they	come	in	a	large	and	CISC-like	number	of	for-mats	[Furber	1989].

Operand	extension.	A	CPU	is	designed	primarily	to	process	data	words	andaddresses	of	one	specific	length—a	32-bit	word	in	the	case	of	the	ARM6	andRISC	1—although
some	instructions	handle	longer	or	shorter	operands.	Numeri-cal	operands	can	be	unsigned	binary	number	words,	such	as	memory	addresses,	orsigned	data	words	that
employ	twos-complement	code.	(Recall	from	section	3.2.1that	the	same	arithmetic	circuits	can	be	used	with	unsigned	and	twos-complementnumbers.)	Instructions	often
contain	operand	fields	that	are	shorter	than	the	stan-dard	word	size,	for	example,	the	13-bit	immediate	address	field	S2	in	the	RISC	1format	of	Figure	3.28.	This	problem
is	unavoidable	in	RISC	instruction	sets	wherethe	instruction	length	and	the	standard	word	size	are	the	same.	Consequently,	asystematic	method	is	needed	to	extend	short
operand	values	to	full-size,	signed	orunsigned	numbers.

When	a	short	w-bit,	twos-complement	number	is	used	in	an	n-bit	arithmeticoperation	where	n	>	m,	a	technique	called	sign	extension	is	employed.	This	tech-niques
replicates	the	left-most	bit	s	of	the	short	operand	N,	which	corresponds	to	itssign	bit,	n	-	m	times	and	attaches	s"~m	=	ss...s	to	the	left	side	of	N.	Sign	extension
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Instruction	format	of	the	Berkeley	RISC	1
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in	the	S2	field	of	Figure	3.28	to	the	32-bit	word

^sign-extended	=1111111111111111	1	1	110101	01010101	(3.23)

In	this	case	s	=	1	and	n	-m	=	19.	If	5	were	0,	then	sign	extension	would	precede	Nby	19	leading	0s.	The	point	of	sign	extension	is	that	it	does	not	change	the	numeri-cal
value	of	a	twos-complement	number.	For	instance,	both	(3.22)	and	(3.23)	repre-sent	the	same	negative	integer,	namely,	-2,64610,	in	twos-complement	code,	as	canreadily
be	verified.	Sign	extension	maintains	a	number's	correct	sign	and	magni-tude	because	it	introduces	only	numerically	insignificant	leading	0s	(positive	num-bers)	or
insignificant	leading	Is	(negative	numbers).	If	N	is	to	be	treated	as	anunsigned	binary	number,	then	it	is	always	extended	by	leading	0s,	independent	ofthe	value	of	5.	This
technique	has	been	called	zero	extension.	Applying	zero	exten-sion	to	(3.22)	yields

^zero-extended	=	00000000	00000000	00010101	01010101

Next	we	ask:	How	is	an	n-bit	memory	address,	which	is	a	long	(typically	32-bit)	unsigned	integer,	constructed	from	a	short	m-bit	address	field,	when	n	>	mlZero	extension
alone	is	sometimes	used	for	this	purpose,	but	it	does	not	allow	them-bit	address	to	refer	to	all	2"	possible	addresses.	The	usual	solution	found	inCISCs	as	well	as	in	RISCs
is	to	treat	a	short	memory	address	as	a	modifier,	or	off-set,	which	is	added	(in	zero-extended	form)	to	a	full-length	memory	address	storedin	a	designated	CPU	register,
called	a	base	register.	The	RISC	1	uses	its	Rs	registerfor	this	purpose,	with	S2	serving	as	the	offset.	The	following	store-byte	instruction

STB	Rs,Rd(S2)	(3.24)

is	designed	to	copy	the	byte	from	the	right	end	of	register	Rs	to	the	memory	loca-tion	whose	address	is	Rd	+S2zero.extended.	In	practice,	sign	extension	is	often
implicitand	Rd	+S2zer0_extended	is	written	simply	as	Rd	+S2.	Hence	(3.24)	is	equivalent	to

M(Rd	+	S2):=Rs[24:31]

The	final	memory	address	Rd	+	S2	is	an	example	of	an	effective	address.	As	wewill	see	shortly	in	our	discussion	of	addressing	modes,	many	other	techniques	areemployed
for	constructing	effective	addresses.

EXAMPLE	3.5	INSTRUCTION	FORMATS	OF	THE	MIPS	RX000	SERIES

[Kane	and	heinrich	1992].	MIPS	Computer	Systems	(now	a	division	of	SiliconGraphics)	introduced	the	MIPS	RX0O0	series	of	microprocessors	in	1986.	The	firstmembers
of	the	series,	the	MIPS	R2000	and	R3000,	are	32-bit	machines	that	have	mostof	the	classic	RISC	features:	a	streamlined	instruction	set,	a	load/store	architecture,	andan
instruction	pipeline	to	support	a	performance	target	of	one	instruction	completedevery	clock	cycle.	Later	RX000	machines,	such	as	the	R10000	announced	in	1994.
addvarious	extensions	to	the	"MIPS	I"	architecture	implemented	in	the	R2000	and	R3000;we	will	confine	our	discussion	to	the	MIPS	I	case.

The	RX000	is	noteworthy	for	its	simple	and	regular	instruction	formats,	which	wenow	examine	in	detail.	As	seen	from	Figure	3.29,	all	the	RX000	instructions	are	oneword
(32	bits)	in	length	and	contain	a	6-bit	opcode	in	a	fixed	position.	The	remaining
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Instruction	formats	of	the	MIPS	RX000.

26	bits	are	used	in	various	ways,	depending	on	the	instruction	type.	Any	operandsincluded	in	the	instruction	must	be	less	than	a	full	word	in	length,	so	some	way	isneeded
to	extend	them	to	a	full-size	memory	address	or	a	twos-complement	number.

In	the	case	of	a	J-type	(jump	or	branch)	instruction,	the	26	operand	bits	form	amemory	address	ADR,	which	is	the	target	or	branch	address.	For	example,	a
simpleunconditional	branch	instruction	has	the	J-type	format

J	ADR

(3.25)

meaning	go	to	ADR.	Since	RX000	memory	addresses	are	32	bits	long,	the	PCU	mustextend	the	26-bit	address	field	ADR	in	(3.25)	to	32	bits.	This	is	done	automatically
bythe	following	two-step	process:

Temp:=PC[31:28].ADR.OO;PC	:=	Temp;

First	the	four	high-order	bits	from	the	program	counter	PC	are	placed	in	front	ofADR	and	00	is	appended	to	it.	Then	the	resulting	32-bit	word	is	made	the	new	con-tents	of
PC.

The	above	address-extension	method	confines	the	possible	branch	addresses	to	a226-word	region	of	memory	space	near	the	location	of	the	current	branch
instruction.However,	this	is	not	as	restrictive	as	it	might	appear.	First	of	all,	recall	that	a	32-bitmemory	address	refers	to	just	one	byte.	Only	230	instructions	can	be	placed
in	a	2	-bytememory,	so	only	30	bits	are	really	needed	to	locate	an	instruction.	The	RX000	and	sim-ilar	machines	always	assign	instructions	to	memory	word	locations	with
addresses	thatend	in	00:	that	is,	all	instructions	are	aligned	with	the	natural	word	boundaries	in	M.Moreover,	while	the	26-bit	address	field	ADR	is	still	4	bits	short	of	30.
the	size	of	theaccessible	region	for	branching	(226=	6.71	X	107	different	addresses)	is	more	than	ade-quate	for	most	programming	purposes—and	can	be	increased	by
software	means,	ifnecessary.

The	other	two	formats	shown	in	Figure	3.29	specify	register	addresses	usingeither	two	or	three	5-bit	fields.	The	RX000	has	25	=	32	general-purpose	registers	in
itsregister	file,	so	register	addresses	can	be	fully	specified	vuth	no	difficult).	The	second
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which	adds	the	contents	of	the	instruction's	immediate	address	field,	that	is,	bits	15:0of	the	instruction,	to	the	contents	of	register	Rs	and	places	the	result	in	register	Rt.
Toconvert	the	immediate	operand	FMM	from	16	to	32	bits,	it	is	sign-extended	to	32	bitsby	duplicating	its	left-most	bit	to	obtain	bits	31:16.

The	third	(R	type)	format	of	the	RX000	is	used	by	data-processing	instructionsthat	have	a	natural	three-address	format	to	define	operations	of	the	form	X}:=op(X2,X3).
For	instance,	the	add-register	instruction

ADD	Rd,Rs,Rt

performs	the	32-bit	addition

Rd	:=	Rs	+	Rt

using	the	contents	of	the	named	registers.	Since	the	register	addresses	occupy	only	15bits	of	the	instruction	format,	the	remaining	11	bits	are	used	in	various	ways	to
increase(and	complicate)	the	range	of	operations	that	can	be	performed.	In	effect,	they	serve	asextensions	to	the	opcode.	For	example,	there	are	six	shift-register
instructions,	all	ofwhich	use	instruction	bits	10:6	to	specify	the	amount	by	which	the	target	register's	con-tents	are	to	be	shifted.	The	shift-left	logical	instruction

SLL	Rd,Rt,Shamt

shifts	the	contents	of	register	Rt	left	by	Shamt	(shift	amount)	bits;	it	inserts	0s	in	thevacated	positions	on	the	right	and	places	the	result	in	Rd.	In	other	words,

Rt	:=	Rd[31-Shamt:0].0Shamt

where	0*	denotes	a	string	of	k	0s.

For	load	and	store	instructions,	the	RX000	uses	the	typical	RISC	technique	of	pro-viding	a	short	address	in	the	instruction,	which	serves	as	an	offset	to	a	full-
lengthaddress	stored	in	a	CPU	register.	The	I-type	format	of	Figure	3.29	is	used	for	load	andstore	instructions.	In	this	case	Rs	serves	as	the	base	register,	and	Rt	serves	as
the	datasource	(for	store)	or	destination	(for	load).	The	instruction	that	loads	a	word	into	theCPU	has	the	assembly-language	format

LW	Rt,	IMM(Rs)

which	causes	the	16-bit	immediate	address	EMM,	that	is,	the	offset,	to	be	sign-extendedto	32	bits	and	added	to	the	contents	of	Rs	to	form	the	effective	address.	This
address	isthen	used	to	read	a	word	of	data	from	M	into	register	Rt.	In	HDL	terms

Rt	:=	M(Rs	+	MM)

Addressing	modes.	The	purpose	of	an	address	field	is	to	point	to	the	currentvalue	V(X)	of	some	operand	X	used	by	an	instruction.	This	value	can	be	specifiedin	various
ways,	which	are	termed	addressing	modes.	The	addressing	mode	of	Xaffects	the	following	issues:

•	The	speed	with	which	V(X)	can	be	accessed	by	the	CPU.

•	The	ease	with	which	V(X)	can	be	specified	and	altered.

Access	speed	is	influenced	by	the	physical	location	of	V(X)—normally	the	CPUor	the	external	memory	M.	Operand	values	located	in	CPU	registers,	such	as	the



general-register	file	and	the	program	counter	PC,	can	be	accessed	faster	thanoperands	in	M.	It	is	therefore	usual	to	favor	instructions	that	address	CPU	regis-ters,	both	in
the	design	of	instruction	sets	and	in	their	use	in	computer	programs.An	operand's	accessibility	is	also	affected	by	the	directness	of	its	addressingmode:	The	address	field	X
itself	can	be	V(X),	it	can	specify	directly	the	locationof	V(X),	or	it	can	identify	a	location	that	specifies	directly	the	location	of	V(X).We	can	thus	distinguish	the	number	of
levels	of	indirection	associated	with	anaddress.	The	advantage	of	indirection,	as	we	will	see,	is	increased	programmingflexibility.	We	can	achieve	further	flexibility	by
providing	addresses	that	areautomatically	altered	or	indexed,	for	example,	to	step	through	an	array	of	consec-utive	addresses.

If	the	value	V(X)	of	the	target	operand	is	contained	in	the	address	field	itself,then	X	is	called	an	immediate	operand	and	the	corresponding	addressing	mode	isimmediate
addressing.	By	implication	X	is	a	constant,	since	it	is	very	undesirableto	modify	instruction	fields	during	execution.4	More	often	than	not,	X	is	a	variablein	the	usual
mathematical	sense,	and	the	corresponding	address	field	identifies	thestorage	location	that	contains	the	required	value	V(X).	Thus	X	corresponds	to	avariable,	and	its
value	V(X)	can	be	varied	without	modifying	the	instructionaddress	field.	Operand	specification	of	this	type	is	called	direct	addressing.

The	addressing	modes	of	the	operands	appearing	in	a	machine-languageinstruction,	which	can	vary	from	operand	to	operand,	are	defined	in	the	instruc-tion's	opcode.
Some	assembly	languages	allow	addressing	modes	to	be	similarlydefined	by	distinct	opcodes.	For	example,	the	assembly	language	of	the	Intel	8085series	has	the	opcode
MOV	(move)	to	specify	data	transfers	involving	directaddressing	only.	Therefore,	the	register-to-register	transfer	A	:=	B,	for	instance,	isspecified	by

MOV	A,B

(3.26)

The	A	and	B	operands	of	(3.26)	are	considered	to	be	directly	addressed,	since	thecontents	of	the	named	registers	are	the	desired	operand	values.	In	contrast,	to	spec-ify
the	operation	A	:=	99,	where	99	is	an	immediate	operand,	the	8085	instruction

MVI	A,	99

(3.27)

with	the	opcode	MVI	(wove	/mmediate)	must	be	used.	Note	that	(3.27)	uses	boththe	direct	and	immediate	addressing	modes.

Most	assembly	languages	take	a	different	approach	by	specifying	the	address-ing	modes	in	the	operand	fields.	For	example,	the	Motorola	680X0	equivalents	of(3.26)	and
(3.27),	with	Dl	=	A	and	D2	=	B	are

and

MOVE	D2,D1MOVE	#99.	Dl

(3.28)

respectively.	(Note	that	the	Motorola	operand	order	is	reversed	with	respect	to	theIntel	convention.)	In	(3.28)	the	prefix	#	indicates	that	the	immediate	addressingmode	is
to	be	used	for	the	operand	in	question.	Deleting	the	#	from	(3.28)	causes

4Self-modifying	programs	like	the	IAS	code	shown	in	Figure	1.15	(section	1.2.2)	reflect	the	madeqithe	addressing	modes	available	in	the	earliest	computers.
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the	first	operand	to	refer	to	the	data	in	memory	location	99,	that	is,	M(99),	whichwould	be	an	instance	of	direct	memory	addressing.

It	is	sometimes	useful	to	change	the	location	(as	opposed	to	the	value)	of	Xwithout	changing	the	address	fields	of	any	instructions	that	refer	to	X.	This	may
beaccomplished	by	indirect	addressing,	whereby	the	instruction	contains	the	addressW	of	a	storage	location,	which	in	turn	contains	the	address	X	of	the	desired
operandvalue	V(X).	By	changing	the	contents	of	W,	the	address	of	the	operand	valuerequired	by	the	instruction	is	effectively	changed.	While	direct	addressing
requiresonly	one	fetch	operation	to	obtain	an	operand	value,	indirect	addressing	requirestwo.	Figure	3.30	illustrates	these	different	ways	of	specifying	operands	in	the
caseof	three	load	instructions	that	transfer	the	number	999	to	the	CPU	register	AC.

The	ability	to	use	all	addressing	modes	in	a	uniform	and	consistent	way	withall	opcodes	of	an	instruction	set	or	assembly	language	is	a	desirable	feature
termedorthogonality.	Orthogonal	instruction	sets	simplify	programming	both	by	reducingthe	number	of	distinct	opcodes	needed	and	by	simplifying	the	rules	for
operandaddress	specification.	Many	CISC	computers	like	the	680X0	have	little	orthogo-nality,	since	processor	costs	can	be	reduced	(at	the	expense	of	programming
costs)by	restricting	instructions	to	a	few	frequently	used	addressing	modes	that	varyfrom	instruction	to	instruction.
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Figure	3.30

Three	basic	addressing	modes:	(a)	immediate;(b)	direct;	(c)	indirect.

Relative	addressing.	Absolute	addressing,	conceptually	the	simplest	mode	of	187direct	address	formation,	requires	the	complete	operand	address	to	appear	in
theinstruction	operand	field.	This	address	is	used	without	modification	(except,	per-haps,	zero	or	sign	extension	in	the	case	of	a	short	address	field)	to	access	the
desireddata	item.	Frequently,	only	partial	addressing	information	is	included	in	the	instruc-tion,	so	the	CPU	must	construct	the	complete	(absolute)	address.	One	of	the
com-monest	address	construction	techniques	is	relative	addressing,	in	which	theoperand	field	contains	a	relative	address,	also	called	an	offset	or	displacement	D.The
instruction	also	implicitly	or	explicitly	identifies	other	storage	locations	R{,

R2	Rk	(usually	CPU	registers)	containing	additional	addressing	information.	The

effective	address	A	of	an	operand	is	then	some	function	f(D,R]tR2,...,Rk).	In	mostcases	of	interest,	each	operand	is	associated	with	a	single	address	register	R	from	aset	of
general-purpose	address	registers,	and	A	is	computed	by	adding	D	to	the	con-tents	of	R.	that	is,

A:=R	+	D

R	may	also	be	a	special-purpose	address	register	such	as	the	program	counter	PC.There	are	several	reasons	for	using	relative	addressing.

1.	Since	all	the	address	information	need	not	be	included	in	the	instructions,instruction	length	is	reduced.



2.	By	changing	the	contents	of	R,	the	processor	can	change	the	absolute	addressesreferred	to	by	a	block	of	instructions	B.	This	address	modification	permits	theprocessor
to	move	(relocate)	the	entire	block	B	from	one	region	of	main	mem-ory	to	another	without	invalidating	the	addresses	in	B.	When	used	in	this	way,	Rmay	be	referred	to	as	a
base	register	and	its	contents	as	a	base	address.

3.	R	can	be	used	for	storing	indexes	to	facilitate	the	processing	of	indexed	data.	Inthis	role	R	is	called	an	index	register.	The	indexed	items	X(0),	X(\),...,X(k)	arestored	in
consecutive	addresses	in	memory.	The	instruction-address	field	D	con-tains	the	address	of	the	first	item	X(0),	while	the	index	register	R	contains	theindex	i.	The	address	of
item	X(i)	is	D	+	R.	By	changing	the	contents	of	the	indexregister,	a	single	instruction	can	be	made	to	refer	to	any	item	X(i)	in	the	givendata	list.

The	main	drawbacks	of	relative	addressing	are	the	extra	logic	circuits	and	process-ing	time	needed	to	compute	addresses.

So	far	we	have	assumed	that	each	operand	is	a	single	memory	word	and	cantherefore	be	specified	by	a	single	address.	If	an	instruction	must	process	variable-length	data
consisting	of	many	words,	each	operand	specification	is	divided	intotwo	parts:	an	address	field	that	points	to	the	location	of	the	first	word	of	the	oper-and	and	a	length
field	L	that	indicates	the	number	of	words	in	the	operand.	TheCPU	automatically	increments	the	instruction	address	field	as	successive	words	ofthe	operand	are	accessed.
The	access	is	complete	when	L	words	have	beenaccessed.

Indexed	items	are	frequently	accessed	sequentially	so	that	a	reference	to	X(k)stored	in	memory	location	A	is	immediately	followed	by	a	reference	to	X(k	+	1)	orX(k-l)
stored	in	location	A	+	1	or	A	-1.	respectively.	To	facilitate	stepping	througha	sequence	of	items	in	this	manner,	addressing	modes	that	automatically	incrementor
decrement	an	address	can	be	defined;	the	resulting	address-modification	process
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188	is	called	autoindexing.	In	the	case	of	the	Motorola	680X0	series	[Motorola	1989],

the	address	field	-(A3)	appearing	in	an	assembly-language	instruction	indicates

I	stm	ti	n	s	ts	tnat	me	con,:ents	°ftne	designated	address	register	A3	should	be	decremented	auto-

matically	before	the	instruction	is	executed;	this	process	is	called	predecrementing.Similarly,	(A3)+	specifies	that	A3	should	be	incremented	automatically	after	thecurrent
instruction	has	been	executed	ipostincrementing).	In	each	case	the	amountof	the	address	increment	or	decrement	is	the	length	in	bytes	of	the	indexed	oper-ands.

Most	processors	have	only	a	few,	simple	addressing	modes	for	CPU	registers,principally	direct	and	immediate	addressing.	Immediate	addresses	represent	datavalues	that
come	with	the	instruction	fetch	and	are	placed	in	the	instruction	registerIR.	In	register	direct	addressing,	the	address	(name)	R	of	the	register	containingthe	desired	value
V(R)	appears	in	the	instruction.	The	Motorola	680X0	instruction

MOVE	#99,	Dl

which	means	"move	the	constant	99	to	data	register	D1,"	uses	immediate	address-ing	for	99	and	register	direct	(or	simply	direct)	addressing	for	Dl.

The	term	register	indirect	addressing	refers	to	indirect	addressing	with	a	regis-ter	R	name	in	the	address	field.	It	is	often	used	to	access	memory,	in	which	case	Rbecomes
a	memory	address	register.	For	example,

MOVE.B	(A0),D1

uses	parentheses	to	indicate	that	(A0)	is	an	indirect	address	involving	the	680X0'sA0	addresss	register.	This	move-byte	instruction—the	opcodes's	.B	suffix	speci-fies	a	1-
byte	operand—corresponds	to

D1[7:0]:=M(A0)

and	copies	the	byte	addressed	by	A0	into	the	low-order	byte	position	of	data	regis-ter	Dl.	(The	other	three	bytes	of	Dl	are	unchanged.)	An	extension	of	this	address-ing
mode	is	register	indirect	with	offset,	which	can	also	be	viewed	as	a	type	of	baseor	indexed	addressing.	This	mode	is	the	only	memory	addressing	mode	employedby	the
MIPS	RX000	series	(Example	3.5).	The	RXOOO's	store-word	instruction,	forexample,	is	written	as

SW	Rt,	OFFSET(Rs)	(3.29)

where	Rs	is	the	base	register	and	OFFSET	is	a	number	acting	as	an	(immediate)offset	operand.	Instruction	(3.29)	is	equivalent	to	the	HDL	statement

M(Rs	+	OFFSET)	:=	Rt

where	the	offset	is	sign-extended	before	adding	it	to	Rs	to	obtain	the	effectiveaddress	Rs	+	OFFSET.	The	PowerPC	has	two	addressing	modes:	register	indirectwith	offset
as	described	above	(but	called	register	indirect	with	immediate	index)and	a	second	mode	(called	register	indirect	with	index)	in	which	the	effectiveaddress	is	Rs	+	Ri,
where	Ri	is	a	register	name.

The	Motorola	680X0,	like	other	CISC-style	architectures,	has	many	address-ing	modes,	including	the	following:	immediate,	register	direct,	register	indirect,register
indirect	with	postincrement,	register	indirect	with	predecrement,	registerindirect	with	offset,	register	indirect	with	index,	absolute	short,	absolute	long,	PC

with	offset,	and	PC	with	index.	Its	autoindexing	features	are	illustrated	in	the	fol-	189lowing	example.

EXAMPLE	3.6	STACK	CONTROL	IN	THE	MOTOROLA	680X0	[GILL.	CORWIN

and	logar	1987;	motorola	1989].	A	stack	is	a	sequence	of	storage	locationsthat	are	accessible	from	only	one	end	referred	to	as	the	top	of	the	stack.	A	write	opera-tion
addressed	to	a	stack,	termed	a	push	operation,	stores	a	new	item	at	the	top	of	thestack,	while	a	read	operation,	termed	a	pop	operation,	removes	the	item	stored	at	thetop
of	the	stack.	Push	or	pop	changes	the	position	of	the	stack	top	by	an	amount	thatdepends	on	the	length	of	the	operand	pushed	or	popped.	A	stack	is	controlled	by
anaddress	register	called	the	stack	pointer	SP.	This	register	stores	the	address	of	the	lastoperand	placed	in	the	stack;	that	address	is	automatically	adjusted	after	a	push
or	popoperation	so	that	SP	contains	the	address	of	the	new	stack	top.

Some	computers—the	Intel	80X86,	for	example—have	special	instructions	andhardware	for	handling	stacks	that	are	intended	as	communication	areas	for	program-control
instructions	like	call	and	return.	A	few	early	computers	such	as	the	BurroughsB6500/7500	even	employed	stacks	in	place	of	general-register	files;	see	Example	1.5(section
1.2.3).	The	Motorola	680X0	has	no	explicit	hardware	for	stack	support,	but,	aswe	now	show,	its	various	addressing	modes	make	it	easy	to	treat	any	contiguous	regionof	its
external	memory	M	as	a	stack.

Suppose	that	the	programmer	designates	the	address	register	A2	of	the	680X0	tobe	a	stack	pointer	and	that	the	stack	grows	toward	the	low	addresses	of	M.	To	push
thecontents	of	a	data	register,	say,	D6,	into	the	stack	requires	the	single	instruction

MOVE.L	D6,-(A2)	(3.30)

The	input	operand	is	the	4-byte	contents	of	D6,	which	is	directly	addressed	in	(3.30),while	the	output	operand,	which	is	the	new	contents	of	the	top	of	the	stack,	is	desig-
nated	by	-(A2),	which	denotes	indirect	addressing	with	predecrementing	using	addressregister	A2.	This	push	instruction	is	equivalent	to	the	following	HDL	operations:

A2	:=	A2	-	4;	M(A2)	:=	D6;

Figure	3.31	shows	the	state	of	the	affected	parts	of	the	CPU	and	M	immediately	before(Figure	3.31a)	and	immediately	after	(Figure	3.316)	execution	of	instruction
(3.30).Observe	how	the	data	bytes	are	stored	in	M	according	to	the	big-endian	convention.It	is	easily	seen	that	the	pop	instruction	corresponding	to	(3.30)	is

MOVE.L	(A2)+,D6	(3.31)

which	is	equivalent	to

D6	:=	M(A2);	A2	:=	A2	+	4;

In	this	case	the	operand	(A2)+	employs	the	register	indirect	with	postincrementaddressing	mode.

Number	of	addresses.	Some	computers,	notably	CISCs	like	the	680X0,	haveinstructions	of	several	different	lengths	containing	various	numbers	of	addresses.A	source	of
controversy	in	the	early	days	was	the	question	of	how	many	explicitoperand	addresses	to	include	in	instructions.	Clearly	the	fewer	the	addresses,	theshorter	the
instruction	format	needed.	However,	limiting	the	number	of	addressesalso	limits	the	range	of	operations	that	an	instruction	can	perform.	Roughlyspeaking,	fewer
addresses	mean	more	primitive	instructions	and	therefore	longer
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CPU

D6	=	stack	data	register
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(a)

CPU
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Figure	3.31

State	of	the	Motorola	680X0	{a)	immediately	before	and	(b)	immediately	afterexecution	of	the	push	instruction	MOVE.L	D6,-(A2).

programs	to	perform	a	given	task.	While	the	storage	requirements	of	shorterinstructions	and	longer	programs	tend	to	balance,	larger	programs	require	longerexecution
times.	On	the	other	hand,	long	instructions	with	multiple	addressesrequire	more	complex	decoding	and	processing	circuits.	RISC	instructions,	withthe	exception	of	load
and	store,	contain	short	register	addresses	only,	so	two	orthree	addresses	can	be	accommodated	within	a	short	and	fixed-length	instructionword.

Most	instructions	require	no	more	than	three	distinct	operands.	For	example,the	fundamental	arithmetic	operations—addition,	subtraction,	multiplication,	anddivision—
require	three	operands:	two	input	operands	and	one	output	operand.	Athree-address	instruction	can	therefore	specify	all	needed	operands.	For	example,the	three-address
add	instruction

ADD	Z,	X,	Y

means	add	the	contents	of	memory	locations	X	and	Y	and	place	the	result	in	loca-tion	Z;	that	is,	Z	:=	X	+	Y.	A	one-address	add	instruction	has	the	format

ADD	X

The	unspecified	operands	are	assumed	to	be	stored	in	fixed	locations	such	as	theaccumulator	AC.	in	which	case	the	instruction	specifies	the	operation	AC	:=	AC	+X.	In	the
case	of	a	two-address	instruction,	the	accumulator	is	used	to	store	theresult	(the	sum)	only.

ADD	X,	Y

has	the	typical	interpretation	AC	:=	X	+	Y.	Another	possibility	is	to	use	oneaddress,	say,	X,	to	store	both	the	addend	X	and	the	sum	as	follows:	X	:=	X	+	Y.	Inthe	latter	case
the	addition	operation	destroys	the	X	operand.	Figures	3.32a,	b,	andc	show	how	processors	that	employ	one-address,	two-address,	and	three-addressinstructions,
respectively,	might	implement	the	operation

X:=AXB	+	CXC

(3.32)

where	the	four	operands	A,	B,	C,	and	X	are	assumed	to	be	stored	in	external	mem-ory.

A	few	computers	have	been	designed	so	that	most	instructions	contain	noexplicit	addresses;	they	can	be	called	zero-address	machines;	see	also	Example1.5.	Addresses
are	eliminated	by	storing	operands	in	a	push-down	stack.	All	oper-ands	used	by	a	zero-address	instruction	are	required	to	be	in	the	top	locations	in	thestack.	For	example,
the	addition	X	+	Y	is	invoked	by	an	instruction	such	as

ADD

that	causes	the	top	two	operands,	which	should	be	X	and	Y,	to	be	removed	from	thestack	and	added.	The	resulting	sum	X	+	Y	is	then	placed	at	the	top	of	the	stack.	Astack
pointer	automatically	keeps	track	of	the	stack	top.	Push	and	pop	instructionsare	needed	to	transfer	data	to	and	from	the	stack.	PUSH	X	causes	the	contents	of	Xto	be
placed	at	the	top	of	the	stack.	POP	X	causes	the	top	word	in	the	stack	to	betransferred	to	location	X.	Note	that	PUSH	and	POP	are	not	themselves	zero-address
instructions;	as	implemented	by	(3.30)	and	(3.31),	for	instance,	they	aretwo-address	instructions.	Figure	3.33	shows	how	a	program	for	(3.32)	might	beconstructed	for	a
zero-address,	stack	machine.
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3.3.2	Instruction	Types

We	now	turn	to	the	question:	What	types	of	instructions	shou'd	be	included	in	ageneral-purpose	processor's	instruction	set?	We	are	concerned	with	the	instructions

iyi Instruction Comments

SECTION	3.3Instruction	Sets LOAD	AMULTIPLY	B Transfer	A	to	accumulator	AC.AC	:=	AC	x	B

STORET Transfer	AC	to	memory	location	T.	'

LOADC Transfer	C	to	accumulator	AC.

MULTIPLY	C AC	:=	AC	x	C

ADDT AC	:=	AC	+	T

STORE	X Transfer	result	to	memory	location	X.

(a)	One-address	machine

Instruction Comments

MOVE	T.A T:=A

MULTIPLY	RE- T	:=	T	x	B

MOVE	X,C X:=C

MULTIPLY	X,C X	:=	X	x	C

ADD	X,T X:=X	+	T



(b)	Two-address	machine

Instruction Comments

MULTIPLY	T,A,B T	:=	A	x	B

MULTIPLY	X,C,C X	:=	C	x	C

ADD	X,X,T X	:=	X	+	T

(c)	Three-address	machine

Figure	3.32

Programs	to	execute	the	operation	X	:=	Ax	B	+	Cx	C	in	one-address,two-address,	and	three-address	processors.

that	are	in	the	processor's	machine	language.	All	processors	have	a	well-definedmachine	language,	and	some	implement	a	lower-level	"micromachine"	languagespecified
by	microinstructions.	A	typical	machine	instruction	defines	one	or	tworegister	transfer	(micro)	operations,	and	a	sequence	of	such	instructions	is	neededto	implement	a
statement	in	a	high-level	programming	language	such	as	C.	Becauseof	the	complexity	of	the	operations,	data	types,	and	syntax	of	high-level	languages,few	attempts	have
been	made	to	construct	computers	whose	machine	languagedirectly	corresponds	to	a	high-level	language.	As	noted	earlier,	there	is	a	semanticgap	between	problem-
specification	languages	and	the	machine	instruction	set	thatimplements	them,	a	gap	that	language-translation	programs	such	as	compilers	andassemblers	must	bridge.

The	requirements	to	be	satisfied	by	an	instruction	set	can	be	stated	in	the	fol-lowing	general,	but	rather	imprecise,	terms:

Instruction

PUSH	A

PUSHB

MULTIPLY

PUSHC

PUSHC

MULTIPLY

ADD

POPX

Comments

Transfer	A	to	top	of	stack.

Transfer	B	to	top	of	stack.

Remove	A,B	from	stack	and	replace	by	A	x	B.

Transfer	C	to	top	of	stack.

Transfer	second	copy	of	C	to	top	of	stack.

Remove	C,Cfrom	stack	and	replace	byCxC

Remove	CxC,AxB	from	stack	and	replace	by	their	sum.

Transfer	result	from	top	of	stack	to	X.

Figure	3.33

Program	to	execute	X
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=	AxB+CxC	in	a	zero-address,	stack	processor.

•	It	should	be	complete	in	the	sense	that	we	should	be	able	to	construct	a	machine-language	program	to	evaluate	any	function	that	is	computable	using	a
reasonableamount	of	memory	space.

•	It	should	be	efficient	in	that	frequently	required	functions	can	be	performed	rap-idly	using	relatively	few	instructions.

•	It	should	be	regular	in	that	the	instruction	set	should	contain	expected	opcodesand	addressing	modes;	for	example,	if	there	is	a	left	shift,	there	should	be	a	rightshift.

•	To	reduce	both	hardware	and	software	design	costs,	the	instructions	may	berequired	to	be	compatible	with	those	of	existing	machines—previous	membersof	the	same
computer	family,	for	instance.

Because	of	the	wide	variation	in	CPU	architectures	between	different	computerfamilies,	standard	machine	or	assembly	languages	do	not	exist.	There	are,	never-theless,
broad	similarities	between	all	instruction	sets,	which	go	back	to	the	IAScomputer	and	other	early	machines.

Completeness.	A	function	fix)	is	said	to	be	computable	if	it	can	be	evaluated	ina	finite	number	of	steps	by	a	Turing	machine	(see	section	1.1.1).	While	real	com-puters
differ	from	Turing	machines	in	having	only	a	finite	amount	of	memory,	theycan,	in	practice,	evaluate	any	computable	function	to	a	reasonable	degree	ofapproximation.
When	viewed	as	instruction-set	processors,	Turing	machines	havea	very	simple	instruction	set.	In	our	discussion	of	Turing	machines,	we	definedfour	instruction	types:
write,	move	tape	one	square	to	the	left,	move	tape	onesquare	to	the	right,	and	halt,	all	of	which	are	conditional	on	the	control	processor'sstate.	It	follows	that	complete
instruction	sets	can	be	constructed	for	finite-statemachines	using	equally	simple	instruction	types.	In	fact,	computers	have	been	pro-posed	that	employ	only	a	single	type
of	instruction;	see	problem	3.44.	While	verysmall	instruction	sets	require	simple,	and	therefore	inexpensive,	logic	circuits	toimplement	them,	they	lead	to	excessively
complex	programs.	There	is	therefore	afundamental	trade-off	between	processor	simplicity	and	programming	complexity.

194	Instructions	are	conveniently	divided	into	the	following	five	types:

section	3.3	1.	Data-transfer	instructions,	which	copy	information	from	one	location	to	another

instruction	Sets	either	in	the	processor's	internal	register	set	or	in	the	external	main	memory.

2.	Arithmetic	instructions,	which	perform	operations	on	numerical	data.

3.	Logical	instructions,	which	include	Boolean	and	other	nonnumerical	operations.

4.	Program-control	instructions,	such	as	branch	instructions,	which	change	thesequence	in	which	programs	are	executed.

5.	Input-output	(IO)	instructions,	which	cause	information	to	be	transferredbetween	the	processor	or	its	main	memory	and	external	IO	devices.

These	types	are	not	mutually	exclusive.	For	example,	the	arithmetic	instructionA	:=	B	+	C	implements	the	data	transfer	A	:=	B	when	C	is	set	to	zero.

Figure	3.34	lists	representative	instructions	from	the	five	types	defined	above,which	have	been	culled	from	the	instruction	sets	of	various	computers.	The	data-transfer



instructions,	particularly	load	and	store,	are	the	most	frequently	usedinstructions	in	computer	programs,	despite	the	fact	that	they	involve	no	explicitcomputation.	The
arithmetic	instructions	cover	a	wide	range	of	operations	and	aresometimes	used	as	a	rough	measure	of	the	complexity	of	an	instruction	set.	Thelogical	instructions	include
the	word-based	Boolean	operations,	as	well	as	opera-tions	that	have	no	obvious	numerical	interpretation.	The	major	branch	instructionsare	jump	(un)conditionally	and	the
call	and	return	instructions	used	for	subroutinelinkage.	The	simplest	IO	instructions	are	data-transfer	instructions	addressed	to	IOports,	which	transfer	one	or	more	words
between	an	IO	port	and	either	the	CPU	orM.	If	the	CPU	delegates	control	of	IO	operations	to	an	IO	processor	(IOP),	theCPU	needs	instructions	that	enable	it	to	supervise
the	execution	of	IO	programs	bythe	IOP.	Instructions	that	are	specific	to	particular	IO	devices,	such	as	REWINDTAPE,	PRINT	LINE,	and	SCAN	KEYBOARD,	are	treated	as
data	by	the	CPU	andIOP	and	are	interpreted	as	instructions	only	by	the	IO	devices	to	which	they	aretransferred.

The	completeness	of	an	instruction	set	can	be	demonstrated	informally	byshowing	that	it	can	program	certain	key	operations	in	each	of	the	five	instructiongroups.	It	must
be	possible	to	transfer	a	word	between	the	processor	and	any	mem-ory	location.	It	must	be	possible	to	add	two	numbers,	so	an	add	instruction	isincluded	in	most
instruction	sets.	Other	arithmetic	operations	can	readily	be	pro-grammed	using	addition.	As	noted	in	section	3.2.2,	subtraction	of	twos-complementnumbers	requires
addition	and	logical	complementation	(NOT)	only.	More	com-plex	arithmetic	operations	such	as	multiplication,	division,	and	exponentiation	canbe	programmed	using
addition,	subtraction,	and	shifting,	as	in	Example	2.7.	If	alogically	complete	set	of	Boolean	operations	such	as	{AND,NOT}	is	in	the	instruc-tion	set.	then	any	other
Boolean	operation	can	be	programmed.	Branching	requiresat	least	one	conditional	branch	instruction	that	tests	some	stored	quantity	and	altersthe	instruction	execution
sequence	based	on	the	test	outcome.	An	unconditionalbranch	can	easily	be	realized	by	a	conditional	branch	instruction.

RISC	versus	CISC.	While	an	instruction	set	that	is	limited	to	two	or	threeinstructions	is	impractical,	there	is	no	agreement	about	the	appropriate	size	ormembership	of	a
general-purpose	instruction	set.	Early	computers	like	the	IAS	hada	small	and	simple	instruction	set	forced	by	the	need	to	minimize	the	amount	of

Type

Operation	name(s)

Description

Data

MOVE

transfer LOAD

STORE

SWAP	(EXCHANGE)

CLEAR

SET

PUSH

POP

Arithmetic ADD

ADD	WITH	CARRY

SUBTRACT

MULTIPLY

DIVIDE

MULITPLY	AND	ADD

ABSOLUTE

NEGATE

INCREMENT

DECREMENT

ARITHMETIC	SHIFT

Logical AND	"i

OR

NOT

EXCLUSIVE-OR

LOGICAL	SHIFT

ROTATE

CONVERT	(EDIT)

Program JUMP	(BRANCH)

control JUMP	CONDITIONAL

JUMP	TO	SUBROUTINE(BRANCH-AND-LINK)

RETURN



EXECUTE

SKIP	CONDITIONAL

TRAP	(SOFTWARE

INTERRUPT)TESTCOMPARE

Copy	word	or	block	from	source	to	destination.Copy	word	from	memory	to	processor	register.Copy	word	from	processor	register	to	memory.Swap	contents	of	source	and
destination.Transfer	word	of	Os	to	destination.Transfer	word	of	Is	to	destination.Transfer	word	from	source	to	top	of	stack.Transfer	word	from	top	of	stack	to	destination.

Compute	sum	of	two	operands.

Compute	sum	of	two	operands	and	a	carry	bit.

Compute	difference	of	two	operands.

Compute	product	of	two	operands.

Compute	quotient	(and	remainder)	of	two	operands.

Compute	product	of	two	operands;	add	it	to	a	third

operand.Replace	operand	by	its	absolute	value.Change	sign	of	operand.Add	1	to	operand.Subtract	1	from	operand.Shift	operand	left	(right)	with	sign	extension.

Perform	the	specified	logical	operation	bitwise.

Shift	operand	left	(right)	introducing	Os	at	end.Left-	(right-)	shift	operand	around	closed	path.Change	data	format,	for	example,	from	binary	to	decimal.

Unconditional	transfer:	load	PC	with	specified	address.Test	specified	conditions;	if	true,	load	PC	with	specified

address.Place	current	program	control	information	including	PC	in

known	location,	for	example,	top	of	stack;	jump	to

specified	address.Restore	current	program	control	information	including	PC

from	known	location,	for	example,	from	top	of	stack.Fetch	operand	from	specified	location	and	execute	as

instruction;	note	that	PC	is	not	modified.Test	specified	condition;	if	true,	increment	PC	to	skip	next

instruction.Enter	supervisor	mode.

Test	specified	condition;	set	flag(s)	based	on	outcome.Make	logical	or	arithmetic	comparison	of	two	or	moreoperands;	set	flag(s)	based	on	outcome.
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Figure	3.34

List	of	common	instruction	types.
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Type

Operation	name(s)	Description

Programcontrol

SET	CONTROLVARIABLES

WAIT	(HOLD)

NO	OPERATIONInput-output	INPUT	(READ)

OUTPUT	(WRITE)START	IOTEST	10

HALTIO

Large	class	of	instructions	to	set	controls	for	protection	pur-poses,	interrupt	handling,	timer	control,	and	so	forth	(oftenprivileged).	'

Stop	program	execution;	test	a	specified	condition	continu-ously;	when	the	condition	is	satisified,	resume	instructionexecution.

No	operation	is	performed,	but	program	execution	continues.

Copy	data	from	specified	10	port	to	destination,	for	example,output	contents	of	a	memory	location	or	processor	register.

Copy	data	from	specified	source	to	10	port.

Transfer	instuctions	to	IOP	to	initiate	an	10	operation.

Transfer	status	information	from	IO	system	to	specified	desti-nation.

Transfer	instructions	to	IOP	to	terminate	an	10	operation.

Figure	3.34

(continued).

CPU	hardware.	These	instruction	sets	included	only	the	most	frequently	used	oper-ations	such	as	load	a	register	from	memory,	store	a	result	in	memory,	and	add	twofixed-
point	numbers.	As	hardware	became	cheaper,	instructions	tended	to	increaseboth	in	number	and	complexity	so	that	by	1980	a	typical	computer	had	dozens	ofinstruction
types,	with	versions	to	handle	several	data	types	and	addressing	modes.These	large	instruction	sets	contain	infrequently	used	but	hard-to-program	opera-tions	like
floating-point	divide.	Since	such	operations	are	primitives	in	program-ming	languages,	they	serve	to	reduce	the	semantic	gap	between	the	user's	languageand	the
computer's.	However,	complex	instructions	lead	to	a	number	of	complica-tions	in	both	hardware	and	software	design,	which	we	now	consider.

Suppose	that	a	particular	operation	F	can	be	implemented	either	by	a	singlecomplex	instruction	IF	or	by	a	multiinstruction	routine	PF	composed	of	simpleinstructions.
Execution	of	PF	will	generally	be	slower	than	execution	of	IF	becausethe	processor	must	spend	more	time	fetching	the	instructions	of	PF	and,	dependingon	the	nature	of
F,	handling	the	intermediate	data	that	links	the	instructions.	A	fur-ther	drawback	of	PF	is	that	it	occupies	more	memory	space	than	IF	occupies.	Anobvious	disadvantage	of
lF	is	that	it	adds	to	the	complexity	of	a	processor's	controlunit,	thereby	increasing	both	the	size	of	the	processor	and	the	time	required	todesign	it.

Clearly	a	program	involving	F	is	simplified	by	using	IF	in	place	of	PF.	Whenthe	program	is	written	in	a	high-level	language,	however,	as	most	programs	are,	theexecution
speedup	that	justifies	a	complex	instruction	like	/Fmay	not	be	fully	real-izable.	A	compiler	will	typically	translate	F	into	the	corresponding	machineinstruction	IF,	if
available,	which	uses	fixed	CPU	registers	and	has	a	fixed	execu-tion	time.	On	the	other	hand,	if	IF	is	not	available,	an	efficient	or	optimizing	com-piler	may	be	able	to
generate	object	code	QF	corresponding	to	PF	that	exploitsinformation	known	at	compilation	time	to	reduce	F's	execution	time.	Suppose,	forinstance,	that	F	is	fixed-point
multiplication	and	is	implemented	by	both	IF	and	QFvia	a	shift-and-add	algorithm	of	the	kind	described	in	Example	2.7.	If	one	of	F's

operands	is	a	small	constant	or	zero,	then	the	compiler	can	easily	generate	a	shorterform	of	PF	that	is	faster	than	the	generic	n-step	multiply	instruction	IF.	The	speedgap
between	IF	and	PF	can	also	be	narrowed	by	designing	the	small	instruction	setrequired	for	PF	to	reduce	the	instruction	fetch	and	execute	cycle	times	as	far	aspossible,
preferably	to	one	CPU	clock	cycle	each.	Another	speed	advantage	of	PFover	IF	is	that	PF	can	be	interrupted	in	midoperation	at	an	appropriate	instructionboundary,
whereas	IF	must	proceed	to	termination	before	the	CPU	can	respond	toan	interrupt.



Motivated	by	considerations	of	the	foregoing	sort,	a	number	of	computerdesigners	advocated	machines	with	relatively	small	and	simple	instruction	sets,which	have	been
dubbed	RISCs	for	reduced	instruction-set	computers.	RISC	archi-tecture	is	contrasted	with	the	complex	instruction-set	computer	(CISC)	architecturefound	in	most	pre-
1980	designs	such	as	the	IBM	System/360-370	and	the	Motorola680X0.	The	major	attributes	of	RISCs	have	been	defined	as	follows	[Colwell	et	al.1985]:

•	Relatively	few	instruction	types	and	addressing	modes.

•	Fixed	and	easily	decoded	instruction	formats.

•	Fast,	single-cycle	instruction	execution.

•	Hardwired	rather	than	microprogrammed	control.

•	Memory	access	limited	mainly	to	load	and	store	instructions.

•	Use	of	compilers	to	optimize	object-code	performance.

Several	of	these	RISC	attributes	are	closely	related.	For	example,	the	small	sizeand	regularity	of	the	instruction	set	simplifies	the	design	of	a	hardwired	programcontrol
unit,	which	in	turn	facilitates	the	achievement	of	fast	single-cycle	execu-tion.	The	stress	placed	on	efficient	compilation	requires	the	machine	architects	andcompiler
writers	to	cooperate	closely	in	the	design	process.

RISC	architectures	restrict	the	instructions	that	access	memory	to	load	andstore.	Consequently,	most	RISC	instructions	involve	only	register-to-register	oper-ations	that
are	internal	to	the	CPU.	To	support	them,	a	larger-than-usual	number	ofregisters	may	be	placed	in	the	CPU.	This	design	facilitates	single-cycle	executionand	minimizes	the
CPU	cycle	time.	Pipelining	the	instruction	execution	processalso	supports	single-cycle	execution.	Since	complex	instructions	are	not	in	theinstruction	set,	they	must	be
implemented	by	multiinstruction	routines,	whichprompts	the	attention	to	efficient	compilation.	Machine	code	compiled	for	a	RISCcomputer	is	likely	to	have	more
instructions	than	the	corresponding	CISC	code	butcan	execute	more	efficiently,	especially	if	only	fixed-point	(integer)	instructionsare	involved.	However,	if	the	frequency
of	complex	operations	is	high,	then	theperformance	of	the	CISC	machine	may	be	better	than	that	of	the	RISC	machine.
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EXAMPLE	3.7	INSTRUCTION	SET	OF	THE	MIPS	RX000	[KANE	AND	HEIN-

RI	c	H	1992].	The	RX000	microprocessor	series	and	its	instruction	formats	were	intro-duced	in	Example	3.5	(section	3.3.1).	A	microprocessor	in	this	family	is
implementedby	a	single	IC	and	has	the	major	components	indicated	in	Figure	3.35.	These	include	afile	of	32	general-purpose	32-bit	registers	and	the	processing	logic	to
perform	the	basicfixed-point	ALU	functions:	add,	subtract,	multiply,	divide	and	logical	operations	using32-bit	operands.	Numerical	operands	are	treated	as	unsigned	or
signed	integers	intwos-complement	code.	One	register	R0	in	the	register	file	permanently	stores	the	con-stant	zero.	Some	special-purpose	arithmetic	circuits	perform
address	computation.	The
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Localcontrol	logic Register	filegeneral	purpose

32-bit	registers)

«

System	controlcoprocessor(Control	registers,memory	manage-ment	unit) iLIF

Processing	logic(ALU,	shifter,

multiplier/divider,address	logic)

iL

if
I	1

System	bus

To	M	and10	system

Figure	3.35

Overall	organization	of	the	MIPS	RXOOO.

overall	organization	of	the	RXOOO	E-unit	is	similar	to	that	of	the	ARM6	(Figure	3.9).As	in	the	ARM6	case,	the	E-unit	of	the	RXOOO	is	pipelined	to	support	the	goal	of	exe-
cuting	instructions	at	a	peak	rate	of	one	instruction	per	clock	cycle.	Floating-pointoperations	meeting	the	requirements	of	the	IEEE	754	standard	are	supported	by	an	on-
chip	or	off-chip	floating-point	unit	(FPU).

In	addition	to	the	control	logic	needed	for	instruction	execution,	the	RXOOO	con-tains	a	unit	referred	to	as	the	system	control	coprocessor	whose	functions	include	com-
munication	with	external	memory	(caches	and	main	memory)	and	the	automaticaddress	translation	logic	needed	to	support	a	virtual	memory	system.	The	virtual	mem-ory
feature	uncouples	the	address	space	seen	by	the	programmer	from	the	computer'sphysical	address	space,	making	it	possible,	for	example,	to	run	a	large	program	in
asmall	amount	of	physical	memory.	The	system	control	coprocessor	is	essentially	invis-ible	to	the	applications	programmer.	The	RXOOO	can	have	several	additional
coproces-sors	implemented	on	additional	ICs.

We	now	consider	in	detail	the	RXOOO's	basic	(MIPS	I)	instruction	set,	which	issummarized	in	Figure	3.36.	There	are	74	types,	divided	almost	equally	between	data-
transfer,	data-processing,	and	program-control	instructions.	All	are	32	bits	long	and	useone	of	the	I,	J,	and	R	formats	illustrated	in	Figure	3.29.	The	smallest	addressable
itemin	external	memory	M	is,	as	usual,	an	8-bit	byte,	which	requires	a	32-bit	address	tospecify	its	location.	Smaller	address	fields	such	as	the	26-bit	branch	address	field
of	J-type	instructions	are	automatically	extended	to	32	bits	before	loading	into	the	programcounter	PC.	Note	that	to	increment	PC	to	point	to	the	next	sequential
instruction	of	aprogram	requires	the	step	PC	:=	PC	+	4.	The	16-bit	(half-word)	IMM	field	of	I-typeinstructions	serves	either	as	an	immediate	data	operand	or	else	as	an
address	offset.	Ineither	case	it	is	also	extended	to	32	bits	either	by	zero	extension	or	by	sign	extension.During	initialization,	the	microprocessor	can	be	reset	to	store	data
according	to	eitherthe	big-endian	or	the	little-endian	convention.

Following	the	basic	RISC	philosophy,	communication	between	the	CPU	andexternal	memory	M	is	via	load	and	store	instructions	only,	using	the	I-type	format	(Fig-ure
3.29).	The	RXOOO	has	instructions	to	load	and	store	data	in	bytes	and	half-words	(2bytes),	as	well	as	full,	4-byte	words.	If	a	byte	or	half-word	is	to	be	loaded	into	a
CPUregister,	then	the	loaded	item	is	expanded	to	a	full	word	by	sign	extension,	unless	the"unsigned"	version	of	the	load	instruction	is	specified,	in	which	case	zero
extension	is

Type

Instruction

Assembly-language	format

Narrativeformat	(comment)
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Datatransfer

Load	byte

Load	byte	unsigned



Load	half-word

LB	Rt,	Source

Dataprocessing

Load	register	Rt	with	sign-extended

memory	byte.Load	register	Rt	with	zero-extended

memory	half-word.Load	register	Rt	with	sign-extended

memory	half-word.Load	register	Rt	with	zero-extended

memory	half-word.Load	register	Rt	with	memory	word.Load	left	side	of	register	Rt	with	1	to

3	memory	bytes.Load	right	side	of	register	Rt	with	1	to

3	memory	bytes.Store	least	significant	byte	of	register

Rt	in	memory.Store	least	significant	half-word	of

register	Rt	in	memory.Store	register	Rt	in	memory.Store	left	1	to	3	bytes	of	register	Rt	in

memory.Store	right	1	to	3	bytes	of	register	Rt	in

memory.Move	immediate	operand	IMM.O16	into

register	Rt.

(Four	special	register-move	instructions	for	use	with	multiplication	and	division)

(Eight	special	data-transfer	instructions	for	use	with	coprocessors,	including	the	systemcontrol	coprocessor)

Add	ADD	Rd.Rs.Rt

Load	half-word

unsignedLoad	wordLoad	word	left

Load	word	right

Store	byte

Store	half-word

Store	wordStore	word	left

Store	word	right

Load	upper	immediate

LBU	Rt.Source

LH	Rt,Source

LHU	Rt.Source

LW	Rt.SourceLWL	Rt.Source

LWR	Rt,Source

SB	Rt.Dest

SH	Rt,Dest

SW	Rt.DestSWL	Rt.Dest

SWR	Rt.Dest

LUI	Rt,IMM

Add	unsignedAdd	immediate

ADDU	Rd.Rs.RtADDI	Rt.Rs.IMM

Add	immediate	unsigned	ADDIU

Subtract

SUB	Rd.Rs.Rt

Subtract	unsigned SUBU	Rd.Rs.Rt

AND AND	Rd.Rs.Rt

AND	immediate ANDI	Rt.Rs.IMM

NOR NOR	Rd.Rs.Rt

OR OR	Rd.Rs.Rt

OR	immediate ORI	Rt.Rs.IMM

XOR

XOR	Rd.Rs.Rt

Add	Rs	to	Rt;	put	result	in	Rd	(trap	on

overflow).Add	Rs	to	Rt:	put	result	in	Rd.Add	sign-extended	IMM	to	Rs;	put

result	in	Rt	(trap	on	overflow).Rt.Rs.IMM	Add	sign-extended	IMM	to	Rs;	put

result	in	Rt.Subtract	Rt	from	Rs;	put	result	in	Rd

(trap	on	overflow).Subtract	Rt	from	Rs:	put	result	in	Rd.Bitwise	AND	Rt	and	Rs;	put	result

inRd.Bitwise	AND	zero-extended	IMM	and

Rs;	put	results	in	Rt.Bitu	ise	NOR	Rt	and	Rs;	put	result



inRd.Bitwise	OR	Rt	and	Rs;	put	result	in	Rd.Bitwise	OR	zero-extended	IMM	and	Rs;

put	result	in	Rt.Bitwise	XOR	Rt	and	Rs:	put	result

inRd.

Figure	3.36

Instruction	set	of	the	MIPS	RXOOO.
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Type	Instruction

Assembly-language	format

Narrativeformat	(comment)

XOR	immediateSet	on	less	than

Set	on	less

than	unsignedSet	on	less

than	immediate

Set	on	less	thanimmediate	unsi

gned

XORI	Rt,Rs,IMM	Bitwise	XOR	zero-extended	IMM

and	Rs;	put	result	in	Rt.SLT	Rd,Rs,Rt	Compare	Rt	with	Rs	as	signed	integers;

if	Rs	<	Rt,	then	Rd	:=	1,	else	Rd	:=	0.SLTU	Rd,Rs,Rt	Compare	Rt	with	Rs	as	unsigned	integers;

if	Rs	<	Rt,	then	Rd	:=	1,	else	Rd	:=	0.SLTI	Rt,Rs,IMM	Compare	sign-extended	IMM	with	Rs	as

signed	integers;	if	IMM	<	Rs,	then

Rt	:=	I.elseRt	:=	0.SLTIU	Rt,Rs,IMM	Compare	sign-extended	IMM	with	Rs	as

unsigned	integers;	if	IMM	<	Rs,	then

Rt	:=	l,elseRt:=0.

(Two	multiply	and	two	divide	instructions)(Six	logical	and	arithmetic	shift	instructions)

Program	Jumpcontrol	Jump	and	link

J	ADRJAL	ADR

Jump	and	link	register	JALR	Rd.Rs

Rs.Rt.IMM

Rs,Rt,IMM

Rs,IMM

Rs,IMM

Rs,IMM

Branch	on	equal	BEQ

Branch	on	not	equal	BNE

Branch	on	less	than	0	BLTZ

Branch	on	greater	than	0	BGTZBranch	on	less	than	or	BLEZ

equal	to	0Branch	on	greater	than

or	equal	to	0Branch	on	less	than	0

and	linkBranch	on	greater	than	or

equal	to	0	and	linkSystem	call	SYSCALL

Break	BREAK

(10	miscellaneous	coprocessor	instructions)

Jump	unconditionally	to	address	ADR.Place	PC	+	8	in	R31	and	jump

unconditionally	to	address	ADR.Place	PC	+	8	in	Rd	and	jump

unconditionally	to	address	in	Rs.If	Rs	=	Rt,	then	jump	to	PC	+	8	+	IMM.If	Rs	*	Rt,	then	jump	to	PC	+	8	+	IMM.If	Rs	<	0,	then	jump	to	PC	+	8	+	IMM.If	RS	>	0,	then	jump
to	PC	+	8	+	IMM.If	Rs	<	0,	then	jump	to	PC	+	8	+	IMM.

BGEZ	RsJMM	If	Rs	>	0,	then	jump	to	PC	+	8	+	IMM.

BLTZAL	RsJMM

BGEZAL	RsJMM

Place	PC	+	8	in	R31;	if	Rs	<	0,	then

jump	to	PC	+	8	+	IMM.Place	PC	+	8	in	R31;	if	Rs	>	0,	then

jump	to	PC	+	8	+	IMM.Jump	unconditionally	to	the	exception

handler.Jump	unconditionally	to	the	exception

handler.

Figure	3.36

(continued)



used.	For	example,	if	M(Source)	=	10101111,	then	the	load	byte	instructionLB	Rt,Source	transfers

11111111	11111111	11111111	10101111

to	the	destination	register	Rt,	whereas	LBU	Rt,Source	transfers

00000000	00000000	00000000	10101111

to	Rt.	While	most	load	and	store	instructions	assume	that	full	words	are	aligned	onmemory	word	boundaries,	that	is,	their	addresses	terminate	with	00,	the	RX000	pro-

vides	four	special	instructions	LWL.	LWR.	SWL.	and	SWR	to	load	and	store	mis-aligned	words.

The	RXOOO's	data-processing	instructions	include	a	typical	set	of	arithmetic	andlogical	operations.	They	employ	two	instruction	types	implying	two	different	address-ing
modes:	I	type,	in	which	case	the	instruction	contains	a	16-bit	immediate	operand	inits	EMM	field,	and	R	type,	in	which	case	all	operands	are	stored	in	registers.	For	exam-
ple,	the	logical	OR	instruction

OR	Rd.Rs.Rt

implements	the	word-OR	operation	Rd	:=	Rs	or	Rt.	whereas	the	corresponding	ORimmediate	instruction

201

CHAPTER	3

Processor

Basics

ORI	Rt.Rs.EMM

implements	Rt	:=	Rs	or	EMM,	with	EMM	zero-extended	to	32	bits.

The	RX000	does	not	employ	the	usual	set	of	status	flags	(zero,	carry,	overflow,and	so	on)	to	indicate	special	properties	of	results.	The	only	exceptional	condition	thatis
automatically	detected	is	twos-complement	overflow	in	the	case	of	ADD,	ADDI.	andSUB.	When	that	happens,	an	automatic	trap	occurs,	accompanied	by	a	switch	fromuser
to	supervisor	state.	To	avoid	such	traps,	"unsigned"	versions	of	the	precedinginstructions	are	provided.	ADDU,	for	example,	is	identical	to	ADD	except	that	nooverflow	trap
occurs	under	any	circumstances.

Four	compare	or	"set"	instructions	test	register	values	and	place	the	binary	testoutcome	in	a	register	Rd,	effectively	using	Rd	as	a	flag.	For	example,	if	Rt	containszero,
then	the	"set	on	less	than"	instruction

SLT	Rd.Rs,Rt

determines	whether	Rs	contains	a	negative	number.	If	Rs	is	less	than	Rt.	then	SLT	setsRd	to	1;	otherwise,	it	resets	Rd	to	0.	While	it	seems	a	waste	of	hardware	to	use	an
entire32-bit	register	to	store	a	binary	flag,	such	exception-indicating	registers	are	more	easilyaccessed	by	exception-handling	software	than	individual	flag	bits.	However,
certainother	common	operations	are	complicated;	see	problem	3.41.

For	simplicity,	we	will	not	discuss	the	RXOOO's	shift	instruction,	which	has	nounusual	features.	We	will	also	not	discuss	the	multiply	and	divide	instructions,	whichare
unusual	in	that	they	require	many	cycles	to	execute	and	are	handled	by	a	specialarithmetic	unit	within	the	CPU.	Once	execution	of	a	multiply	or	divide	instructionbegins,
other	instructions	may	execute	in	parallel	in	the	RX000*s	main	arithmetic-logiccircuitry.

In	the	program-control	category,	the	RXOOO	has	unconditional	"jump"	instruc-tions,	which	employ	absolute	addressing	with	the	J-type	format,	and	conditional"branch"
instructions,	which	employ	PC-relative	addressing	and	have	the	R	format.The	conditions	tested	by	branch	instructions	are	all	determined	by	examining	the	con-tents	of
registers,	which	as	noted	above,	serve	as	flags	in	this	architecture.	Consider,	forexample,	the	branch	on	less	than	or	equal	to	zero	instruction

BLEZ	Rs,EMM

It	is	executed	in	two	clock	cycles	/	and	t	+1.	In	the	first	cycle	f,	a	target	address	TAR-GET	is	determined	as	follows.	The	address	offset	IMM	has	2	bits	appended	to	its
rightend	and	the	sign	5	of	IMM	(bit	15	of	the	instruction	BLEZ)	is	extended	by	14	bits	toform	a	full	32-bit	address.	In	other	words,	the	branch	address	is	given	by

TARGET	:=.v14.EMM.00
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the	contents	of	the	specified	general	register	Rs.	If	Rs	contains	zero	or	if	its	sign	bit	is1,	indicating	a	negative	number,	then	the	operation	PC	:=	PC	+	TARGET	is
performed.Since	PC	is	automatically	incremented	by	four	at	the	start	of	each	clock	cycle,	we	haveeffectively	added	TARGET	plus	eight	to	the	contents	oT	PC	present	at	the
start	of	cyclef;	for	brevity,	this	is	indicated	by	PC	+	8	+	IMM	in	Figure	3.36.

The	various	branch	instructions	have	"link"	versions	that	unconditionally	save	thePC	contents	in	a	designated	register.	These	are	useful	for	implementing	procedure
callsand	interrupts.

The	design	and	control	of	instruction-processing	logic	are	examined	in	Chap-ters	4	and	5.

3.3.3	Programming	Considerations

To	design	programs	using	the	instruction	sets	discussed	in	the	preceding	sections,	asymbolic	format	called	assembly	language	can	be	used.	This	section	discusses	thebasic
features	of	assembly	language	and	their	relationship	both	to	the	computerorganization	and	to	the	machine-language	programs	that	are	actually	executed	bythe	host
processor.	Most	computer	programming	is	now	done	using	higher-levellanguages	such	as	C,	which,	like	assembly	language,	must	be	translated	(compiled)into	machine
language	prior	to	execution.

Assembly	language.	Machine-language	programs	(object	programs)	are	lists	ofinstructions,	each	of	which	has	the	general	form

opcode	operand,operand,...,operand

For	example,	the	machine-language	version	of	the	instruction	for	the	Motorola680X0	microprocessor	series	"Load	the	(immediate)	decimal	operand	2001	intoaddress
register	A0,"	which	is	used	in	the	program	of	Figure	3.13,	has	the	32-bitbinary	format

00100000	01111000	00000111	11010001	(3.33)

It	may	also	be	written	more	compactly	in	hexadecimal	code	thus:

2078	07D1	(3.34)

Here	2078	is	the	opcode	word	indicating	"move	long	(32-bit)	operand	to	registerA0,"	while	the	operand	field	07D1	is	the	hexadecimal	equivalent	of	the	decimalnumber
2001.	Assembly-language	versions	of	this	instruction	are

MOVE.L	#2001,A0	(3.35)

and	MOVE.L	#$07D1,A0	(3.36)

where	the	opcode	and	the	operand	A0	are	represented	in	symbolic	form.	The	prefix#	denotes	an	immediate	operand	in	the	Motorola	convention,	while	$	indicates
thatbase	16	rather	than	base	10	is	being	used.	Before	they	can	be	executed,	assembly-language	instructions	like	(3.35)	and	(3.36)	must	be	translated	into	the	equivalent

machine-language	form	represented	by	(3.33)	and	(3.34).	The	translation	or	assem-bly	process	is	carried	out	by	a	system	program	known	as	an	assembler,	which
isanalogous	to	a	compiler	that	translates	a	high-level	language	program	into	machinecode.

In	addition	to	using	symbolic	names	for	opcodes	and	registers,	assembly	lan-guages	allow	symbolic	names	to	be	assigned	to	user-defined	constants	and	vari-ables,	such	as
the	immediate	operand	appearing	in	(3.35)	and	(3.36).	For	example,many	assembly	languages	use	the	statement

A	EQU	2001

(3.37)

to	indicate	that	the	symbol	A	is	to	be	equivalent	(EQU)	to	the	decimal	number2001.	If	statement	(3.37)	is	present	in	a	program	for	the	680X0	microprocessor,then	(3.35)
and	(3.36)	can	be	replaced	by



MOVE.L	A,A0

which	is	assembled	into	exactly	the	same	machine	code	as	before.	This	instructionalso	corresponds	to	the	register-transfer	operation	denoted	symbolically	by	A0	:=A.
Statement	(3.37)	is	considered	an	assembly-language	instruction	but,	unlike	theMOVE	instructions,	does	not	translate	into	an	executable	instruction	in	machinelanguage.
Rather	it	is	an	instruction	that	tells	the	assembler	how	to	treat	the	symbolA	during	the	program-translation	process.	This	type	of	nonexecutable	assembly-language
instruction	is	called	a	directive	or	pseudoinstruction.

The	memory	location	to	be	assigned	to	an	instruction	can	be	indicated	symbol-ically	by	means	of	a	label	at	the	beginning	of	an	assembly-language	statement.	Forexample,
the	label	LI	in

LI	MOVE.L	A,A0	;	Load	initial	value	into	A0

(3.38)

is	assigned	to	a	physical	memory	address	by	the	assembler,	normally	to	the	oneimmediately	following	the	address	assigned	to	the	preceding	instruction.	Labelsare
generally	used	in	an	assembly-language	instruction	only	when	another	instruc-tion	needs	to	refer	to	the	first	one.	For	example,	the	680X0	instruction

IMP	LI	;	Branch	unconditionally	to	instruction	labeled	LI

(3.39)

causes	a	branch	to	instruction	(3.38),	which	has	the	label	LI;	JMP	LI	is	theassembly-language	equivalent	of	the	high-level	language	statement	go	to	LI.	Allassembly
languages	allow	the	programmer	to	introduce	comments,	which	have	noeffect	on	the	assembly	process	but	are	useful	for	documenting	a	program	toimprove	its	readability.
As	illustrated	by	(3.38)	and	(3.39),	680X0	assembly	lan-guage	uses	a	semicolon	as	a	prefix	to	mark	comments.

Assemblers	also	allow	the	programmer	to	assign	a	symbolic	name	to	asequence	of	instructions,	permitting	those	instructions	to	be	treated	as	a	singleinstructionlike	entity
termed	a	macroinstruction,	or	simply	a	macro.	Assembly	lan-guages	often	have	built-in	macros	that	appear	to	the	programmer	to	augment	themachine's	instruction	set.
For	example,	the	MIPS	RX000	machine	language	lacksthe	logical	NOT	instruction	found	in	other	computers.	However,	a	NOT	instruction3f	the	form
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is	easily	synthesized	from	the	RXOOO's	NOR	instruction,	as	follows:

NOR	Rd,	Rs,	0	;	Compute	the	NOR	function	Rs	+	0	=	Rs	and	place	in	Rd

Thus	we	conclude	that	assembly-language	instructions	have	the	following	gen-eral	format:

label	opcode	operand,operand,...,operand	comments

where	the	opcode	can	be	an	executable	command	corresponding	to	a	machine-language	opcode,	a	directive,	or	a	macro.	Like	machine	languages,	assembly	lan-guages
vary	from	computer	to	computer	and	are	usually	defined	(not	alwaysconsistently)	by	a	computer's	primary	manufacturer.

Assembly	process.	The	input	to	the	assembler	program	is	a	source	programwritten	in	assembly	language.	The	output	is	an	object	program	in	machine	lan-guage	and	an
optional	assembly	listing	that	shows	both	the	assembly-language	andmachine-language	versions	of	the	program	and	the	correspondence	between	them.The	object	code
can	be	combined	with	other	machine-language	programs	to	pro-duce	a	final	composite	executable	program.	A	system	program	called	a	linker	per-forms	the	task	of
combining	different	programs	in	this	fashion.	The	use	ofsymbolic	names	for	shared	data	and	labels	plays	an	important	role	in	allowing	thelinker	to	merge	different
assembly-language	programs,	or	perhaps	to	merge	thework	of	different	programmers.

Nonexecutable	assembly-language	instructions	such	as	the	EQU	statement(3.37)	are	known	as	directives.	They	are	used	to	define	the	values	of	programparameters,	to
assign	programs	and	data	to	specific	physical	or	symbolic	memorylocations,	and	to	control	the	output	of	the	assembly	process.	In	the	case	of	macro-assemblers,	directives
are	also	used	to	define	macros.	Figure	3.37	lists	a	represen-tative	set	of	the	directives	found	in	most	assembly	languages.	The	EQU	directivetells	the	assembler	to	equate
two	different	names	for	the	same	thing.	In	(3.37)	EQU

Type

Opcode	Description

Symbol	definitionMemory	assigment

Macro	definition

Miscellaneous

EQU	Equate	symbolic	name	(in	label	position)	to	operand	value.

ORG	Origin:	use	operand	value	as	starting	address	for	subsequent

instructions.DS	Define	storage:	reserve	the	specified	number	of	consecutive

locations	(bytes)	in	memory.DC	Define	constant:	store	the	operand	values	as	constants.

MACRO	Start	of	macro	definition.ENDM	End	of	macro	definition.

END	End	of	program(s)	to	be	assembled.

TITLE	Use	operand	as	title	on	each	page	of	assembly	listing.

IF	Start	of	conditional	block	of	instructions	to	be	assembled	only

if	a	specified	condition	is	met.ENDIF	End	of	conditional	block.

Figure	3.37

List	of	representative	assembly-language	directives.

assigns	a	symbolic	name	to	a	constant;	it	can	also	be	used	to	equate	two	symbolicnames	for	variables,	as	in

ALPHA	EQU	BETA

which	defines	a	new	variable	ALPHA	that	must	always	have	the	same	value	as	apreviously	defined	parameter	BETA.	The	ORG	(origin)	directive	tells	the	assem-bler	which
memory	address	to	assign	for	storing	the	subsequent	executable	code	ordata.	For	example,	in

LI

ORG	100MOVEL	A,	A0

the	ORG	directive	states	that	the	MOVE	instruction	is	to	be	assigned	to	memorylocation	100,	which	equates	the	symbolic	address	or	label	LI	to	the	physicaladdress	100.
The	assembler	needs	this	address	value	to	translate	into	machine	codethe	address	fields	of	any	instructions	that	refer	to	LI.	Once	the	start	address	of	ablock	of	code	has
been	established,	the	assembler	automatically	keeps	track	of	thememory	locations	to	be	assigned	to	all	items	in	the	block.

Sometimes	it	is	useful	to	reserve	a	block	of	memory	for	future	use,	for	exam-ple,	as	a	buffer	storage	area	for	IO	data,	without	specifying	its	contents.	The	DS(define
storage)	instruction	is	provided	for	this	purpose.	Thus	the	directive

L2	DS	500



states	that	a	block	of	500	memory	bytes	should	be	reserved,	beginning	at	the	cur-rent	location	L2.	If	it	is	desired	to	actually	define	data	to	be	placed	in	a	program,the	DC
(define	constant)	directive	is	used.	DS	and	DC	typically	exist	in	severalversions	depending	on	the	word	size	to	be	used.	For	example,	the	680X0	directive

L3	DC.B	1,2,3,4,5,6,7

causes	the	seven	specified	operand	values	to	be	placed	(in	binary	form)	in	sevenconsecutive	1-byte	memory	locations	starting	with	L3.	If	the	same	data	is	to	bestored	in
the	ASCII	character	code,	then	the	format

L3	DC.B	'1234567'

is	used.	We	now	turn	to	an	example	that	illustrates	the	directives	discussed	so	far.
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EXAMPLE	3.8	ASSEMBLY	OF	VECTOR	ADDITION	PROGRAM	FOR	THE

motorola	680X0	.	This	particular	programming	task,	which	was	considered	ear-lier	for	the	IAS	computer	(Example	1.4),	the	PowerPC	(Example	1.7),	as	well	as	the680X0
(Example	3.3),	is	to	add	two	1000-element	vectors	A	and	B	creating	a	sum	vec-tor	C.	We	assume	again	that	the	vectors	are	1000-byte	decimal	(BCD)	numbers.	The680X0
series	has	a	1-byte	add	instruction	ABCD	(add	BCD),	which	is	placed	in	a	pro-gram	loop	and	executed	1000	times	to	accomplish	the	desired	vector	addition.	The	pro-gram
can	be	described	abstractly	in	the	following	high-level	language	format:

forI=	1	to	1000	do

C[i]	:=	A[i]	+	B[i]	+	carry;	(3.40^

We	assume	that	A,	B,	and	C	are	stored	in	three	consecutive	1000-byte	blocks	of	mem-ory	as	depicted	in	Figure	3.38.
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Hexadecimaladdress

0000

0100

01040108010C

0114

03E9

07D10BB9OFAO

-	MOVE.L#2001.	AO	-

-	MOVE.L#3001.	Al	-

_	0256	•>

J	02600264

MOVE.L#4001.	A2	I

ABCD-(AO),	-(Al)	-	0268

BXE	SF6

VectorA

VectorB

VectorC

Decimaladdress

0000

>	Program

0276

1001

2001

3001

4000

>	Data

Figure	3.38Memory	allocation	forthe	680X0	vector	additionprogram.

To	determine	how	best	to	implement	(3.40)	in	assembly	language,	the	availableinstruction	types	and	addressing	modes	must	be	examined	carefully.	The	ABCDinstruction,
besides	being	limited	to	byte	operands,	allows	only	two	operand	addressingmodes:	direct	register	addressing	and	indirect	register	addressing	with	predecrement-ing.	As
explained	earlier,	the	latter	mode	causes	the	contents	of	the	designated	addressregister	to	be	automatically	decremented	just	before	the	add	operation	is	carried	out.This
approach	is	convenient	for	stepping	through	lists,	in	this	case	the	elements	of	avector,	and	hence	it	is	selected	here.	Two	of	the	address	registers	A0	and	Al	are	chosento
address	or	point	to	the	current	elements	of	A	and	B,	respectively.	Thus	the	basicaddition	step	is	implemented	by	the	instruction

ABCD	-(AOMAl)

(3.41)

which	is	equivalent	to

A0:=A0-1,	Al	:=A1-1;M(A1)	:=	M(A0)	+	M(A1)	+	carry:

A	third	address	register	A2	is	used	to	point	to	vector	C,	and	the	result	computed	by(3.41)	is	stored	in	the	C	region	by	the	1-byte	data	transfer	instruction

MOVE.B	(A1),-(A2)

(3.42)

MOVE.L #2001,	AO

MOVE.L #3001,	A1



MOVE.L #4001,A2

ABCD -(A0),-(A1)

MOVE.B (A1),-(A2)

CMPA #1001,A0

START

Because	addresses	are	predecremented,	AO,	Al,	and	A2	must	be	initialized	to	valuesthat	are	one	greater	than	the	highest	addresses	assigned	to	A,	B,	and	C,
respectively.The	foregoing	instructions	(3.41)	and	(3.42)	are	executed	1000	times,	that	is,	until	thelowest	address	(1001	in	the	case	of	vector	A)	is	reached.	This	point	can
be	detected	bythe	CMPA	(compare	address)	instruction

CMPA	#1001,	A0

which	sets	the	zero-status	flag	Z	to	1	if	A0	=	1001	and	to	0	otherwise.	When	Z	^	1,	abranch	is	made	back	to	(3.41)	using	the	BNE	(branch	if	not	equal	to	1)	instruction.
Theresulting	code,	which	also	appears	with	comments	in	Figure	3.13,	is	as	follows:

START

BNE

Figure	3.39	shows	an	assembly	listing	of	the	foregoing	code	with	various	direc-tives	added	for	both	illustrative	purposes	and	to	complete	the	program.	The	assembly-
language	source	code	appears	on	the	right	side	of	Figure	3.39,	while	the	assembledobject	program	appears	on	the	left	in	hexadecimal	code.	The	left-most	column
containsthe	memory	addresses	assigned	by	the	assembler	to	the	machine-language	instructionsand	data,	which	are	then	listed	to	the	right	of	these	memory	addresses.
The	first	ORGdirective	causes	the	assembler	to	fix	the	start	of	the	program	at	the	hexadecimaladdress	0100.	The	symbolic	names	A,	B,	and	C	are	assigned	by	EQU
directives	to	theaddresses	of	the	first	elements	of	the	three	corresponding	vectors.	The	subsequentMOVE.L	(move	long)	instructions	contain	arithmetic	expressions	that
are	evaluatedduring	assembly	and	replaced	by	the	corresponding	numerical	value.	For	example,	theexpression	A	+	1000	appearing	in	the	first	MOVE.L	instruction	is
replaced	by	1001	+1000	=	2001.	In	general,	assembly	languages	allow	arithmetic-logic	expressions	to	beused	as	operands,	provided	the	assembler	can	translate	them	to
the	form	needed	for	theobject	program.	The	statement	MOVE.L	#2001,	A0	is	thus	the	first	executable	state-ment	of	the	program,	and	its	machine-language	equivalent
2078	07D1	is	loaded	intomemory	locations	0100:0103	(hex),	as	indicated	in	Figures	3.38	and	3.39.	The	remain-der	of	the	short	program	is	translated	to	machine	code	and
allocated	to	memory	in	sim-ilar	fashion.

Many	680X0	branch	instructions	use	relative	addressing,	which	means	that	thebranch	address	is	computed	relative	to	the	current	address	stored	in	the	program
counterPC.	Consider,	for	instance,	the	conditional	branch	instruction	BNE	START,	the	lastexecutable	instruction	in	the	vector-addition	program.	As	shown	by	Figure	3.39.
thecorresponding	machine-language	instruction	is	66F6	in	which	66	is	the	opcode	BNEand	F6	is	an	8-bit	relative	address	derived	from	the	operand	START.	Now	F6)6
=111101102,	which	when	interpreted	as	a	twos-complement	number	is	-10l0	or	-0A,6.After	BNE	START	has	been	fetched	from	memory	locations	011416	and	011516,	PC
isautomatically	incremented	to	point	to	the	next	consecutive	memory	location	0116,6.Hence	at	this	point	PC	=	00000116,6.	Now	when	the	CPU	executes	the	branch
instruc-tion	BNE,	it	computes	the	branch	address	as	PC	+	(-0A)	=	0000010C!6.	which,	asrequired,	is	the	physical	address	of	the	instruction	(ABCD)	with	the	symbolic
addressSTART.

The	remainder	of	the	vector-addition	program	illustrates	the	assembly-languagedirectives	that	define	data	regions.	ORG	is	used	again	to	establish	a	start	address	for
thedata	region;	in	this	case	the	start	address	is	10011(,	=	03E9I6.	The	DS.B	(define	storage
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Machine	language

Location	Code/Data

Assembly	language

68000/68020	program	for	vector	addition

The	vectors	are	composed	of	a	thousand	1-byte	(two	digit)	decimalnumbers.	The	starting	(decimal)	addresses	of	A,	B,	and	C	are1001,	2001,	and	3001,	respectively.

0100 2078 07D1

0104 2278 0BB9

0108 2478 0FA1

010C C308

010E 1511

0110 B0F8 03E9

0114 66	F6

;	Define	origin	of	program	at	hex	address	1000100	ORG	$100

;	Define	symbolic	vector	start	addresses03E9	A	EQU	1001

07D1	B	EQU	2001

0BB9	C	EQU	3001

;	Begin	executable	code

MOVE.L	A+1000,AO	;	Set	pointer	beyond	end	of	AMOVE.L	B+1000.A1	;	Set	pointer	beyond	end	of	BMOVE.L	C+1000,A2	;	Set	pointer	beyond	end	of	CSTART	ABCD	-(A0),
-(Al);	Decrement	pointers	&	addMOVE.B	(A1),-(A2)	;	Store	result	in	CCMPA	A,A0	;	Test	for	termination

BNE	START	:	Branch	to	START	if	Z	*	1

;	End	executable	code

03E9

03E9

07D1	010101



07D4	16	16	16

Begin	data	definition

ORG	A

DS.B	1000

DC.B	1.1.1

DC.B	22,22,22

END

;	Define	start	of	vector	A:	Reserve	1000	bytes	for	A;	Initialize	elements	1:3	of	B:	Initialize	elements	4:6	of	B;	End	program

Figure	3.39

Assembly	listing	of	the	680X0	program	for	vector	addition.

in	bytes)	directive	reserves	a	region	of	1000	bytes.	This	directive	merely	causes	theassembler's	memory	location	counter,	which	it	uses	to	keep	track	of	memoryaddresses,
to	be	incremented	by	the	specified	number	of	bytes.	As	indicated	by	Figure3.38,	this	action	makes	the	location	counter	point	to	the	start	of	the	region	storing	vec-tor	B.
The	two	DC.	B	(define	constant	in	bytes)	commands	initialize	six	elements	of	Bto	the	specified	constant	values.	Finally	the	END	directive	indicates	the	end	of	theassembly-
language	program.

Macros	and	subroutines.	Two	useful	tools	for	simplifying	program	design	byallowing	groups	of	instructions	to	be	treated	as	single	entities	are	macros	and	sub-routines.	A
macro	is	defined	by	placing	a	portion	of	assembly-language	codebetween	appropriate	directives	as	follows:

name	MACRO	operand,...,	operand

Body	of	macro

ENDM

The	macro	is	subsequently	invoked	by	treating	the	user-defined	macro	name,which	appears	in	the	label	field	of	the	MACRO	directive,	as	the	opcode	of	a	new(macro)
instruction.	Each	time	the	macro	opcode	appears	in	a	program,	the	assem-bler	replaces	it	by	a	copy	of	the	corresponding	macro	body.	If	the	macro	has	oper-ands,	then	the
assembler	modifies	each	copy	of	the	macro	body	that	it	generates	byinserting	the	operands	included	in	the	current	macro	instruction.	Macros	thus	allowan	assembly
language	to	be	augmented	by	new	opcodes	for	all	types	of	operations;they	can	also	indirectly	introduce	new	data	types	and	addressing	modes.	A	macrois	typically	used	to
replace	a	short	sequence	of	instructions	that	occur	frequently	ina	program.	Note	that	although	macros	shorten	the	source	code,	they	do	not	shortenthe	object	code
assembled	from	it.

Suppose,	for	example,	that	the	following	two-instruction	sequence	occurs	in	aprogram	for	the	Intel	8085	[Intel	1979]:

LDHL	ADR	;Load	M(ADR)	into	address	register	HLMOV	A,M	;Load	M(HL)	into	accumulator	register	A

This	code	implements	the	operation	A	:=	M(M(ADR)),	which	loads	register	Atreating	ADR	as	an	indirect	memory	address.	We	can	define	it	as	a	macro	namedLDAI	(load
accumulator	indirect)	as	follows:

LDAI

MACROLDHLMOVENDM

ADRADR

A,M

;Load	M(ADR)	into	address	register	HL;Load	M(HL)	into	register	A

With	this	macro	definition	present	in	an	8085	program,	LDAI	becomes	a	newassembly-language	instruction	for	the	programmer	to	use.	The	subsequent	occur-rence	of	a
statement	such	as

LDAI	1000H	(3.43)

in	the	same	program	causes	the	assembler	to	replace	it	by	the	macro	body

LDHL	1000HMOV	A,M

with	the	immediate	address	100016	from	(3.43)	replacing	the	macro's	dummy	inputparameter	ADR.	Note	that	the	macro	definition	itself	is	not	part	of	the	object	pro-gram.

A	subroutine	or	procedure	is	also	a	sequence	of	instructions	that	can	beinvoked	by	name,	much	like	a	single	(macro)	instruction.	Unlike	a	macro,	how-ever,	a	subroutine
definition	is	assembled	into	object	code.	It	is	subsequently	used.
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not	by	replicating	the	body	of	the	subroutine	during	assembly,	but	rather	duringprogram	execution	by	establishing	dynamic	links	between	the	subroutine	objectcode	and
the	points	in	the	program	where	the	subroutine	is	needed.	The	necessarylinks	are	established	by	means	of	two	executable	instructions	named	CALL	orJUMP	TO
SUBROUTINE,	and	RETURN.	Consider,	for	example,	the	followingcode	segment:

CALL	SUB	1

NEXT

SUB1

Main	(calling)	program

Subroutine	SUB	1

RETURN

After	CALL	SUB1	has	been	fetched,	the	program	counter	PC	contains	the	addressNEXT	of	the	instruction	immediately	following	CALL;	this	return	address	mustbe	saved
to	allow	control	to	be	returned	later	to	the	main	program.	Thus	a	callinstruction	first	saves	the	contents	of	PC	in	a	designated	save	area.	It	then	transfersthe	address	that
forms	the	operand	of	the	call	statement,	SUB1	in	this	case,	into	PC.SUB	1	is	the	address	of	the	first	executable	instruction	in	the	subroutine	and	alsoserves	as	the
subroutine's	name.	The	processor	then	begins	execution	of	the	sub-routine.	Control	is	returned	to	the	original	program	from	the	subroutine	by	execut-ing	RETURN,	which
simply	retrieves	the	previously	saved	return	address	andrestores	it	to	PC.

CALL	and	RETURN	may	use	specific	CPU	registers	or	main-memory	loca-tions	to	store	return	addresses.	The	RX000,	for	instance,	uses	a	CPU	register	fromits	register	file
to	save	a	return	address	on	executing	any	of	its	jump/branch-and-link-register	instructions,	which	serve	as	call	instructions;	see	Figure	3.36.	Manycomputers	use	a
memory	stack	for	this	purpose.	CALL	then	pushes	the	returnaddress	into	the	stack,	from	which	it	is	subsequently	retrieved	by	RETURN.	Thestack	pointer	SP	automatically
keeps	track	of	the	top	of	the	stack,	where	the	lastreturn	address	was	pushed	by	CALL	and	from	which	it	will	be	popped	byRETURN.

Figure	3.40	illustrates	the	actions	taken	by	the	CALL	instruction	in	a	stackrealization.	For	simplicity,	we	assume	that	opcodes	and	the	addresses	are	all	onememory	word
long.	The	instruction	CALL	SUB1	is	stored	in	memory	locations1000	and	1001,	and	we	assume	that	the	assembler	has	replaced	SUB1	with	thephysical	address	2000.
Immediately	before	the	CALL	instruction	cycle	begins,	theprogram	counter	PC	contains	the	address	1000,	as	shown	in	Figure	3.40a.	TheCALL	opcode	is	fetched	and
decoded,	and	PC	is	incremented	to	1001.	On	identify-ing	the	instruction	as	a	subroutine	call,	the	CPU	fetches	the	address	part	2000	ofthe	instruction	and	stores	it	in	the
(buffer)	address	register	AR;	again	PC	is	incre-mented	to	1002.	At	this	point	the	system	state	is	as	shown	in	Figure	3.40b,	and	PCcontains	the	return	address	to	the	main
program.	Next	the	contents	of	PC	arepushed	into	the	stack.	Then	the	contents	of	AR	are	transferred	to	PC,	and	the	stack
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(c)

Figure	3.40

Processor	and	memory	state	during	execution	of	a	CALL	instruction:	(a)	initial	state,(b)	state	immediately	after	fetching	the	instruction,	and	(c)	final	state.

pointer	SP	is	decremented	by	one.	The	resulting	state	of	the	system	is	depicted	inFigure	3.40c.

3.4SUMMARY

The	main	task	of	a	CPU	is	to	fetch	instructions	from	an	external	memory	M	andexecute	them.	This	task	requires	a	program	counter	PC	to	keep	track	of	the
activeinstruction,	and	registers	to	store	the	instructions	and	data	as	they	are	processed.The	simplest	CPUs	employ	a	central	data	register	called	an	accumulator,
alongwith	an	ALU	capable	of	addition,	subtraction,	and	word-oriented	logic	operations.In	most	CPUs	a	register	file	containing	32	or	more	general-purpose	registers

SECTION	3.5Problems

212	replaces	the	accumulator.	RISC	processors	such	as	the	ARM	and	the	MIPS	RXOOO

allow	only	load	and	store	instructions	to	access	M,	and	use	small	instruction	setsand	techniques	such	as	pipelining	to	improve	performance.	CISC	processors	suchas	the
Motorola	680X0	have	larger	instruction	sets	and	some	more	powerfulinstructions	that	improve	performance	in	some	applications	but	reduce	it	in	others.The	arithmetic
capabilities	of	simpler	processors	are	limited	to	the	fixed-point(integer)	instructions	unless	auxiliary	coprocessors	are	used.	More	powerful	CPUshave	built-in	hardware	to
execute	floating-point	instructions.

Computers	store	and	process	information	in	various	formats.	The	basic	unit	ofstorage	(the	smallest	addressable	unit)	is	the	8-bit	byte.	The	CPU	is	designed	tohandle	data
in	a	few	fixed-word	sizes,	32-bit	words	being	typical.	The	two	majorformats	for	numerical	data	are	fixed-point	and	floating-point.	Fixed-point	numberscan	be	binary	(base
2)	or,	less	frequently,	decimal,	meaning	a	binary	code	such	asBCD	that	preserves	the	decimal	weights	found	in	ordinary	(base	10)	decimal	num-bers.	The	most	common
binary	number	codes	are	sign	magnitude	and	twos	com-plement.	Each	code	simplifies	the	implementation	of	some	arithmetic	operations;twos	complement,	for	example,
simplifies	the	implementation	of	addition	and	sub-traction	and	so	is	generally	preferred.	A	floating-point	number	comprises	a	pair	offixed-point	numbers,	a	mantissa	M,
and	an	exponent	E	and	represents	numbers	ofthe	form	M	X	BE	where	B	is	an	implicit	base.	Floating-point	numbers	greatlyincrease	the	numerical	range	obtainable	using	a
given	word	size	but	require	muchmore	complex	arithmetic	circuits	than	fixed-point	numbers	require.	The	IEEE	754standard	for	floating-point	numbers	is	widely	used.

The	functions	performed	by	a	CPU	are	defined	by	its	instruction	set.	Aninstruction	consists	of	an	opcode	and	a	set	of	operand	or	address	fields.	Varioustechniques	called
addressing	modes	are	used	to	specify	operands.	An	instruction'soperands	can	be	in	the	instruction	itself	(immediate	addressing),	in	CPU	registers,or	in	external	memory
M.	Operands	in	registers	can	be	accessed	more	rapidly	thanthose	in	M.	An	instruction	set	should	be	complete,	efficient,	and	easy	to	use	insome	broad	sense.	Instructions
can	be	grouped	into	several	major	types:	data	trans-fer	(load,	store,	move	register,	and	input-output	instructions),	data	processing(arithmetic	and	logical	instructions),	and
program	control	(conditional	and	uncon-ditional	branches).	All	practical	computers	contain	at	least	a	few	instructions	ofeach	type,	although	in	theory	one	or	two
instruction	types	suffice	to	perform	allcomputations.	RISCs	are	characterized	by	streamlined	instruction	sets	that	are	sup-ported	by	fast	hardware	implementations	and
efficient	software	compilers.	WhileCISCs	have	larger	and	more	complex	instruction	sets,	they	simplify	the	program-ming	of	complex	functions	such	as	division.	The	use	of
subroutines	(procedures)and	macroinstructions	can	simplify	assembly-language	programming	in	all	typesof	processors.

3.5PROBLEMS

3.1.	Show	how	to	use	the	10-member	instruction	set	of	Figure	3.4	to	implement	the	follow-ing	operations	that	correspond	to	single	instructions	in	many	computers;	use	as
few	in-structions	as	you	can.	(a)	Copy	the	contents	of	memory	location	X	to	memory	locationY.	(b)	Increment	the	accumulator	AC.	(c)	Branch	to	a	specified	address	adr	if
AC	^	0.

3.2.	Use	the	instruction	set	of	Figure	3.4	to	implement	the	following	two	operations	as-suming	that	sign-magnitude	code	is	used,	(a)	AC	:=	-M(X).	(b)	Test	the	right-most
bitb	of	the	word	stored	in	a	designated	memory	location	X.	If	b	=	1,	clear	AC;	otherwise,leave	AC	unchanged.	[Hint:	Use	an	AND	instruction	to	mask	out	certain	bits	of
aword.]

3.3.	Consider	the	possibility	of	overlapping	instruction	fetch	and	execute	operations	whenexecuting	the	multiplication	program	of	Figure	3.5.	(a)	Assuming	only	one	word
canbe	transferred	over	the	system	bus	at	a	time,	determine	which	instructions	can	be	over-lapped	with	neighboring	instructions,	(b)	Suppose	that	the	CPU-memory
interface	isredesigned	to	allow	one	instruction	fetch	and	one	data	load	or	store	to	occur	during	thesame	clock	cycle.	Now	determine	which	instructions,	if	any,	in	the
multiplication	can-not	be	overlapped	with	neighboring	instructions.

3.4.	Write	a	brief	note	discussing	one	advantage	and	one	disadvantage	of	each	of	the	fol-lowing	two	unusual	features	of	the	ARM6:	(a)	the	inclusion	of	the	program
counter	PCin	the	general	register	file;	(b)	the	fact	that	execution	of	every	instruction	is	conditional.

3.5.	Use	HDL	notation	and	ordinary	English	to	describe	the	actions	performed	by	eachof	the	following	ARM6	instructions:	(a)	MOV	R6,#0;	(b)	MVN	R6,#0;	(c)ADD
R6,R6,R6;	(d)	EOR	R6,R6,R6.

3.6.	Suppose	the	ARM6	has	the	following	initial	register	contents	(all	given	in	hex	code):

Rl	=	11110000;	R2	=	0000FFFF;	R3	=	12345678;	NZCV	=	0000

Identify	the	new	contents	of	every	register	or	flag	that	is	changed	by	execution	of	thefollowing	instructions.	Assume	each	is	executed	separately	with	the	foregoing
initialstate,	(a)	MOV	R1,R2;	(b)	MOVCS	R1.R2;	(c)	MVNCS	R2.R1;	(d)	MOV	R3,#0;(e)MOV	R3,R4,	LSL#4.

3.7.	Suppose	the	ARM6	has	the	following	initial	register	and	memory	contents	(all	givenin	hex	code):

Rl	=	00000000;	R2	=	87654321;	R3	=	A05B77F9;	NZCV	=	0000

Identify	the	new	contents	of	every	register	or	flag	that	is	changed	by	executionof	the	following	instructions.	Assume	each	is	executed	separately	with	the	forego-ing	initial
state,	(a)	ADD	R1,R2,R3;	(b)	ADDS	R1.R3.R3;	(c)	SUBS	R2,R1,#1;(</)ANDS	R3,R2,Rl;(e)EORCSS	R1,R2,R3.

3.8.	Use	the	instruction	set	for	the	ARM6	given	in	Figure	3.10	to	write	short	code	segmentsto	perform	the	tasks	given	below.	Note	that	an	opcode	can	be	followed	by	two
optionalsuffixes,	a	two-character	condition	code	to	determine	branching	and	S	to	activate	thestatus	flags.	Figure	3.41	lists	all	possible	condition	fields.	The	required	tasks
are:(a)	Replace	the	contents	of	register	Rl	by	its	absolute	value,	(b)	Perform	the	64-bitsubtraction	R5.R4	:=	R1.R0	-	R3.R2,	where	the	even-numbered	registers	contain
theright	(less	significant)	half	of	each	operand.

3.9.	Write	the	shortest	ARM6	program	that	you	can	to	implement	the	following	conditionalstatement:

while	(x	^	y)	do	x	:=	\	-	1:Assume	that	x	and	y	are	stored	in	CPU	registers	R1	and	R2,	respectively.
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SECTION	3.5Problems 00000001 EQNE
Z=	1

Z	=	0
Result	equal	to	zero.Result	not	equal	to	zero.

0010 CS	or HS C=l Unsigned	overflow:	result	higher	or	same.

0011 CC	or LO C	=	0 No	unsigned	overflow:	result	lower.

0100 MI N=l Result	negative.

0101 PL N	=	0 Result	positive	or	zero.

0110 VS V=	1 Signed	overflow.



0111 VC V	=	0 No	signed	overflow.

1000 HI C	=	1	and	Z	=	0 Unsigned	result	higher.

1001 LS C	=	0	or	Z	=	1 Unsigned	result	lower	or	same.

1010 GE N	=	V Signed	result	greater	or	equal.

1011 LT N	=V Signed	result	less	than.

1100 GT Z	=	0	and	N	=	V Signed	result	greater	than.

1101 LE Z	=	1	or	N	=	V Signed	result	less	than	or	equal.

1110 AL None Always	(unconditional	branch).

mi NV None Never	(no	branching)

Figure	3.41

Condition	codes	of	the	ARM6	and	their	interpretation.

3.10.	Identify	five	major	differences	between	the	instruction	sets	of	the	ARM6	and	the680X0	and	comment	on	their	impact	on	the	CPU	cost	and	performance.

3.11.	Use	HDL	notation	and	ordinary	English	to	write	the	actions	performed	by	each	ofthe	following	680X0	instructions:	(a)	MOVE	(A5)+,D5;	(b)	ADD.B	$2A10,D0;(c)
SUBI	#10,(A0);	(d)	AND.L	#SFF,D0.

3.12.	The	680X0	has	two	types	of	unconditional	branch	instructions	BRA	(branch	always)and	JMP	(jump).	Therefore,	branch	to	statement	L	can	be	implemented	either	by
BRAL	or	JMP	L.	What	is	the	difference	between	these	two	instructions?	Under	what	cir-cumstances	is	each	type	of	branch	instruction	preferred?

3.13.	Write	a	program	for	the	680X0	that	replaces	the	word	DATA	stored	in	memory	loca-tion	ADR	by	its	bitwise	logical	complement	DATA	if	and	only	if	DATA	^	0.

3.14.	Modify	the	vector	addition	program	of	Figure	3.13	(Example	3.3)	to	compute	the	sumC	:=	A	+	B	for	100	instead	of	1000	one-byte	decimal	numbers.	Assume	that	the
loca-tions	of	the	A	and	B	operands	are	unchanged,	but	the	result	C	is	now	required	to	replace(overwrite)	B.

3.15.	Suppose	that	the	hex	contents	of	two	CPU	registers	in	a	32-bit	processor	are	as	follows:

R0	=	01237654:	Rl	=	7654EDCB

The	following	store-word	instructions	are	executed	to	transfer	the	contents	of	theseregisters	to	main	memory	M.

STORE	R0,ADR	215

STORE	Rl.ADR+4	CHAPTER	3

Assuming	that	M	is	byte-addressable,	give	the	contents	of	all	memory	locationsaffected	by	the	above	code	(a)	if	the	computer	is	big-endian	and	(b)	if	the	computer	islittle-
endian.

3.16.	Suppose	that	a	680X0-based	computer	C,,	which	is	big-endian,	is	communicatingwith	another	computer	C2,	which	is	similar	to	Cx	except	that	it	is	little-endian.
C2stores	4-byte	(long)	words	from	its	register	file	into	a	common	memory	M,	which	Cxsubsequently	loads	into	its	data	registers.	Outline	an	efficient	way	to	program
C,'sload	operations	so	that	data	words	always	appear	in	the	correct	form	in	its	register	file.

3.17.	The	usual	objection	to	tagged	architecture	is	that	the	presence	of	tags	in	stored	data	in-creases	memory	size	and	cost.	It	has	been	argued,	however,	that	tags	can
actually	re-duce	storage	requirements	by	decreasing	program	size.	Analyze	the	validity	of	thisargument.

3.18.	Figure	3.42	lists	all	the	16	code	words	of	a	code	known	as	a	Hamming	code	[Ham-ming	1986],	which	is	designed	to	check	4-bit	words	using	three	check	bits.	Prove
thatall	single-bit	errors	can	be	corrected	and	all	double-bit	errors	can	be	detected	by	thiscode.

3.19.	Consider	the	small	Hamming	code	defined	in	Figure	3.42.	Show	that	each	check	bit	c,can	be	expressed	in	the	form	c,	=	axdx	©	a2d2	©	a3d3	©	a4d4,	where	ay	=	0
or	1	and	djis	an	information	(data)	bit.	Hence	the	check	bits	for	this	(and	other)	Hamming	codescan	be	generated	by	a	set	of	EXCLUSIVE-OR	(parity)	circuits.

Information	bits	Check	bits

0	0	0	0	0	0	0

0	0	0	1	111

0	0	10	110

0	0	11	0	0	1

0	10	0	10	1

0	10	1	0	10

0	110	0	11

0	111	10	0

10	0	0	0	11

10	0	1	10	0

10	10	10	1

10	11	0	10

110	0	110

110	1	0	0	1

1110	0	0	0

1111	111

ProcessorBasics

Figure	3.42

Hamming	SECDED	code	for	4-bit	words.
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3.20.	Convert	the	following	three	2'-bit	words	to	standard	decimal	form	assuming	they	rep-resent	(a)	sign-magnitude	and	(b)	twos-complement	integers:	FFFF16;
FEDCBA9816;7EDCBA916.



3.21.	The	following	binary	word	W=	10001011101001	is	stored	in	a	14-bit	register.	What	isthe	decimal	number	represented	by	Wif	it	is	interpreted	as	an	integer	in	each	of
the	fol-lowing	codes:	(a)	unsigned	binary;	(b)	sign-magnitude;	(c)	twos-complement?

3.22.	Using	32-bit	integer	formats,	give	the	sign-magnitude,	twos-complement,	and	BCDrepresentation	of	each	of	the	following	decimal	numbers:	+999,	-999,	+1000,
-1000,zero.	State	your	assumptions	concerning	sign	representation.

3.23.	(a)	What	are	the	decimal	equivalents	of	the	largest	fixed-point	binary	numbers	thatcan	be	represented	in	32-,	64-,	and	128-bit	words?	(b)	Convert	the	following	sign-
magnitude	words	to	decimal:	10111011,	01010101,	1011101010111010.	(c)	Repeatpart	(b)	assuming	this	time	that	the	numbers	are	in	twos-complement	code.

3.24.	Figure	3.43	shows	the	single-precision	number	format	used	in	the	B6500/7500	andother	early	Burroughs	computers.	This	format	is	used	for	both	fixed-	and	floating-
pointnumbers—an	unusual	feature.	The	total	length	of	a	number	is	47	bits,	including	the	ex-ponent,	mantissa,	and	two	sign	bits.	The	implicit	number	base	B	-	8.	Fixed-
point	num-bers	are	treated	as	a	special	case	of	floating	point	where	the	exponent	E	is	always	zero(encoded	as	0000002).	The	exponent	and	mantissa	are	treated	as	sign-
magnitude	inte-gers	and	biasing	is	not	used.	Write	a	note	listing	the	advantages	and	disadvantages	ofcombining	fixed-	and	floating-point	representation	in	this	way.

3.25.	Consider	again	the	B6500/7500	single-precision	number	format	described	in	the	pre-ceding	problem,	(a)	Give	in	decimal	form	the	largest	and	the	smallest	nonzero
numbersthat	can	be	represented,	when	no	normalization	is	used,	(b)	Again	calculate	the	largestand	the	smallest	nonzero	numbers,	this	time	assuming	that	the	numbers
are	normalizedaccording	to	the	following	definition:	a	B6500/7500	number	is	normal	if	there	are	noleading-zero	digits	in	the	mantissa.

3.26.	A	floating-point	processor	is	being	designed	with	a	number	format	that	must	meet	thefollowing	requirements:

•	Numbers	in	the	range	±1.0	x	10*64	must	be	represented.

•	The	precision	required	is	eight	decimal	digits;	that	is,	the	eight	most	significant	dig-

its	of	the	decimal	equivalent	of	every	number	in	the	required	range	must	be	repre-sentable.

Unused	bitSign	of	MSign	of	E

000
E

Mill

M

1	1	1	[	1	1	1	1	1	1	1	1	1	1	1	!	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Tag	Exponent

E	(6	bits)

Mantissa	M	(39	bits)

Figure	3.43

The	B6500/7500	format	for	single-precision	numbers.
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sequence	of	Os.

•	Binary	arithmetic	is	to	be	used	throughout	with	B	=	2.	where	B	is	the	floating-point
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BasicsDesign	a	number	format	that	satisfies	these	requirements	and	uses	as	few	bits	as	pos-sible.	Indicate	clearly	the	number	codes	used	and	why	they	were	chosen.

3.27.	Suppose	that	in	the	6-bit	floating-point	format	illustrated	by	Figure	3.24,	B	=	2,	E	is	a3-bit	sign-magnitude	integer	as	before,	but	M	is	now	a	3-bit	sign-magnitude
fraction.

(a)	What	are	the	decimal	values	of	the	largest	and	smallest	nonzero	real	numbers	thatcan	be	represented	by	this	format?	(b)	How	many	different	real	numbers	can	be	rep-
resented?

3.28.	Consider	the	6-bit	floating-point	format	defined	in	Figure	3.24.	Suppose	that	E	and	Bare	unchanged,	but	M	is	a	3-bit	sign-magnitude	fraction	and	that	all	floating-
point	num-bers	are	normalized	with	an	excess-A'	biased	exponent,	(a)	What	is	a	suitable	value	forthis	bias	K	and	why?	(b)	How	many	different	real	numbers	can	be
represented	in	thisnormalized	format?

3.29.	Obtain	the	(approximate)	decimal	values	that	conform	to	the	IEEE	754	floating-pointformat	of	the	following	two	numbers:

A=	100101111	10000000000000000000000

5	=	0	10001110	00000000000000000000001

3.30.	Derive	the	correct	floating-point	representation	for	the	decimal	numbers	+3.25	and-3.25	using	the	32-bit	IEEE	754	floating-point	standard.

3.31.	Consider	the	64-bit	IEEE	floating-point	number	format	defined	in	section	3.2.3.	Deter-mine	the	largest	positive	number,	the	smallest	nonzero	positive	number,	and
the	nega-tive	number	with	the	largest	magnitude	that	can	be	represented	in	this	format.	Assumethat	the	three	numbers	are	to	be	normalized	and	give	your	answers	in	the
form	of	16-digit	hexadecimal	strings.

3.32.	The	floating-point	number	format	used	by	the	IBM	System/360-370	series	is	definedin	section	3.2.3.	Determine	the	total	number	of	different	normalized	numbers
that	the32-bit	version	of	this	format	can	represent.

3.33.	Consider	a	32-bit	RISC-style	processor	P	whose	only	addressing	modes	for	register-to-register	instructions	are	immediate	and	direct	and	whose	only	addressing
mode	forload/store	instructions	is	register	indirect	with	offset.	Assume	also	that	the	CPU	has	64general-purpose	registers	R0:R63	that	can	serve	either	as	data	or	address
registers.	Asingle	32-bit	instruction	format	contains	four	fields:	an	opcode,	two	register	fields,	anda	16-bit	immediate	address	field,	(a)	What	is	the	maximum	number	of
opcode	types?

(b)	Using	an	ad	hoc	but	typical	assembly-language	notation	with	clear	comments,	de-scribe	how	a	single	instruction	of	P	might	perform	each	of	the	following	three	opera-
tions:	load	a	word	from	M;	store	a	byte	in	M;	double	the	number	word	stored	in	aregister	(there	is	no	multiply	opcode).

3.34.	Consider	the	32-bit	RISC-style	processor	P	sketched	in	the	preceding	problem.	De-scribe	how	one	or	more	instructions	of	P	might	perform	each	of	the	following
three	op-erations,	assuming	that	P	has	no	explicit	clear,	swap,	or	push	opcodes:	clear	a	register;swap	the	contents	of	two	registers;	push	a	word	into	a	stack.	Again	use	an
ad	hoc	but
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structions	as	you	can.
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3.35.	Suppose	the	memory	data	register	DR	in	a	CPU	like	that	of	Figure	3.3	transfers	32-bitwords	to	M	in	a	single	clock	cycle.	The	data	item	D	t©	be	stored	may	be	16	or
32	bitslong.	If	a	16-bit	data	item	D	is	placed	in	DR,	it	is	automatically	extended	to	32	bits	asit	is	transmitted	from	DR	to	M.	The	size	of	D	is	given	by	a	flag	5,	whose	0	and	1
valuesdenote	16	and	32	bits,	respectively.	The	extension	method	is	given	by	a	second	flag	E,whose	0	and	1	values	denote	zero	extension	and	sign	extension,	respectively.
Design	aregister-level	logic	circuit	to	perform	the	needed	extension,	making	it	as	simple	and	asfast	as	possible.

3.36.	A	memory	data	register	DR	can	transfer	32-bit	words	to	M	in	a	single	clock	cycle.	Thedata	items	to	be	stored	can	be	4,	8,	16,	or	32	bits	long,	and	short	items	are
always	sign-extended	to	32	bits	for	transmission	to	M.	A	2-bit	flag	S	in	the	CPU	is	set	to	00,01,	10,or	11	to	indicate	a	data	size	of	4,	8,	16,	or	32	bits,	respectively.	Design
an	efficient	logiccircuit	at	the	register	level	to	implement	the	sign	extension.

3.37.	Consider	the	instruction	formats	of	the	MIPS	RX000	defined	in	Example	3.5.	Supposethat	the	currently	executing	instruction	/	in	an	RX000	CPU	is	stored	at
(hexadecimal)memory	address	FFFFFF0016.	(a)	If/is	not	a	branch	instruction,	what	is	the	(hexadec-imal)	memory	address	of	the	instruction	that	will	be	executed
immediately	after	/?	(b)Suppose	that	/	is	an	unconditional	jump	instruction	that	contains	the	26-bit	branch	ad-dress	field	ADR	=	2A9FFFF16.	Again	what	is	the
(hexadecimal)	memory	address	ofthe	instruction	that	will	be	executed	immediately	after	/?

3.38.	Use	a	figure	similar	to	Figure	3.31	to	show	the	state	of	the	CPU	and	M	in	the	Motorola680X0	immediately	before	and	after	execution	of	the	stack-pop
instructionMOVE.L	(A2)+,D6.



3.39.	The	stack	shown	in	Figure	3.31	for	a	680X0-based	computer	grows	toward	the	low-address	end	of	M.	Suppose	that	the	stack	is	required	to	grow	in	the	opposite
direction,that	is,	toward	the	high-address	end	of	M.	Construct	the	push	and	pop	instructionsneeded	for	this	case.

3.40.	The	680X0	instruction	JSR	SUB	pushes	the	contents	of	the	program	counter	PC	ontoa	stack	using	stack	pointer	register	SP	and	then	causes	a	jump	to	the	instruction
at	mem-ory	location	SUB.	Its	operation	may	be	described	as	follows:

(-SP)	:=	PC;	PC	:=	SUB

(a)	Show	how	to	use	the	680X0	MOVE	instructions	to	simulate	JSR,	assuming	thatJSR	can	have	SP	and	PC	as	operands,	(b)	The	last	instruction	executed	by	a
subroutineshould	be	return	from	subroutine	(RTS)	which	restores	to	PC	the	address	saved	earlierby	JSR;	this	instruction	should	also	update	SP.	Again	use	the	680X0
MOVE	instruc-tions	to	simulate	RTS,	again	assuming	that	SP	and	PC	can	be	operands	of	MOVE.

3.41.	The	MIPS	RX000	has	no	status	flag	C	to	indicate	whether	an	arithmetic	instruction	ap-plied	to	an	unsigned	number	generates	a	carry,	that	is,	overflows	a	32-bit
register.	Infact,	the	RX000	add	unsigned	instruction	that	computes	Rd	:=	Rs	+	Rt

ADDU	Rd,Rs,Rt

sets	no	status	flags	under	any	circumstances.	Using	standard	instructions	(but	noflags),	devise	a	short	program	that	will	determine	whether	the	foregoing	instruction

causes	overflow.	A	useful	RX000	instruction	for	this	purpose	is	the	compare	instruc-	219
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which	compares	the	contents	of	Rs	and	Rt,	treating	both	as	32-bit	unsigned	numbers.	BasicsIf	Rs	<	Rt,	then	Rd	:=	1	=	0311;	otherwise,	Rd	:=	0	-	032.	The	RX000	also	has
a	typicalset	of	conditional	branch	instructions	that	test	the	contents	of	a	register	for	zero.

3.42.	An	arithmetic	right	shift	(ARS)	instruction—arithmetic	left	shifts	are	uncommon—shifts	an	operand	D	k	bits	to	the	right	and	fills	the	vacated	positions	by	sign
extension.The	bits	shifted	out	from	the	right	end	of	D	are	discarded.	It	is	often	stated	that	a	fc-bitARS	implements	division	by	2k	when	applied	to	a	twos-complement
integer	D;	that	is,the	shifted	result	SD	is	the	integer	quotient	Q	on	dividing	D	by	2k.	The	discarded	bitsrepresent	the	integer	remainder	R.	(a)	Show	that	this	division-by-2*
interpretation	isvalid	when	D	is	positive,	(b)	Show	that	the	division-by-2*	interpretation	of	ARS	is	in-valid	for	negative	D	by	considering	operands	of	length	4	bits	and
finding	a	specificcounterexample.

3.43.	As	noted	in	the	preceding	problem,	ARS	instructions	cannot	be	used	directly	to	im-plement	division	of	twos-complement	integers	by	2k.	Some	computers	provide	a
spe-cial	instruction—let	us	call	it	SI—such	that	if	we	apply	SI	to	the	result	SD	producedby	a	k-bit	ARS,	we	obtain	the	correct	integer	quotient	for	division	by	2k.	For	this
two-instruction	combination	to	work,	ARS	is	designed	to	set	a	special	flag	F	when	its	in-put	operand	D	is	negative	and	the	bits	shifted	out	and	discarded	by	ARS	include
atleast	one	1	bit.	What	is	the	function	performed	by	SI?	Explain	informally	how	itworks	with	ARS	to	implement	division	by	2k.

3.44.	Single-instruction	computers	(SICs)	have	attracted	interest	for	many	years.	They	areextreme	cases	of	RISCs	in	which	the	instruction	set	has	been	reduced	to	the
absoluteminimum.	One	type	of	SIC	is	based	on	a	conditional	move	(CMOVE)	instruction.	Thisinstruction	has	the	two-address	format

CMOVE	dest,	source

corresponding	to	if	cond	then	dest	:=	source,	where	cond	is	a	condition	code	and	allmovable	items	are	w-bit	words	stored	in	a	common	rc-bit	address	space	shared	by
M,10	devices,	and	CPU	registers	(which	can	be	placed	in	M).	CMOVE	combines	condi-tional	load	and	store	instructions	of	the	type	found	in	the	ARM—it	is	a	pure
load/storearchitecture.	The	CPU	contains	the	logic	needed	to	fetch	instructions	(a	PC	andaddress-generation	logic),	but	it	does	not	contain	the	usual	ALU	logic.	Instead,
special"10	processors"	execute	all	arithmetic	and	logical	operations.	For	example,	A	x	B	isimplemented	by	moving	A,	B,	and	any	necessary	control	words	to	the	input	ports
of	anexternal	multiplier	MULT	and	subsequently	moving	the	result	from	MULTs	outputport.	The	tested	conditions	cond	can	include	a	flag	C	that	is	set	by	the	sign	bit	of
thelast	word	moved.	It	is	also	desirable	to	have	an	always-true	condition	to	implement	anunconditional	move.	Most	proposed	CMOVE	architectures	support	a	few
addressingmodes,	including	indexing.	Write	a	note	analyzing	the	advantages	and	disadvantagesof	this	type	of	SIC	architecture.

3.45.	Consider	a	set	of	four	processors	P0,	/>,,	P2.	and	P3,	where	P,	is	an	/-address	machine.P0	is	a	zero-address	stack	machine,	while	/>,.	P2,	and	P3	are	conventional
computerseach	with	16	general-purpose	registers	R0:R15	for	data	and	address	storage.	All	fourprocessors	have	instructions	with	the	(assembly	language)	opcodes	ADD.
SUB,	MUL.
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and	DIV	to	implement	the	operations	+,	-,	X,	and	/,	respectively,	(a)	Using	as	few	in-structions	as	you	can,	write	a	program	for	each	of	the	four	machines	to	evaluate	the
fol-lowing	arithmetic	expression:

X	:=	(A/B	+	CX	D)/(D	XE-F+	C/A)	+	G

(3.44)

Use	standard	names	for	any	additional	instructions	that	you	need,	for	example,	LOADor	PUSH,	(b)	Calculate	the	total	object-program	size	in	bits	for	each	of	your	four	pro-
grams	assuming	the	following	data	on	machine-language	instruction	formats:	opcodes(which	contain	no	addressing	information)	are	8	bits	long;	memory-address	length
is16	bits;	and	register-address	length	is	4	bits.	(For	example,	the	two-address	instructionLOAD	R7,B	for	P2,	which	denotes	R7	:=	M(B),	occupies	8	+	4	+	16	=	28	bits.)

3.46.	Figure	3.44a	shows	the	byte-by-byte	contents	of	two	registers	in	the	RX000	generalregister	file,	(a)	Construct	a	short	program	that	transfers	the	data	in	question
from	theregister	file	to	memory	M	exactly	as	indicated	in	Figure	3.446.	(b)	Suppose	that	thesame	two	words	must	be	stored	as	shown	in	Figure	3.44c,	where	they	are	not
alignedwith	memory	word	boundaries.	Suggest	two	methods	for	performing	the	two-wordstorage	operation	in	this	case.

3.47.	Show	how	each	of	the	following	macroinstructions	can	be	implemented	by	a	singlemachine	instruction	from	the	RX000	instruction	set.

(a)	LI	Rdest.IMM	;	Load	immediate:	load	IMM	(sign-extended)	into	register	Rdest

(b)	MOVE	Rdest,Rsource	;	Move	contents	of	register	Rsource	to	register	Rdest

(c)	NOP	;	No	operation:	execute	an	instruction	cycle	that	does	not	change	the

:	CPU's	state

3.48.	A	new	microprocessor	is	being	designed	with	a	conventional	architecture	employingsingle-address	instructions	and	8-bit	words.	Due	to	physical	size	constraints,
only

eight	distinct	3-bit	opcodes	are	allowed.	The	use	of	modifiers	or	the	address	field	toextend	the	opcodes	is	forbidden,	(a)	Which	eight	instructions	would	you	implement?
Specify	the	operations	performed	by	each	instruction	as	well	as	the	location	of	its	op-erands,	(b)	Demonstrate	that	your	instruction	set	is	functionally	complete	in	some
rea-sonable	sense;	or	if	it	is	not,	describe	an	operation	that	cannot	be	programmed	usingyour	instruction	set.

221

CHAPTER	3

Processor

Basics

3.49.	Write	a	short	code	segment	for	the	RXOOO	to	implement	the	following	common	macro,which	computes	the	absolute	value	of	the	contents	of	register	Rsource	and
puts	the	re-sult	in	register	Rdest.

ABS	Rdest.Rsource

3.50.	There	are	few	well-defined	general	principles	concerning	hardware-software	trade-offs	in	processor	design.	Two	principles	of	this	type	are	given	below.	Write	a	brief
noteon	each,	illustrating	it	with	examples,	(a)	"Whenever	there	is	a	system	function	that	isexpensive	and	slow	in	all	its	generality,	but	where	software	can	recognize	a
frequentlyoccurring	degenerate	case	(or	can	move	the	entire	function	from	run	time	to	compiletime)	that	function	[should	be]	moved	from	hardware	to	software,	resulting
in	lowercost	and	improved	performance."	(George	Radin,	1983)	(b)	"Simple,	frequent,	andhighly-skew	conditional	branches	[e.g.,	tests	for	arithmetic	overflow]	should	be
imple-mented	in	hardware	[rather	than	software]."	(Brian	Randell,	1985)

3.51.	(a)	Explain	how	directives	differ	from	other	assembly-language	instructions,	(b)	Listthe	criteria	for	using	macros	instead	of	subroutines	to	structure	assembly-
language	pro-grams.

3.52.	A	program	called	a	disassembler	is	sometimes	useful	for	debugging	programs.	It	is	de-signed	to	convert	object	code	to	assembly-language	format,	thus	reversing	the
work	ofan	assembler.	However,	a	disassembler	cannot	recover	all	the	structure	of	the	originalassembly-language	code.	Explain	in	detail	why	this	is	so.

3.53.	Consider	the	processor	and	memory	state	depicted	in	Figure	3.40	and	suppose	that	ex-ecution	of	the	subroutine	continues	to	completion.	Let	the	subroutine's
RETURN	in-struction	be	stored	in	memory	location	2500	(decimal).	Draw	a	diagram	similar	toFigure	3.40	that	shows	the	system	state	at	the	same	three	points	during	the
executionof	RETURN.
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CHAPTER	4

Datapath	Design

An	instruction-set	processor	consists	of	datapath	(data	processing)	and	controlunits.	This	chapter	addresses	the	register-level	design	of	the	datapath	unit,	whileChapter	5
covers	the	control	unit.	The	focus	is	on	the	arithmetic	algorithms	and	cir-cuits	needed	to	process	numerical	data.	These	circuits	are	examined	first	for	fixed-point	numbers
(integers)	and	then	for	floating-point	numbers.	The	use	of	pipeliningto	speed	up	data	processing	is	also	discussed.

4.1

FIXED-POINT	ARITHMETIC

The	design	of	circuits	to	implement	the	four	basic	arithmetic	instructions	for	fixed-point	numbers—addition,	subtraction,	multiplication,	and	division—is	the	maintopic	of
this	section.	It	also	discusses	the	implementation	of	logic	instructions	andALU	design.

4.1.1	Addition	and	Subtraction

Add	and	subtract	instructions	for	fixed-point	binary	numbers	are	found	in	theinstruction	set	of	every	computer.	In	smaller	machines	such	as	microcontrollersthey	are	the
only	available	arithmetic	instructions.	As	we	have	seen	in	earlier	chap-ters,	addition	and	subtraction	hardware	(Example	2.7)	or	software	(Example	3.1)can	be	used	to
implement	multiplication	and,	in	fact,	any	arithmetic	operation.Beginning	with	Charles	Babbage,	computer	designers	have	devoted	considerableeffort	to	the	design	of
high-speed	adders	and	subtracters.	As	we	will	see.	thesebasic	circuits	can	be	designed	in	many	different	ways	that	involve	various.trade-offs	between	operating	speed	and
hardware	cost.
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Basic	adders.	First	consider	the	design	of	a	circuit	to	add	two	n-bit	unsignedbinary	numbers,	a	topic	discussed	in	section	2.1.3.	The	fastest	such	adder	is,	inprinciple,	a
two-level	combinational	circuit	in	which	each	of	the	n	sum	bits	isexpressed	as	a	(logical)	sum	of	products	or	product	of	sums	of	the	n	input	vari-ables.	In	practice,	such	a
circuit	is	feasible	for	very	Small	values	of	n	only,	as	itrequires	c{n)	gates	with	fan-in	f(n),	where	both	c(n)	and	f(n)	grow	exponentiallywith	n.	Practical	adders	take	the	form
of	multilevel	combinational	or,	occasionally,sequential	circuits.	They	sacrifice	operating	speed	for	a	reduction	in	circuit	com-plexity	as	measured	by	the	number	and	size	of
the	components	used.	In	general,	theaddition	of	two	/7-bit	numbers	X	and	Y	is	performed	by	subdividing	the	numbersinto	stages	X,	and	Yt	of	length	nt,	where	n>	«,	>	1.	Xi
and	K,	are	added	separately,and	the	resulting	partial	sums	are	combined	to	form	the	overall	sum.	The	formationof	this	sum	involves	assimilation	of	carry	bits	generated	by
the	partial	additions.

The	sum	zi,ci	of	two	1-bit	numbers	x,	and	v,	can	be	expressed	by	the	half-adderlogic	equations

z,	=	x,	0	>>,-

where	zt	is	the	sum	bit,	c,	is	the	carry-out	bit,	©	denotes	EXCLUSIVE-OR,	andjuxtaposition	denotes	AND.	If	we	introduce	a	third	input	bit	c,_,	denoting	a	carry-insignal,	we
obtain	the	following	full-adder	equations:

c,	=	jr,y,+	x,r,_1	+	y,c,_1	(4.1)

(Note	that	+	denotes	logical	OR—not	plus—here.)	A	full	adder,	also	called	a	1-bit	adder,	can	be	directly	implemented	from	these	equations	in	various	ways,
asdemonstrated	by	Figure	2.9	(section	2.1.1).	Figure	4.1	shows	a	fast	AND-ORrealization	of	a	1-bit	adder,	along	with	an	appropriate	circuit	symbol	for	use	inregister-level
designs.

The	least	expensive	circuit	in	terms	of	hardware	cost	for	adding	two	«-bitbinary	numbers	is	a	serial	adder,	the	design	of	which	was	covered	in	Example	2.2.A	serial	adder
adds	the	numbers	bit	by	bit	and	so	requires	n	clock	cycles	to	com-pute	the	complete	sum	of	two	n-bit	numbers.	As	Figure	4.2	indicates,	a	serial	adderconsists	of	a	full
adder	realizing	Equations	(4.1)	and	a	flip-flop	to	store	c,.	One	sumbit	is	generated	in	each	clock	cycle;	a	carry	is	also	computed	and	stored	for	use	dur-ing	the	next	clock
cycle.	Figure	4.2	presents	a	high-level	view	of	a	serial	adder	thathas	a	D	flip-flop	as	the	carry	store.	Although	this	adder	is	slow,	its	circuit	size	isvery	small	and	is
independent	of	n.

Circuits	that,	in	one	clock	cycle,	add	all	bits	of	two	«-bit	numbers,	as	well	asan	external	carry-in	signal	cin,	are	called	n-bit	parallel	adders	or	simply	n-bitadders.	The
simplest	such	adder	is	formed	by	connecting	n	full	adders	as	in	Figure4.3.	Each	1-bit	adder	stage	supplies	a	carry	bit	to	the	stage	on	its	left.	A	1	appear-ing	on	the	carry-in
line	of	a	1-bit	adder	can	cause	it	to	generate	a	1	on	its	carry-out	line.	Hence	carry	signals	propagate	through	the	adder	from	right	to	left,	givingrise	to	the	name	ripple-
carry	adder.	In	the	worst	case	a	carry	signal	can	ripplethrough	all	n	stages	of	the	adder.	The	input	carry	signal	cm	is	normally	set	to	0for	addition.	The	maximum	signal
propagation	delay	of	an	«-bit	ripple-carryadder,	which	in	synchronous	circuit	design	determines	the	operating	speed,	is	nd,

fc>

Sum;,Carrv	out	c,

(a)

(b)

Figure	4.1

A	1-bit	(full)	adder:	(a)	two-level	AND-OR	logic	circuit	and	(b)	symbol.

where	d	is	the	delay	of	a	full-adder	stage.	Unlike	a	serial	adder,	the	amount	ofhardware	in	a	ripple-carry	adder	increases	linearly	with	n,	the	word	size	of	thenumbers
being	added.

Subtracters.	Adders	like	those	of	Figures	4.2	and	4.3	operate	correctly	onboth	unsigned	and	positive	numbers	because	the	0	sign	bit	of	a	positive	numberhas	the	same
effect	as	a	leading	zero	in	an	unsigned	number.	The	best	way	to	add
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Figure	4.2

A	serial	binary	adder.

226

SECTION	4.1

Fixed-Point

Arithmetic

L	J

1-bitadder

1-bitadder

cn-i

rr	Ti

-^n-l	>'n-I	xn-l	Vn-l

1-bitadder

*0	^0

Figure	4.3

An	n-bit	ripple-carry	adder	composed	of	n	1-bit	(full)	adders.

negative	numbers—these	have	1	as	the	sign	bit—depends	on	the	number	code	inuse.	Adding	-X	to	Y	is	equivalent	to	subtracting	X	from	Y,	so	the	ability	to	add	neg-ative
numbers	implies	the	ability	to	do	subtraction.

Subtraction	is	relatively	simple	with	twos-complement	code	because	negation(changing	X	to	-X)	is	very	easy	to	implement.	As	discussed	in	section	3.2.2,	if	X	=xn_x
xn_2...x0	is	a	twos-complement	integer,	then	negation	is	realized	by

-X	=

-l*n-2-

.	.	Xn	+	1

(4.2)

where	+	denotes	addition	modulo	2".	An	efficient	way	to	obtain	the	ones-comple-ment	portion	X	=	xn_xxn_2...	x0	of	-X	in	(4.2)	uses	the	word-based	EXCLUSIVE-OR
functionX®	s	with	a	control	variable	s.	When	s	=	0,	X©	s	=	X,	but	when	5=1,X	©	5	=	X.	Suppose	that	Y	and	X	©	s	are	now	applied	to	the	inputs	of	an	n-bitadder.	The
addition	of	1	required	by	(4.2)	to	change	X	to	-X	can	be	realized	byapplying	s	to	the	carry	input	line	of	the	adder.	In	the	resulting	circuit	shown	in	Fig-ure	4.4,	the	control
line	s	selects	theaddition	operation	Y	+	X	when	5	=	0	and	thesubtraction	operation	Y	—	X	=	Y	+	X	+	1	when	5=1.	Thus	extending	a	paralleladder	to	perform	twos-
complement	subtraction	as	well	as	addition	merely	requiresconnecting	n	two-input	EXCLUSIVE-OR	gates	to	the	adder's	inputs;	these	gatesare	represented	by	a	single	rc-
bit	word	gate	in	Figure	4.4.

z	= Y±X

1 \

n

Carry

Carry	^ cn-\ rc-bit	paralleladder Cin in

out

i i -i

n,

(

*

\

". / ".,-

Subtract	s

Figure	4.4

An	n-bit	twos-complement	adder-subtracter.

As	an	example,	let	X	=	11101011	and	Y	=	00101000,	denoting	-2110	and	4010,	227

respectively,	in	twos-complement	code.	Bit-by-bit	addition	produces
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Z	=	X+Y=	11101011	+00101000	=	00010011	(4.3)	Datapath	Design

which	corresponds	to	-21,0	+	4010	=	+1910.	(Observe	that	the	output	carry	c„_,	=	1in	(4.3)	is	ignored.)	To	subtract	X	from	Y,	we	first	compute

-X=	1110	10	11+	1=00010101

and	then	the	sum

Z	=	(-X)	+	Y	=	00010101	+	00101000	=	00111101

which	corresponds	to	2110	+	4010	=	+6110.

Subtraction	is	not	so	readily	implemented	in	the	case	of	unsigned	or	sign-mag-nitude	numbers.	It	is	sometimes	useful	to	construct	a	subtracter	for	such	numbersbased	on
the	full	(1-bit)	subtracter	function	z,	=	y,	-	xt	-	bt_x.	This	operation	isdefined	by	the	logic	equations:

Z;=X,@y,0&;_l

b,	=	xiyi+xibi_i+	>>,_!

Here	z,	is	the	difference	bit,	while	b,_,	and	b{	are	the	borrow-in	and	borrow-out	bits,respectively,	n-bit	serial	or	parallel	binary	subtracters	are	constructed	in
essentiallythe	same	way	as	the	corresponding	adders	with	carry	signals	replaced	by	borrows.Subtracters	are	of	minor	interest	compared	with	adders,	because,	as	we	have
justseen,	an	adder	suffices	for	both	addition	and	subtraction	when	twos-complementnumber	code	is	used.

Overflow.	When	the	result	of	an	arithmetic	operation	exceeds	the	standardword	size	n,	overflow	occurs.	With	n-bit	unsigned	numbers,	overflow	is	indicatedby	an	output
carry	bit	c„_,	=	1.	For	example,	adding	the	unsigned	numbers	X	=11101011	=	23510	and	Y=	00101010	=	4210	using	an	adder	like	that	of	Figure	4.3yields

Z=X+	Y=	11101011	+00101010	=	00010101	(4.4)

with	c„_[	=	c7	=1.	Now	Zcorresponds	to	2110,	which	is	235]0	+	4210	(modulo	256)and	is	the	result	of	addition	that	"wraps	around"	when	the	largest	number	2"	-	1.	inthis
case	11111111	=	25510,	is	exceeded.	On	appending	c7	to	Z,	we	get	c7Z	=100010101	=	27710	=	25610	+	2110,	which	is	the	sum	in	ordinary	(modulo	infinity)arithmetic.
Unsigned	arithmetic	operations	are	often	viewed	as	modulo-2"	opera-tions	only,	and	overflow	is	not	explicitly	detected.	This	is	the	case	when	computingmemory	addresses
in	a	computer,	for	instance,	where	addresses	simply	wraparound	to	zero	after	the	highest	address	is	reached.

Overflow	is	indicated	by	a	flag	bit	v	in	operations	involving	signed	numbers;this	flag	is	found	in	CPU	status	(condition	code)	registers.	If	we	reinterpret	thenumbers	in	the
preceding	example	as	twos-complement	rather	than	as	unsigned,then	X	=	11101011	denotes	-2110,	while	Y	=	00101010	denotes	+421().	The	result	Zcomputed	in	(4.4)
now	denotes	+2110,	and	the	fact	that	cn_l	=	1	does	not	indicateoverflow.	In	fact,	we	can	never	have	overflow	on	adding	a	positive	to	a	negativenumber.	Overflow	in
modulo-2"	twos-complement	addition	can	only	result	fromadding	two	positive	numbers	or	two	negative	numbers.	In	the	first	case	overflow
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is	indicated	by	a	carry	bit	into	the	sign	position,	that	is,	by	c„_2	=	1,	since	this	indi-cates	that	the	magnitude	of	the	sum	exceeds	the	n	-	1	bits	allocated	to	it.	A	littlethought
shows	that	overflow	from	adding	two	negative	numbers	is	indicated	bycn_2	=	0.	We	can	thus	conclude	(as	we	did	earlier	in	section	3.2.2)	that	the	over-flow	condition	is
specified	by	the	logic	expression

L7!-l->7!-lLn-2

+	X

n-Vn-\Ln-2

(4.5)

Now	c„_,,	the	carry	output	signal	from	the	sign	position,	is	defined	by	xn_lyn_l	+xn_iCn_2	+	}'„_icn-2'	fr°m	which	it	follows	that

v	=	c„

(4.6)

Either	(4.5)	or	(4.6)	can	be	used	to	design	overflow	detection	logic	for	twos-complement	addition	or	subtraction.	Overflow	detection	in	the	case	of	sign-magnitude
numbers	is	similar	and	is	left	as	an	exercise	(problem	4.6).

High-speed	adders.	The	general	strategy	for	designing	fast	adders	is	to	reducethe	time	required	to	form	carry	signals.	One	approach	is	to	compute	the	input	carryneeded
by	stage	i	directly	from	carrylike	signals	obtained	from	all	the	precedingstages	i	-	l,i	-	2,...,0,	rather	than	waiting	for	normal	carries	to	ripple	slowly	fromstage	to	stage.
Adders	that	use	this	principle	are	called	carry-lookahead	adders.	An/i-bit	carry-lookahead	adder	is	formed	from	n	stages,	each	of	which	is	basically	afull	adder	modified	by
replacing	its	carry	output	line	c,	by	two	auxiliary	signalscalled	gj	and	/?,,	or	generate	and	propagate,	respectively,	which	are	defined	by	thefollowing	logic	equations:

&=*#	Pi=xi+yt	(4-7)

The	name	generate	comes	from	the	fact	that	stage	i	generates	a	carry	of	1	(c,	=	1)independent	of	the	value	of	ct_x	if	both	x,	and	y,	are	1;	that	is.	if	x,v,	=	1.	Stage
ipropagates	cM;	that	is,	it	makes	c,	=	1	in	response	to	c,_,	=1	if	x,	or	y,	is	1—in	otherwords,	if	Xj	+	y,	=	1.

Now	the	usual	equation	c,	=	jc,v,+	*,<:,_,	+	>',<",_x,	denoting	the	carry	signal	c,	tobe	sent	to	stage	i	+	1,	can	be	rewritten	in	terms	of	g,	and	p,.

ct=g,+Pf,-\	(4-8)

Similarly,	c{_x	can	be	expressed	in	terms	of	g{_x,	/?,_,,	and	c,_2.

c^_1=ft_1+p^1cl_2	(4.9)

On	substituting	(4.9)	into	(4.8)	we	obtain

Ci	=	gi+Pig^i+PiPi-iCi-2

Continuing	in	this	way,	c,	can	be	expressed	as	a	sum-of-products	function	of	the	pand	g	outputs	of	all	the	preceding	stages.	For	example,	the	carries	in	a	four-stagecarry-
lookahead	adder	are	defined	as	follows:

C\=g\+P\80	+	PlP0Cin

C2	=	82	+	P28l	+	P2P180	+	P2PlP0cin

c3	=	8i+	P382	+	/^Sl	+	PzP2P\80	+	P3P2P\P0cin

(4.10)

c„-i

Carry-lookahead	generator

Pn-\

A

Sn-\

1-bitadder

Pn-2

Zn-2
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rr	n
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1-bitadder

xn-\	yn-\

cn-2	yn-2

n

f0	>0

Figure	4.5

Overall	structure	of	carry-lookahead	adder.
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Figure	4.5	shows	the	general	form	of	a	carry-lookahead	adder	circuit	designed	inthis	way.

We	can	further	simplify	the	design	by	noting	that	the	sum	equation	for	stage	/

is	equivalent	to

2,.	=	^ev,©c,_,

zf	=	/>,©&©<:,._,

(4.11)

Combining	the	pg	equations	(4.7),	the	carry-lookahead	equations	(4.10),	and	themodified	sum	equations	(4.11)	for	0	<	i	<	3,	we	obtain	the	4-bit	carry-lookaheadadder
depicted	in	Figure	4.6.	This	design	is	found	in	practical	adders	such	as	the74283	IC	[Texas	Instruments	1988].	It	has	four	levels	of	logic	gates,	so	the	adder'smaximum
delay	is	Ad,	where	d	is	the	(average)	gate	delay.	This	delay	is	indepen-dent	of	the	number	of	inputs	n	as	long	as	carry	generation	is	defined	by	two-levellogic	as	in	(4.10).
However,	the	number	of	gates	grows	in	proportion	to	n2	as	nincreases.	In	contrast,	the	number	of	gates	in	a	two-level	adder	of	the	sum-of-products	type	grows
exponentially	with	n,	while	the	number	of	gates	in	a	ripple-carry	adder	grows	linearly	with	n.	The	complexity	of	the	carry-generation	logic	inthe	carry-lookahead	adder,
including	its	gate	count,	its	maximum	fan-in,	and	itsmaximum	fan-out,	increases	steadily	with	n.	Such	practical	cost	considerationslimit	n	in	a	single	carry-lookahead	adder
module	to	four	or	so.

Adder	expansion.	The	methods	of	handling	carry	signals	in	the	two	main	com-binational	adder	designs	considered	so	far,	namely,	ripple-carry	propagation	(Fig-ure	4.3)
and	carry-lookahead	(Figure	4.5),	can	be	extended	to	larger	adders	of	thekind	needed	to	execute	add	instructions	in,	say,	a	64-bit	computer.	If	we	replace	then	1-bit	(full)
adder	stages	in	the	/7-bit	ripple-carry	design	of	Figure	4.3	with	n	k-bitadders,	we	obtain	an	nk-bit	adder.	Four	4-bit	adders	such	as	the	4-bit	carry-lookahead	circuit	of
Figure	4.6	can	be	connected	in	this	way	to	form	the	16-bitadder	appearing	in	Figure	4.7.	This	design	represents	a	compromise	between	a	16-stage	ripple-carry	adder,
which	is	cheap	but	slow,	and	a	single-stage	16-bit
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A	4-bit	carry-lookahead	adder.
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Figure	4.7

A	16-bit	adder	composed	of	4-bit	adders	linked	by	ripple-carry	propagation.

carry-lookahead	adder,	which	is	fast,	expensive,	and	impractical	because	of	thecomplexity	of	its	carry-generation	logic.	The	circuit	of	Figure	4.7	effectively	com-bines	sets
of	four	xiyi	inputs	into	groups	that	are	added	via	carry	lookahead;	theresults	computed	by	the	various	groups	are	then	linked	via	ripple	carries.

Comparing	Figures	4.3	and	4.7,	we	see	that	we	have	effectively	replaced	com-ponents	designed	for	1-bit	addition	with	similar	but	larger	components	intended	for4-bit
addition.	If	we	apply	the	same	principle	to	the	carry-lookahead	circuit	of	Fig-ure	4.5,	we	get	the	expanded	design	of	Figure	4.8.	Again	we	are	replacing	1-bit
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Figure	4.8

A	16-bit	adder	composed	of	4-bit	adders	linked	by	carry	lookahead.

adders	with	4-bit	adders,	but	now	each	adder	stage	produces	a	propagate-generatesignal	pair	pg	instead	of	cout,	and	a	carry-lookahead	generator	converts	the	four	setsof
pg	signals	to	the	carry	inputs	required	by	the	four	stages.	The	"group"	g	and	psignals	produced	by	each	4-bit	stage	are	defined	by

g	=	xiyi	+	xi_lyi_l(xi+	y,)	+	xi_2yi_2(xi	+	>',)(*,_!	+	yt_{)

+	*t-a)Y-3&j+y^xi-\	+	yi-\)(xi-2+y,-2)p	=	(*,-	+	y^-i	+	y,_i)(x,_2	+	y,_2)(*,_3	+	y,-_3)

(4.12)

which	directly	extend	(4.7).	It	is	not	hard	to	show	that	the	logic	to	generate	thegroup	carry	signals	cout,	cn,	c7,	and	c3	in	Figure	4.8	is	exactly	the	same	as	that	ofthe
carry-lookahead	generator	of	Figure	4.6	and	is	therefore	defined	by	Equations(4.10).

EXAMPLE	4.1	DESIGN	OF	A	COMPLETE	TWOS-COMPLEMENT	ADDER-SUBTRACTER.	To	illustrate	the	preceding	concepts,	we	will	design	a	twos-comple-ment	adder-
subtracter	that	computes	the	three	quantities	X	+	Y,	X	-	Y,	and	Y	-	X,	aswell	as	overflow	and	zero	flags.	The	design	goal	is	to	minimize	the	number	of	gatesused;	operating
speed	is	not	of	concern.	The	circuit	is	required	in	several	versions	thathandle	different	data	word	sizes,	including	4,	8,	and	16	bits.	We	will	assume	that	wehave	standard
gate-level	and	4-bit	register-level	components	available	as	buildingblocks.

The	lowest	cost	adders	employ	ripple-carry	propagation	and	can	easily	provideaccess	to	the	internal	signals	needed	by	the	flags.	Recall	that	overflow	detection	usesc„_2,
the	input	carry	to	the	sign	position.	Zero	detection	requires	access	to	all	the	sumoutputs	and	poses	no	special	problems.	Figure	4.9a	shows	die	logic	diagram	of
anappropriate	4-bit	ripple-carry	adder.	The	overflow	flag	is	defined	by	Equation	(4.6)	asv	=	c3(&	c2	and	is	realized	here	by	an	XOR	gate.	The	zero	flag	is	defined	by	z	=
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Figure	4.9

Low-cost	addition	and	subtraction	of	twos-complement	numbers:	(a)	4-bit	adder	moduleand	(b)	8-bit	adder-subtracter.

z3	+	z2	+	z	j	+	Zq	^d	implemented	by	a	NOR	gate.	We	can	use	k	copies	of	this	adder	toproduce	a	4/c-bit	ripple-carry	adder	in	the	usual	way.	The	overflow	flag	for	the
entirecircuit	is	taken	from	the	v	output	of	the	left-most	(most	significant)	stage,	while	the	zoutputs	of	all	the	stages	are	ANDed	to	produce	the	zero	flag.

To	extend	the	adder	to	an	adder-subtracter,	the	design	of	Figure	4.4	is	a	good	start-ing	point.	It	uses	an	XOR	word	gate	to	complement	the	X	input,	thereby	enabling
thecircuit	to	compute	X	+	Y	and	Y-	X.	To	implement	the	third	operation	X	-	Y,	we	could

insert	a	two-way	4-bit	multiplexer	into	each	of	the	data-in	buses	so	that	both	X	and	Y	233



can	be	applied	to	each	of	the	adder-subtracter's	data	inputs.	A	cheaper	solution	is	to

insert	a	second	XOR	word	gate	into	the	Ybus,	enabling	Y	to	be	complemented	indepen-	CHAPTER	4

dently.	We	can	then	compute	X	-	Y	in	the	form	X	+	Y+l.	Datapath	Design

The	complete	design	of	an	8-bit	adder-subtracter	along	the	foregoing	lines	isdepicted	in	Figure	4.9b.	It	contains	two	4-bit	adders	of	the	type	in	Figure	4.9a	linked	bytheir
carry	lines.	Two	lines	COMPX	and	COMPY	control	the	XOR	gates	that	change	Xand	Kto	X	and	Y,	respectively.	The	OR	gate	sets	the	adder's	carry-in	line	to	1
duringsubtraction.	A	two-input	AND	gate	combines	the	two	z	outputs	to	produce	the	zeroflag,	which	is	1	if	and	only	if	the	entire	8-bit	result	Z	=	0.

Three	of	the	four	signal	combinations	on	COMPX	and	COMPY	control	linesimplement	the	desired	three	arithmetic	functions.	The	fourth	combination	11	imple-ments	the
sum	X	+	Y	+	1,	which	is	an	arithmetic	function	implemented	by	our	designthat	has	no	obvious	uses.1	Such	superfluous	functions	are	common	in	the	design	of
dataprocessing	circuits.

4.1.2	Multiplication

Fixed-point	multiplication	requires	substantially	more	hardware	than	fixed-pointaddition	and,	as	a	result,	is	not	included	in	the	instruction	sets	of	some	smaller	pro-
cessors.	Multiplication	is	usually	implemented	by	some	form	of	repeated	addition.A	simple	but	slow	method	to	compute	X	x	Y	is	to	add	the	multiplicand	Yto	itself	Xtimes,
where	X	is	the	multiplier.	(A	version	of	this	technique	using	counters	is	dis-cussed	in	problem	2.4.)	Often	multiplication	is	implemented	by	multiplying	Y	by	Xk	bits	at	a
time	and	adding	the	resulting	terms.	Figure	4.10	shows	this	process	forunsigned	binary	numbers	in	pencil-and-paper	calculations	with	k	=	1.	The	mainoperations	involved
are	shifting	and	addition.	The	algorithm	of	Figure	4.10	is	inef-ficient	in	that	the	1-bit	products	xJZ'Y	must	be	stored	until	the	final	addition	step	iscompleted.	In	machine
implementations	it	is	desirable	to	add	each	JCy2'Fterm	as	it	isgenerated	to	the	sum	of	the	preceding	terms	to	form	a	number	Pi+,	called	a	partialproduct.	Figure	4.11
shows	the	calculation	in	Figure	4.10	implemented	in	this	way.The	computation	involved	in	processing	one	multiplier	bit	Xj	can	be	described	by	aregister-transfer
statement	of	the	form

PM	:=Pl	+	Xj2'Y	(4.13)

1010	Multiplicand	Y

1101	Multiplier	X	=	xix2xlx0

1010	x0Y

0000	x{lY

1010	x222Y

1010	x^Y	3	Figure	4.10

10000010	Product	P	=	Z,Xj2YJ	Typical	pencil-and-paper	method	for

,	=	o

multiplication	of	unsigned	binary	numbers.

'On	the	other	hand,	it	has	been	observed,	that	"there	is	no	feature	of	a	machine,	however	pathological,	whichcannot	be	exploited	by	a	programmer."	(Kampe	I960].

234 1010 Multiplicand	YMultiplier	X	=	x}x2xlx0

SECTION	4.1 1101

Fixed-Point 00000000 P0	=	0

Arithmetic 1010 x0Y

00001010 P,	=	P0	+	x0Y

0000 x{lY

00001010 P2	=	Px+x{2Y

1010 x222YJ

00110010 P}	=	P2	+	x222Y

1010 x323Y

10000010 P4	=	P3	+	xg?Y-P

Figure	4.11

The	multiplication	of	Figure	4.10	modified	formachine	implementation.

where	2'Y	is	equivalent	to	Y	shifted	/'	positions	to	the	left.	In	the	version	of	this	mul-tiplication	algorithm	presented	in	Example	2.7	(section	2.2.3),	P,	is	shifted	rightwith
respect	to	a	fixed	multiplicand	Y	so	that	(4.13)	is	replaced	by	the	equivalenttwo	operations

/>,:=/>,	+	*/;	PM*Z*ti	(4.14)

The	multiplication	of	sign-magnitude	numbers	requires	a	straightforwardextension	of	the	unsigned	case	discussed	above.	The	magnitude	part	of	the	productP	=	X	X	Y	is
computed	by	the	unsigned	shift-and-add	multiplication	algorithm,	andthe	sign	ps	of	P	is	computed	separately	from	the	signs	of	X	and	Y	as	follows:	ps	:=xs	®	ys.	The
implementation	of	sign-magnitude	multiplication	using	this	sequentialmethod	is	covered	in	Example	2.7.

Twos-complement	multipliers.	The	multiplication	of	twos-complement	num-bers	presents	some	difficulties	in	the	case	of	negative	operands.	For	example,	whena	negative
P,	is	right-shifted	as	in	(4.14),	leading	Is	rather	than	leading	0s	must	beintroduced	at	the	left	end	of	the	number.	More	seriously,	the	multiplication	processmust	treat
positive	and	negative	operands	differently.

A	conceptually	simple	approach	to	twos-complement	multiplication	is	tonegate	all	negative	operands	at	the	beginning,	perform	unsigned	multiplication	onthe	resulting
(positive)	numbers,	and	then	negate	the	result	if	necessary.	Twos-complement	negation	for	an	integer	X	=	xn_lxn_2xn_3...x]x0	is	specified	by

-X=	i„_1x„_2Jc„_3...x1x0	+	000...01	(modulo2")	(4.15)

and	can	easily	be	implemented	by	an	adder	and	an	EXCLUSIVE-OR	word	gate,	asshown	in	Figure	4.4.	However,	up	to	four	extra	clock	cycles	are	needed	to	negate	Xand	Y
and	the	double-length	product	P.	Several	faster	schemes	have	been	proposedto	handle	negative	operands.	Since	these	hinge	on	certain	properties	of	the	twos-complement
representation,	we	consider	the	latter	first.

Clearly	x,	=	1	-	jc,	(modulo	2),	so	we	can	rewrite	(4.15)	as	follows:

(modulo	2")	(4.16)

-X	=	111...	11

-2An



.3...jc1jc0	+	000...01

Since	2"	=	111...	11	+	000..	.01,	this	equation	is	equivalent	to	-X	=	2"	-	X,	which,incidentally,	indicates	the	origin	of	the	term	twos-complement.	Now	if	Xis	positive

(xn_l	=	0),	we	can	express	its	value	as	235

n-2

x=	£2'*,	(4-17)

(	=	0

If	X	is	negative	(xn_x	=	1),	then	(4.17)	does	not	hold.	However,	we	can	rewrite(4.16)	as

-X=	ll\...ll-(0x„_2xn_y..x:x0+	100...00)	+	000...01

=	2*-l-xn_2xn_3...xlx0	(4.18)

because	2"1	=	111...	11	—	100..	.00	+	000..	.0.	Hence	for	negative	X,

X	=	-2	+	x„_2x„_3	...XxXq

n-2

=	-2"-'+	X2'*«	(4-19)

i	=	0

Finally,	we	combine	(4.17)	and	(4.19)	into	a	single	formula

n-2

Z	=	-2""Vi+	X2'*,	(4-20)

i	=	0

which	is	valid	for	both	positive	and	negative	n-bit	integers.	For	example,	supposethat	n	=	6	and	X	=	101101.	Evaluating	X	according	to	(4.20)	yields

X	=	-25	x	1	+	24	xO	+	23	x	1	+	22	x	1	+	21	xO	+	2°	x	1

=	-32	+	8	+	4+	1	=-19

Equation	(4.20)	implies	that	we	can	treat	bits	xn_2xn_3...x1x0	of	a	negativetwos-complement	integer	in	the	same	way	as	the	corresponding	(magnitude)	bits	ofa	positive
number;	each	bit	xt	has	the	positive	weight	2'.	Weight	+2""1	is	assignedto	the	sign	bit	xn_x	of	a	positive	number;	however,	since	x„_,	=	0,	its	contribution	tothe	number	is
zero.	In	the	negative	case,	the	sign	xn_x	is	assigned	weight	-2"~';	thisadds	-2"~l	to	the	number,	ensuring	that	it	is	negative.

If	X	=	xn_lxn_2...xlx0	is	a	twos-complement	fraction	instead	of	an	integer,	thenthe	negation	formula	(4.15)	remains	valid,	but	because	bit	/"	now	has	weight	2'""+1instead
of	2',	Equation	(4.20)	is	replaced	by

n-2

*	=	-2Vi+	X2""	+	\	(4-2D

;	=	0

In	effect	we	have	multiplied	(4.20)	by	the	scaling	factor	2"*"-1'.	For	example,	letn	-	4	and	X	=	1011,	which	represents	the	fraction	-0.62510.	Application	of	(4.21)yields

X	=	-2°X1	+2_1	X0	+	2_2X1	+2'3Xl

=	-1.000	+	0.250	+	0.125	=	-0.625

Suppose	that	X	is	the	multiplier	operand	in	a	shift-and-add	multiplication	algo-rithm	to	compute	P	=	X	x	Y	for	twos-complement	numbers.	Equations	(4.20)	and
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SECTION	4.1

Fixed-Point

Arithmetic

Sign

logic

Accumulator

Multiplier	register

Q[0]

Paralleladder

f

Pis-Pi

Data	out

M[7]Multiplicand	register

M

<£

Controlunit

PYPoData	out

X	YData	in

Figure	4.12

The	datapath	of	the	twos-complement	multiplier.

(4.21)	suggest	that	we	can	use	an	unsigned	multiplication	technique	like	thoseillustrated	in	Figures	4.12	and	4.13	with	one	change:	When	multiplying	by	the	signbit,
perform	subtraction	rather	than	addition	in	the	final	step	if	a	minus	sign	xn_x	=	1is	encountered.	This	observation	is	the	basis	of	a	twos-complement
multiplicationalgorithm	developed	by	James	E.	Robertson,	which	has	been	widely	used	in	com-puter	design	[Robertson	1955;	Cavanagh	1984].	We	now	show	one	way	to
adaptthe	circuit	developed	in	Example	2.7	for	sign-magnitude	multiplication	to	dealwith	the	twos-complement	case.

2Cmultiplier (in:	INBUS;	out:	OUTBUS):

register	A[7:0],	M[7:0],	Q[7:0],	COUNT[2:0],	F;



bus	INBUS[7:0],	OUTBUS[7:0]:

BEGIN: A	:=	0.	COUNT	:=	0,	F	:=	0.

INPUT: M:=	INBUS;

Q:=	INBUS;

ADD: A[7:0]	:=	A[7:0]	+	M[7:0]	x	Q[0],

F	:=(M[7]	and	Q[0])	or	F;

RSHIFT: A[7]	:=	F,	A[6:0].Q	:=	A.Q[7:1],	COUNT	:=	COUNT	+	1;

TEST: if	COUNT	*	7	then	go	to	ADD;

SUBTRACT: A[7:0]	:=	A[7:0]	-	M[7:0]	x	Q[0],	Q[0]	:=	0;

OUTPUT: OUTBUS	:=	Q;

OUTBUS	:=	A;

end	2Cmultipl er;

Figure	4.13

HDL	description	of	the	multiplier	for	8-bit	twos-complement	fractions.

EXAMPLE	4.2	DESIGN	OF	A	MULTIPLIER	FOR	TWOS-COMPLEMENT

fractions.	Consider	again	the	task	of	multiplying	two	8-bit	binary	fractions	X	=x1x(/x5x4xyx2xlx0	and	Y	=	Jvy^iV^^vv'^Vo	t0	forrn	tne	product	P	=	YxX,	this	time
usingtwos-complement	code.	(Example	2.7	analyzed	this	problem	for	the	sign-magnitudecase.)	Assume	that	the	multiplier	will	have	a	register-level	structure	similar	to
that	inFigure	2.41,	with	registers	A,	M,	and	Q	storing	the	various	operands	and	A.Q	forminga	right-shift	register.	Since	sign	bits	will	be	included	in	additions	and
subtractions,	weneed	an	8-bit	adder-subtracter,	rather	than	the	7-bit	magnitude-only	adder	used	in	theearlier	design.	Figure	4.12	shows	the	datapath	of	the	proposed
design	at	the	registerlevel.

To	develop	the	required	twos-complement	multiplication	algorithm	for	thismachine,	we	consider	the	four	possible	cases	determined	by	the	signs	of	X	and	Y.

1.	x-j	=	y7	=	0;	that	is,	both	X	and	Y	are	positive.	The	computation	in	this	case	is	effec-tively	unsigned	multiplication	with	the	product	P	computed	in	a	series	of	add-and-
shift	steps	of	the	form

P.	:=	P,	+	x,Y:

Vi

All	partial	products	P{	are	nonnegative,	so	leading	0s	are	introduced	into	A	duringthe	right-shift	operation	indicated	by	the	factor	2"1.

2.	x7	=	0,	y-j	=	1;	that	is,	X	is	positive	and	Y	is	negative.	The	partial	product	/>,-	will	bezero,	and	leading	0s	should	be	shifted	into	A	as	before,	until	the	first	1	in	X
isencountered.	Multiplication	of	Y	by	this	1	and	addition	of	the	result	to	A	causes	/>,to	become	negative,	from	which	point	on	leading	Is	rather	than	0s	must	be	shiftedinto
A.	These	rules	ensure	that	a	right	shift	corresponds	to	division	by	2	in	twos-complement	code.

3.	x7	=	1,	v7	=	0;	that	is,	X	is	negative	and	Y	is	positive.	This	follows	case	1	for	the	firstseven	add-and-shift	steps	yielding	the	partial	product
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For	the	final	step,	often	referred	to	as	a	correction	step,	the	subtraction	P	:=	P7	■performed.	The	result	P	is	then	given	by

6	/	6	\

P	=	-Y+	X2"V	=	U+	E2'-7JcIJy

yis

which	is	XxYby	(4.21).4.	x1	=	y1=	1;	that	is,	both	X	and	Kare	negative.	The	procedure	used	here	follows	case2,	with	leading	0s	(Is)	being	introduced	into	the	accumulator
whenever	its	contentsare	zero	(negative).	The	correction	(subtraction)	step	of	case	3	is	also	performed,which	ensures	that	the	final	product	in	A.Q	is	nonnegative.

Each	addition/subtraction	step	can	be	performed	in	the	usual	twos-complementfashion	by	treating	the	sign	bits	like	any	other	and	ignoring	overflow.	Care	is	needed	inthe
shift	step	to	ensure	that	the	correct	new	value	is	placed	in	the	accumulator's	signposition	A[7].	This	value	must	be	a	leading	0	if	the	current	partial	product	in	A.Q
ispositive	or	zero,	and	1	if	it	is	negative.	We	introduce	a	flip-flop	F	to	control	the	valuesassigned	to	A[7].	F	is	initially	set	to	0,	and	is	subsequently	defined	by

F	:=	(v7an</-t,-)0r	F

Z38 Step Action	F	Accumulator	A Register	Q

SECTION	4.1

Fixed-Point

Arithmetic

0

1

Initialize	registers	0	00000000

11010101

Add	M	to	A	1	11010101

10110011	=	multiplier	X

=	multiplicand	Y=	M10110011

Right-shift	F.A.Q 11101010 11011001

2 11010101

Add	M	to	A [	10111111 U011001

Right-shift	F.A.Q [	11011111 11101100

3 00000000

Add	zero	to	A I	11011111 lnonoo



Right-shift	F.A.Q 11101111 11110110

4 00000000

Add	zero	to	A 11101111 nnono

Right-shift	F.A.Q I	11110111 11111011

5 11010101

Add	M	to	A	] [	11001100 union

Right-shift	F.A.Q 11100110 oinnoi

6 11010101

Add	M	to	A	] 10111011 oninoi

Right-shift	F.A.Q 11011101 101	nno

7 00000000

Add	zero	to	A 11011101 10111110

Right-shift	F.A.Q 11101110 11011111

8 11010101

Subtract	M	from	A 00011001 11011111

Set	Q[0]	to	0 00011001 11011110	=	product	P

Figure	4.14

Illustration	of	the	Robertson	multiplication	algorithm	for	twos-complement	fractions.

Here	y7	is	the	sign	of	the	multiplicand	stored	in	M[7],	and	x,	is	the	current	multiplier	bitbeing	tested	in	Q[0].	Thus	F	is	set	to	1	if	Y	is	negative	and	at	least	one	nonzero	xt
isencountered.	Once	set	to	1,	it	remains	at	that	value.	A	negative	Y	and	a	positive	or	neg-ative	X	therefore	produce	a	series	of	negative	partial	products.	This	situation	is	to
beexpected,	since	bits	x6:x0	of	the	multiplier	X	are	always	treated	as	if	they	were	positive.A	positive	Y,	or	X	=	0,	causes	F	to	remain	permanently	at	0.	Note	that	the	sign
pi5	of	theproduct	P	requires	no	separate	computational	step.	As	in	Example	2.7,	the	least	signifi-cant	bit	p0	of	P	is	set	to	0	to	make	the	result	exactly	16	bits	long.

Figure	4.13	presents	an	HDL	description	of	the	twos-complement	multiplicationalgorithm,	which	summarizes	the	foregoing	analysis;	compare	the	corresponding	sign-
magnitude	algorithm	in	Figure	2.39.	An	application	of	the	present	algorithm	to	the	caseX	=	10110011	and	Y	=	11010101	appears	in	Figure	4.14.	The	sign	bit	x7	of	the
multi-plier	X	is	underlined	to	show	its	passage	through	Q.	Observe	how	F	becomes	1	in	step1,	when	the	negative	multiplicand	is	first	added	to	the	accumulator.	F
continues	to	sup-ply	leading	Is	to	the	A	register	until	step	8.	Then	because	Q[7]	=	xn	=	1,	a	subtraction	isperformed	that	produces	the	proper	sign	pi5	=	0	in	A(0).	Setting
Q[0]	=	p0	to	0	com-pletes	the	multiplication	process.

Booth's	algorithm.	Another	interesting	and	widely	used	scheme	for	twos-complement	multiplication	was	proposed	by	Andrew	D.	Booth	in	the	1950s

[Booth	1951].	Like	Robertson's	method	in	Example	4.2,	Booth's	algorithm	239employs	both	addition	and	subtraction,	but	it	treats	positive	and	negative	operandsuniformly
—no	special	actions	are	required	for	negative	numbers.	Booth's	algo-rithm	can	also	be	readily	extended	in	various	ways	to	speed	up	the	multiplicationprocess;	see
problems	4.16	and	4.17.	A	version	of	this	algorithm	implements	theARM6's	multiply	instruction.

The	multiplication	algorithms	we	have	considered	so	far	involve	scanning	themultiplier	X	from	right	to	left	and	using	the	value	of	the	current	multiplier	bit	xi	todetermine
which	of	the	following	operations	to	perform:	add	the	multiplicand	Y,subtract	Y,	or	add	zero,	that	is,	no	operation.	In	Booth's	approach	two	adjacent	bitsxixi_]	are	examined
in	each	step.	If	xpcj_l	=	01,	then	Y	is	added	to	the	current	partialproduct	Pj,	while	if	x-x^	=	10,	Y	is	subtracted	from	Pt.	If	x-x^	=	00	or	11,	then	nei-ther	addition	or
subtraction	is	performed;	only	the	subsequent	right	shift	off,	takesplace.	Thus	Booth's	algorithm	effectively	skips	over	runs	of	Is	and	runs	of	0s	thatit	encounters	in	X.	This
skipping	reduces	the	average	number	of	add-subtract	stepsand	allows	faster	multipliers	to	be	designed,	although	at	the	expense	of	more	com-plex	timing	and	control
circuitry.

The	validity	of	Booth's	method	can	be	seen	as	follows.	Suppose	that	X	is	apositive	integer	and	contains	a	subsequence	X*	consisting	of	a	run	of	k	1	s	flankedby	two	0s.

X*	=	xixi_lxi_2	...	xj_k+lxi_kxi_k_l

=	01	1	...	1	10

In	a	direct	add-and-shift	multiplication	algorithm	such	as	Robertson's,	Y	is	multi-plied	by	each	bit	of	X*	in	sequence	and	the	results	are	summed	so	that	X*'s	contri-bution
to	the	product	P	=	X	x	Y	is

/-I

^y	(4.22)

j	=	i-k

Now	when	Booth's	algorithm	is	applied	to	X*,	it	performs	an	addition	when	itencounters	*;*,_]	=	01,	which	contributes	2'Y	to	P.	It	performs	a	subtraction	atxi-kxi-k-i	=	1^'
which	contributes	-2'~kY	to	P.	Thus	the	net	contribution	of	X*to	the	product	P	in	this	case	is

2>Y-2i-kY=2-kY(2k-\)Y

/,-1

=	2'-*	£2mr

m	=	0

k-	1m	=	0

2m	+	'-kY	(4.23)

Suppose	the	index	m	is	replaced	by	j	=	m	+	i	-	k.	Then	the	upper	and	lower	limits	ofthe	summation	in	(4.23)	change	from	k	-	1	and	0	to	/	-	1	and	/'	-	k,	respectively,implying
that	(4.22)	and	(4.23)	are,	in	fact,	the	same.	It	follows	that	Booth's	algo-rithm	correctly	computes	the	contribution	of	X*,	and	hence	of	the	entire	multiplierX,	to	the	product
P.	Equation	(4.20)	implies	that	the	contribution	of	a	negative	X*
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(in:	INBUS;	out:	OUTBUS);



2W BoothMult register	A[7:0],	M[7:0],	Q[7:-l],	COUNT[2:0],

SECTION	4.1

Fixed-Point bus	INBUS[7:0],	OUTBUS[7:0];

Arithmetic BEGIN: A	:=	0,	COUNT	:=	0,

INPUT:
M	:=	INBUS;

Q[7:0]:=	INBUS,	Q[-1]:=0;

SCAN:
if	Q[l]	Q[0]	=	01	then	A[7:0]	:=	A[7:0]	+	M[7:0],	go	toTEST;

else	if	Q[l]	Q[0]	=	10	then	A[7:0]	:=	A[7:0]	-	M[7:0];

TEST: if	COUNT	=	7	then	go	to	OUTPUT,

RSHIFT: A[7]	:=	A[7],	A[6:0].Q	=	A.Q[7:0],

INCREMENT: COUNT	:=	COUNT	+	1,	go	to	SCAN;

OUTPUT: OUTBUS	:=	A,	Q[0]	:=	0;OUTBUS	:=Q[7:0];

end	BoothMult;

Figure	4.15

HDL	description	of	an	8-bit	multiplier	implementing	the	basicBooth	algorithm.

to	P	can	also	be	expressed	in	the	formats	of	(4.20)	and	(4.23);	a	similar	argumentdemonstrates	the	correctness	of	the	algorithm	for	negative	multipliers.	The	argu-ment	for
fractions	is	essentially	the	same	as	that	for	integers.

The	twos-complement	multiplication	circuit	of	Figure	4.12	can	easily	be	mod-ified	to	implement	Booth's	algorithm.	Figure	4.15	describes	a	straightforwardimplementation
of	the	Booth	algorithm	using	the	above	approach	with	n	=	8	and	acircuit	based	on	Figure	4.12.	An	extra	flip-flop	Q[-l]	is	appended	to	the	right	endof	the	multiplier	register
Q,	and	the	sign	logic	for	A	is	reduced	to	the	simple	signextension	A[7]	:=	A[7].	In	each	step	the	two	adjacent	bits	Q[0]Q[-1]	of	Q	areexamined,	instead	of	Q[0]	alone	as	in
Robertson's	algorithm,	to	decide	the	opera-tion	(add	Y,	subtract	Y,	or	no	operation)	to	be	performed	in	that	step.	For	compari-son	with	Robertson's	method	in	Figure	4.13,
the	operands	are	assumed	to	befractions.	The	application	of	this	algorithm	to	the	example	solved	by	Robertson'smethod	in	Figure	4.14	appears	in	Figure	4.16.	where	the
bits	stored	in	Q[0]Q[-1]	ineach	step	are	underlined.

Combinational	array	multipliers.	Advances	in	VLSI	technology	have	made	itpossible	to	build	combinational	circuits	that	perform	n	x	H-bit	multiplication	forfairly	large
values	of	n.	An	example	is	the	Integrated	Device	TechnologyIDT721CL	multiplier	chip,	which	can	multiply	two	16-bit	numbers	in	16	ns	[Inte-grated	Device	Technology
1995].	These	multipliers	resemble	the	«-step	sequentialmultipliers	discussed	above	but	have	roughly	n	times	more	logic	to	allow	the	prod-uct	to	be	computed	in	one	step
instead	of	in	n	steps.	They	are	composed	of	arraysof	simple	combinational	elements,	each	of	which	implements	an	add/subtract-and-shift	operation	for	small	slices	of	the
multiplication	operands.

Suppose	that	two	binary	numbers	X	=	xn_]xn_2...xlx0	and	Y	=	y„_iy„_2---)'i)'oare	to	be	multiplied.	For	simplicity,	assume	that	X	and	Fare	unsigned	integers.	Theproduct	P
=	X	X	Kcan	therefore	be	expressed	as

Step Action Accumulator Register	Q

0 Initialize	registers 00000000 10110011	=	multiplier	X

SetQ[-l]toO 00000000 101100110

1 11010101 =	mulitplicand	Y=	M

Subtract	M	from	A 00101011 1011001K)

Right-shift	A.Q 00010101 110110011

2 Skip	add/subtract 00010101 1101100U

Right-shift	A.Q 00001010 111011001

3 11010101

Add	M	to	A 11011111 11101100J.

Right-shift	A.Q 11101111 111101100

4 Skip	add/subtract 11101111 111101100

Right-shift	A.Q 11110111 111110110

5 11010101

Subtract	M	from	A 00100010 111110110

Right-shift	A.Q 00010001 011111011

6 Skip	add/subtract 00010001 oi	ii	non

Right-shift	A.Q 00001000 101111101



7 11010101

Add	M	to	A 11011101 loiimpi

Right-shift	A.Q 11101110 110111110

8 11010101

Subtract	M	from	A 00011001 110111110

Set	Q[0]	to	0 00011001 110111100	=	product/3
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Figure	4.16

Illustration	of	the	Booth	multiplication	algorithm.

p=	X2V

(4.24)

=	o

corresponding	to	the	bit-by-bit	multiplication	style	of	Figure	4.10.	Now	(4.24)	canbe	rewritten	as

P=	12'

X*^2"'

;	=	0

(4.25)

Each	of	the	n2	1-bit	product	terms	x-yi	appearing	in	(4.25)	can	be	computed	by	atwo-input	AND	gate—observe	that	the	arithmetic	and	logical	products	coincidein	the	1-bit
case.	Hence	an	n	x	n	array	of	two-input	ANDs	of	the	type	shown	inFigure	4.17	can	compute	all	the	x^j	terms	simultaneously.	The	terms	aresummed	according	to	(4.25)	by
an	array	of	n(n	-	1)	1-bit	full	adders	as	shown	inFigure	4.18;	this	circuit	is	a	kind	of	two-dimensional	ripple-carry	adder.	Theshifts	implied	by	the	2'	and	2j	factors	in	(4.25)
are	implemented	by	the	spatial	dis-placement	of	the	adders	along	the	x	and	y	dimensions.	Note	the	similaritiesbetween	the	circuit	of	Figure	4.17	and	the	multiplication
examples	of	Figures4.10	and	4.11.
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The	AND	and	add	functions	of	the	array	multiplier	can	be	combined	into	a	sin-gle	component	(cell)	as	illustrated	in	Figure	4.19.	This	cell	realizes	the	arithmeticexpression

jrs	=	a	plus	b	plus	xy

(4.26)

An	n	x	rt-bit	multiplier	can	be	built	using	n	copies	of	this	cell	as	the	sole	compo-nent,	although,	as	in	Figure	4.18,	some	cells	on	the	periphery	of	the	array	haveinputs	set
to	0	or	1,	effectively	reducing	their	operation	from	(4.26)	a	plus	bplus	xyto	a	plus	b	(a	half	adder).	The	multiplication	time	for	this	multiplier	is	determinedby	the	worst-
case	carry	propagation	and,	ignoring	the	differences	between	theinternal	and	peripheral	cells,	is	{In	-\)D,	where	D	is	the	delay	of	the	basic	cell.

Multiplication	algorithms	for	twos-complement	numbers,	such	as	Robertson'sand	Booth's,	can	also	be	realized	by	arrays	of	combinational	cells	as	the	nextexample	shows.

EXAMPLE	4.3	ARRAY	IMPLEMENTATION	OF	THE	BOOTH	MULTIPLICA-TION	algorithm	[KOREN	1993].	Implementing	the	Booth	method	by	a	combi-national	array
requires	a	multifunction	cell	capable	of	addition,	subtraction,	and	nooperation	(skip).	Such	a	cell	B	is	shown	in	Figure	4.20a.	Its	various	functions	areselected	by	a	pair	of
control	lines	H	and	D	as	indicated.	It	is	easily	seen	that	therequired	functions	of	B	are	defined	by	the	following	logic	equations.

Z	=	a	©	bH	®	cH

c0M	=	(a@	D)(b	+	c)	+	bc

When	HD	=	10,	these	equations	reduce	to	die	usual	full-adder	equations	(4.1);	whenHD	=11,	they	reduce	to	the	corresponding	full-subtracter	equations

z=a@b@c

c0„,	=	ab	+	ac	+	be

Figure	4.17

AND	array	for	4	x	4-bit	unsigned	multiplication.

carryout



Wo
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Po

Figure	4.18

Full-adder	array	for	4	x	4-bit	unsigned	multiplication.

Figure	4.19

Cell	M	for	an	unsigned	array	multiplier.

in	which	c	and	cout	assume	the	roles	of	borrow-in	and	borrow-out,	respectively.	WhenH	=	0,	z	becomes	a,	and	the	carry	lines	play	no	role	in	the	final	result.

An	H-bit	multiplier	is	constructed	from	n2	+	n(n	-	l)/2	copies	of	the	B	cell	con-nected	as	shown	in	Figure	4.20b.	The	extra	cells	at	the	top	left	change	the	array's	shapefrom
the	parallelogram	of	Figure	4.18	to	a	trapezium	and	are	employed	to	sign-extendthe	multiplicand	Y	for	addition	and	subtraction.	Note	how	the	diagonal	lines	marked
bdeliver	the	sign-extended	Y	directly	to	every	row	of	B	cells.	When	Y	is	positive,	it	issign-extended	by	leading	0s;	this	is	implicit	in	the	array	of	Figure	4.18.	In	the
presentcase,	when	Kis	negative,	it	must	be	explicitly	sign-extended	by	leading	Is.

The	operation	to	be	performed	by	each	row	;	of	B	cells	is	decided	by	bits	xixj_iof	the	operand	X.	To	allow	each	possible	^rv,_,	pair	to	control	row	operations,	we

244

SECTION	4.1

Fixed-Point

Arithmetic

1	-bit	adder/subtracter

H	D

0	X

1	0

1	1

Function

z	=	a	(no	operation)

coulz	=	apluf	bplus	c	(add)

coutz	=	a	-	b-	c	(subtract)

(a)

ZJLZJU'JLVJL^.L/JV-

-	s

B	■*--	B

B	*

B	*

V	HT	I	^

l-o

J-o

J-o

1-0

5?

Pe

Ps

/>4

Pi	Pi

(b)

P\

Po

Figure	4.20

Combinational	array	implementing	Booth's	algorithm:	(a)	main	cell	B	and(b)	array	multiplier	for	4	x	4-bit	numbers.



introduce	a	second	cell	type	denoted	C	in	Figure	4.20b	to	generate	the	control	inputsignal	H	and	D	required	by	the	B	cells.	Cell	C	compares	jc,	with	xj_]	and	generatesthe
values	of	HD	required	by	Figure	4.20a;	these	values	are	as	follows:

4.1.3	Division

In	fixed-point	division	two	numbers,	a	divisor	V	and	a	dividend	D,	are	given.	Theobject	is	to	compute	a	third	number	Q,	the	quotient,	such	that	Q	X	V	equals	or	isvery	close
to	D.	For	example,	if	unsigned	integer	formats	are	being	used,	Q	is	com-puted	so	that

D=QXV+R

where	R,	the	remainder,	is	required	to	be	less	than	V,	that	is,	0	<	R	<	V.	We	can	then	245

Writ£	^TER4

D/V	=Q	+	R/V	(4.27)	Datapath	Design

Here	R/V	is	a	small	quantity	representing	the	error	in	using	Q	alone	to	representD/V;	this	error	is	zero	if	R	=	0.

Preliminaries.	The	relationship	D	~	Q	X	V	suggests	that	a	close	correspon-dence	exists	between	division	and	multiplication,	specifically	the	dividend,	quo-tient,	and	divisor
correspond	to	the	product,	multiplicand,	and	multiplier,respectively.	This	correspondence	means	that	similar	algorithms	and	circuits	canbe	used	for	multiplication	and
division.	In	multiplication	the	shifted	multiplier	isadded	to	the	multiplicand	to	form	the	product.	In	division	the	shifted	divisor	is	sub-tracted	from	the	dividend	to	form	the
quotient.	Just	as	multiplication	ends	with	adouble-length	product,	division	often	begins	with	a	double-length	dividend.Despite	these	similarities,	division	is	a	more	difficult
operation	than	multiplicationbecause	to	determine	a	particular	quotient	bit	q,,	we	have	to	answer	the	question:How	many	multiples	is	the	divisor	V	of	the	current	partial
dividend	D(?	This	ques-tion	is	typically	answered	by	trial	and	error:	Multiply	V	by	a	trial	value	for	qjt	sub-tract	the	result	from	D,,	and	check	the	value	of	the	remainder.
Note	too	that	the	nextquotient	bit	ql+x	cannot	be	determined	until	qi	is	known.	Thus	division	has	an	ele-ment	of	uncertainty	not	found	in	multiplication.

One	of	the	simpler	binary	division	methods	is	a	sequential	digit-by-digitalgorithm	similar	to	that	used	in	pencil-and-paper	methods	with	decimal	numbers.Figure	4.21
illustrates	this	approach	for	a	3-bit	divisor	V	=	101	and	a	6-bit	divi-dend	D	=	100110.	The	dividend	is	scanned	from	left	to	right,	and	the	quotient	iscomputed	bit	by	bit.	In
each	step	divisor	V	is	compared	to	the	current	partial	divi-dend	Dj,	referred	to	here	as	the	partial	remainder	R,2	The	current	quotient	bit	qt	iseither	0	or	1,	and	is
determined	by	comparing	V	with	/?,;	this	comparison	is	thehard	part	of	division.	Note	that	decimal	division	is	harder	than	binary	in	this

(Jill Quotient	Q	=	qrftfrfo

Divisor	V=	101	100110 Dividend	D	=	R0

000 «iV

100110 R.

101 q22-W

10010 «2

101 <7,2-2V

1000 «3

101 <7o2-3V

011 R4	=	remainder	R

Figure	4.21

Typical	pencil-and-paper	method	for	division	of	unsigned	numbers.

2We	use	the	terms	partial	dividend	and	partial	remainder	interchangeably	because	the	remainder	from	step	iis	used	as	the	dividend	in	step	r	+	1.
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regard	because	q{	must	be	selected	from	10	possible	digit	values	instead	of	fromtwo.	If	the	numbers	appearing	in	the	division	calculation	of	Figure	4.21	areunsigned
binary	integers	of	length	six,	then	(4.27)	becomes

100110.	/	000101.	=	000111.	+	000011./000101.

<

corresponding	to	the	decimal	division	38/5	=	7	+	3/5.	If	the	numbers	are	unsigned6-bit	fractions,	then	Figure	4.21	is	interpreted	as

.100110/.	101000	=	.111000+	.000011/.	101000

corresponding	to	.59375A625	=	.875	+	.046875/.625.

In	integer	arithmetic	Q	and	R	are	always	integers	of	the	standard	word	size.	Iffraction	formats	are	used,	however,	the	number	of	bits	of	Q	is	not	necessarilybounded.	For
example,	.2OOO/.30O0	=	.66666...,	a	repeating	fraction.	It	is	neces-sary,	therefore,	to	limit	the	number	of	quotient	bits	generated	by	the	division	pro-cess.	Division	of
.2000	by	.3000	might	be	required	to	yield	a	four-digit	quotient	Qwith	truncation	or	rounding	determining	the	final	digit	of	Q.	Several	other	difficul-ties	occur	in	division.	If
D	is	too	large	relative	to	V,	then	Q	will	not	fit	in	the	stan-dard	word	size,	resulting	in	quotient	overflow.	For	instance,	the	four-digit	fractiondivision	.2000/.0100	produces	a
nonfraction	six-digit	result	20.0000.	When	V	=	0,the	quotient	Q	is	treated	as	undefined	or	infinity	and	a	divide-by-zero	error	is	saidto	occur.	Special	circuits	are	employed
to	check	for,	and	flag,	quotient	overflowand	zero	divisors	before	division	begins.

Basic	algorithms.	Suppose	that	the	divisor	V	and	dividend	D	are	unsignedintegers	and	the	quotient	Q	=	on_xqn_2qn_y..	is	to	be	computed	one	bit	at	a	time.	Ateach	step	i,
2~'V,	which	represents	the	divisor	shifted	/	bits	to	the	right,	is	comparedwith	the	current	partial	remainder	/?,-.	The	quotient	bit	qi	is	set	to	1	(0)	if	2~'V	is	less(greater)
than	/?,-,	and	a	new	partial	remainder	Ri+,	is	computed	according	to	therelation

*,+1	:=/?,-4,2-'V

(4.28)

In	machine	implementations	it	is	more	convenient	to	shift	the	partial	remainder	tothe	left	relative	to	a	fixed	divisor,	in	which	case	(4.28)	is	replaced	by

Ri+l:=2Rl-q,V

Figure	4.22	shows	the	calculation	of	Figure	4.21	modified	in	this	way.	The	finalpartial	remainder	R4	is	now	the	overall	remainder	R	shifted	three	bits	to	the	left,	sothat	R	=
2~3R4.

As	observed	above,	the	central	problem	in	division	is	finding	the	quotient	digitqx.	If	radix-r	numbers	are	being	represented,	then	q{	must	be	chosen	from	among	rpossible
values.	When	r	=	2,	q,	can	be	generated	by	comparing	V	and	2/?,	in	the	rthstep,	as	is	done	implicitly	in	Figure	4.22.	If	V>	2/?,,	then	q{	=	0;	otherwise,	q,■=	1.	IfV	is	long,
a	combinational	magnitude	comparator	circuit	may	be	impractical,	inwhich	case	q,	is	usually	determined	by	subtracting	V	from	2Rt	and	examining	thesign	of	2Rj	-	V.	If	2/?,
-	V	is	negative,	qi	=	0;	otherwise,	q,=	1.



The	circuit	used	for	multiplication	in	Example	4.2	(Figure	4.12)	is	easily	mod-ified	to	perform	division,	as	shown	in	Figure	4.23.	The	2«-bit	shift	register	A.Qstores	the
partial	remainders.	Initially	the	dividend	(which	can	contain	up	to	2n

Divisor	V Quotient	Q

101 100110000

Dividend	D	=<73V

*i

2/?,

q2v

R22R2

*3

2fl3q0VR4	=	23/?

--2R0 0

1001101001100101 01

1001001001000101 Oil

1000001000000101 0111

011000
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Figure	4.22

The	division	of	Figure	4.21	modified	for	machine	implementation.

bits)	is	placed	in	A.Q.	The	divisor	V	is	placed	in	the	M	register	where	it	remainsthroughout	the	division	process.	In	each	step	A.Q	is	shifted	to	the	left.	The	posi-tions
vacated	at	the	right-most	end	of	the	Q	register	can	be	used	to	store	the	quo-tient	bits	as	they	are	generated.	When	the	division	process	terminates,	Q	containsthe	quotient,
while	A	contains	the	(shifted)	remainder.

As	noted	already,	the	quotient	bit	qi	can	be	determined	by	a	trial	subtraction	ofthe	form	2Ri	-	V.	This	subtraction	also	yields	the	new	partial	remainder	Ri+1	when27?,	-	V
is	positive;	that	is,	when	qi■,=	1.	Clearly,	the	process	of	determining	q{	andRi+l	can	be	integrated.	Two	major	division	algorithms	are	distinguished	by	the	waythey
combine	the	computation	of	q(	and	Ri+l.	If	q{	=	0,	then	the	result	of	the	trial

Accumulator

Quotient	(multiplier)register

Divisor	(multiplicand)register

A *— Q M

i n	x A' i i i

n '	n'

' ' r	i

' r

Paralleladder-subtracter

n. In- '

• Controlunit

n n'

'

' ' '

Remainder	R	Quotient	Q

Figure	4.23

The	datapath	of	a	sequential	n-bit	binary	divider.
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subtraction	is	2Rt	-	V;	however,	the	required	new	partial	remainder	Rl+,	is	2/?,-.	Thepartial	remainder	Ri+l	can	be	obtained	by	adding	V	back	to	the	result	of	the
trialsubtraction.	This	straightforward	technique	is	called	restoring	division.	In	everystep	the	operation

/?,+1:=2/?,-V	(4.29)

is	performed.	When	the	result	of	the	subtraction	is	negative,	a	restoring	addition	isperformed	as	follows:

R

i+i

:=tfl+l	+	V

If	the	probability	of	qt	=	1	is	1/2,	then	this	algorithm	requires	n	subtractions	and	anaverage	of	nil	additions.

The	restoration	step	of	the	preceding	algorithm	is	eliminated	in	a	slightly	dif-ferent	technique	called	nonrestoring	division.	This	method	is	based	on	the	observa-tion	that	a



restoration	of	the	form

/?,	:=	R;	+	V

(4.30)

is	followed	in	the	next	step	by	the	subtraction	(4.29).	Operations	(4.29)	and	(4.30)can	be	merged	into	the	single	operation

Ri+l:=2R,+	V

(4.31)

Thus	when	qi	=	1,	which	is	indicated	by	a	positive	value	of	Rt,	/?/+1	is	computedusing	(4.29).	When	qt	=	0,	Ri+l	is	computed	using	(4.31).	The	calculation	of	eachquotient
bit	involves	either	an	addition	or	a	subtraction,	but	not	both.	Nonrestoringdivision	therefore	requires	n	additions	or	subtractions,	whereas	restoring	divisionrequires	an
average	of	3«/2	additions	and	subtractions.

Figure	4.24	presents	a	nonrestoring	division	algorithm	designed	for	the	circuitof	Figure	4.23	with	unsigned	integers.	The	divisor	V	and	quotient	Q	are	n	bits	long(with
leading	0s	if	necessary),	while	the	dividend	D	is	up	to	In	-	1	bits	long,	whichis	the	maximum	length	of	the	product	of	two	«-bit	integers.	The	flip-flop	S	isappended	to	the
accumulator	A	to	record	the	sign	of	the	result	of	an	addition	orsubtraction	and	to	determine	the	quotient	bit.	Each	new	quotient	bit	is	placed	inQ[0],	and	the	final	values	of
the	quotient	Q	and	the	remainder	R	are	in	the	Q	and	Aregisters,	respectively.	An	application	of	this	algorithm	when	n	=	4	appears	in	Fig-ure	4.25	with	D	=	11000012	=
9710	and	V=	10102	=	1010.

The	restoring	and	nonrestoring	division	techniques	can	be	extended	to	signednumbers	in	much	the	same	way	as	multiplication.	Sign-magnitude	numbers	presentfew
difficulties;	the	magnitudes	of	the	quotient	and	remainder	can	be	computed	asin	the	unsigned	number	case,	while	their	signs	are	determined	separately.	Asremarked	in
[Cavanagh	1984],	there	are	no	simple	division	algorithms	for	handlingnegative	numbers	directly	in	twos-complement	code	because	of	the	difficulty	ofselecting	the
quotient	bits	so	that	the	quotient	has	the	correct	positive	or	negativerepresentation.	The	most	direct	approach	to	signed	division	is	to	negate	any	nega-tive	operands,
perform	division	on	the	resulting	positive	numbers,	and	then	negatethe	results,	as	needed.	A	fast	division	algorithm	for	twos-complement	numbersbased	on	the
nonrestoring	approach	was	devised	independently	in	1958	by	DuraW.	Sweeney,	James	E.	Robertson,	and	Keith	D.	Tocher	and	is	called	the	SRTmethod	in	their	honor;	see
[Cavanagh	1984;	Koren	1993]	for	details.

NRdivider

BEGIN:INPUT:

SUBTRACT.TEST:

CORRECTION:OUTPUT:

end	NRdivider;

(in:	INBUS;	out:	OUTBUS);

register	S,	A[n-1:0],	M[n-1:0],	Q[n-1:0],	COUNT[Tlog2nl:0];

bus	INBUS[/i-l:0].	OUTBUS[n-1:0];

COUNT	:=	0,	S	:=	0,

A	:=	INBUS;	{Input	the	left	half	of	the	dividend	D)

Q	:=	INBUS;	{Input	the	right	half	of	the	dividend	D)

M	:=	INBUS;	{Input	the	divisor	V}

S.A	:=	S.A-M;	{S	is	the	sign	of	the	result}

if	S	=	0	then

begin	Q[0]	:=	1;

if	COUNT	=	n	-	1	then	go	to	CORRECTION;	else

begin	COUNT	:=	COUNT	+	1,	S.A.Q[/i-l:l]	:=	A.Q;	end

S.A	:=	S.A	-	M,	go	to	TEST;	endelse	{if	S	=	l}

begin	Q[0]	:=	0;

if	COUNT	=	n	-	1	then	go	to	CORRECTION;	else

begin	COUNT	:=	COUNT	+	1,	S.A.Q[n-l:l]	:=	A.Q;	endS.A	:=	S.A	+	M,	go	to	TEST;	endif	S	=	1	then	S.A	:=	S.A	+	M;OUTBUS	:=	Q;	{Output	the	quotient	Q)OUTBUS	:=	A;
{Output	the	remainder/?}
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Figure	4.24

Nonrestoring	division	algorithm	for	unsigned	integers.

Step Action S A Q

0 Initialize	registers 0 1100 0010	= =	dividend	D

1 1010 =	divisor	V=	M

Subtract	M	from	A 0 0010 0010

Reset	Q[0] 0 0010 0011

Left	shift	S.A.Q 0 0100 0110

2 1010

Subtract	M	from	A 1 1010 0110

Set	Q[0] 1 1010 0110

Left	shift	S.A.Q 1 0100 1100

3 1010

Add	M	to	A 1 1110 1100



Set	Q[0] 1 1110 1100

Left	shift	S.A.Q 1 1101 1000

4 1010

Add	M	to	A 0 0111 1000

Reset	Q[3] 0 0111 10011001	= :	quotient	Q

0111 ■	remainder	R

Figure	4.25

Illustration	of	the	nonrestoring	division	algorithm	for	unsigned	integers.
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Borrow	out	u	■<—Control	line	a	—» D *—	Borrow	in	t—*■	a

Fixed-Point a Function

Arithmetic 01
uz	=	x	minus	v	minus	t

z	=	x

I 1

Figure	4.26

A	cell	D	for	array	implementation	of	restoring	division.

Combinational	array	dividers.	Combinational	array	circuits	can	be	used	fordivision	as	well	as	for	multiplication.	Figure	4.26	shows	a	cell	D	suitable	for	imple-menting	a
version	of	the	restoring	division	algorithm.	This	cell	is	basically	a	fullsubtracter	with	t	and	u	being	the	borrow-in	and	borrow-out	bits,	respectively.	Themain	output	z	is
controlled	by	input	a.	When	a	=	1,	z	is	the	difference	bit	defined	bythe	arithmetic	equation

z	=	x	minus	v	minus	t

When	a	=	0,	z	=	x.	Thus	the	behavior	of	the	cell	D	is	given	by	the	logic	equations

z	=	x@a{y@t)

u	=	xy	+	xt	+	yt

Figure	4.27	shows	an	array	of	D	cells	to	divide	3-bit	unsigned	integers	and	gen-erate	a	4-bit	quotient.	Each	row	of	the	array	subtracts	the	divisor	Vfrom	the	shiftedpartial
remainder	2Ri	generated	by	the	row	above.	The	sign	of	the	result,	and	there-fore	of	the	quotient	bit,	is	indicated	by	the	borrow-out	signal	from	the	left-most	cellin	the	row.
This	signal	«,	is	connected	to	the	control	inputs	a	of	all	cells	in	the	samerow.	If	Uj	=	0,	then	the	output	from	the	row	is	2/?,	-	Vand	qt=	tij=	1.	If	ut	=	1,	thenthe	output	from
the	row	is	restored	to	2/?,-,	and	again	qi	=	Uj	-	0.	Thus	the	output	ofeach	row	is	initially	2R{	-	V,	but	it	is	restored	to	2/?,-	when	required.	Restoration	isachieved	by
overriding	the	subtraction	performed	by	the	row	rather	than	by	explic-itly	adding	back	the	divisor.

Let	d	and	d'	be	the	carry	(borrow)	propagation	and	restore	times	of	a	cell,respectively.	Let	the	divisor	and	dividend	be	n	bits	long.	Each	row	of	the	dividerarray	functions
as	an	n-bit	ripple-borrow	subtracter,	so	the	maximum	time	requiredto	compute	one	quotient	bit	is	nd	+	d'.	The	time	required	to	compute	an	m-bit	quo-tient	and	the
corresponding	remainder	is	therefore	m(nd	+	d'),	and	the	number	ofcells	needed	is	m(n	+	1)	-	1.

Division	by	repeated	multiplication.	In	systems	containing	a	high-speed	multi-plier,	division	can	be	performed	efficiently	and	at	low	cost	using	repeated	multipli-cation.	In
each	iteration	a	factor	F,	is	generated	and	used	to	multiply	both	thedivisor	V	and	the	dividend	D.	Therefore

Divisor	VDividend	D	d5

Remainder	R

Figure	4.27

A	divider	array	for	3-bit	unsigned	numbers	using	the	cell	D	of	Figure	4.26.

Q	=

DxF0xF,xF2x...VxF0xF:	xF2x	...

F,	is	chosen	so	that	the	sequence	V	X	F0X	F{	X	F2	...	converges	rapidly	towardone.	Hence	DX	F0X	F,	X	F2	...	must	converge	toward	the	desired	quotient.

The	convergence	of	the	method	depends	on	the	selection	of	the	F,'s.	For	sim-plicity,	assume	that	D	and	V	are	positive	normalized	fractions	so	that	V	=	1	—	x,
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VXF0	=	(1	-x){\	+x)=\-x2

Clearly	V	X	F0	is	closer	to	one	than	to	V.	Next	set	F,	=	1	+	x2.	Hence



V	X	F0	X	F,	=	(1	-	j^Xl	+	x2)	=	1	-	x4

and	so	on.	Let	V,	denote	VX	F0X	F^X	...	X	F,.	The	multiplication	factor	at	eachstage	is	computed	as	F,	=	2	-	V,_,,	which	is	simply	the	twos-complement	of	V,_,.Hence

F,	=	1	+	x2	and	V,	=	1

2'	+

As	i	increases,	V,	converges	quickly	toward	one.	The	process	terminates	when	V,	=0.11...	11,	the	number	closest	to	one	for	the	given	word	size.
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4.2

ARITHMETIC-LOGIC	UNITS

The	various	circuits	used	to	execute	data-processing	instructions	are	usually	com-bined	in	a	single	circuit	called	an	arithmetic-logic	unit	or	ALU.	The	complexity	ofan	ALU
is	determined	by	the	way	in	which	its	arithmetic	instructions	are	realized.Simple	ALUs	that	perform	fixed-point	addition	and	subtraction,	as	well	as	word-based	logical
operations,	can	be	realized	by	combinational	circuits.	ALUs	that	alsoperform	multiplication	and	division	can	be	constructed	around	the	circuits	devel-oped	for	these
operations	in	the	preceding	section.	Much	more	extensive	data-processing	and	control	logic	is	necessary	to	implement	floating-point	arithmetic	inhardware,	as	we	will	see
later.	Some	processors	having	fixed-point	ALUs	employspecial-purpose	auxiliary	units	called	arithmetic	(co)processors	to	performfloating-point	and	other	complex
numerical	functions.

4.2.1	Combinational	ALUs

The	simplest	ALUs	combine	the	functions	of	a	twos-complement	adder-subtracterwith	those	of	a	circuit	that	generates	word-based	logic	functions	of	the	form	J\X,Y),for
example,	AND,	XOR,	and	NOT.	They	can	thus	implement	most	of	a	CPU'sfixed-point	data-processing	instructions.	Figure	4.28	outlines	an	ALU	that	has	sep-arate	subunits
for	logical	and	arithmetic	operations.	The	particular	class	of	opera-tion	(logical	and	arithmetic)	to	be	performed	is	determined	by	a	"mode"	controlline	M	attached	to	a
two-way	multiplexer	that	channels	the	required	result	to	the

x	—*—t	*■

y	—^-r

Data

n-bitlogicunit

n	-bitadder-subtracter

Two-wayn	-bit

multiplexer

,'	>	Z	Data	out

kr,	„	Flags	(cout,	p,	g,overflow,	etc.)

Select	5	Carry	in	cin

Figure	4.28

A	basic	n-bit	arithmetic-logic	unit	(ALU).

Mode	M

output	bus	Z	The	specific	operation	performed	by	the	desired	subunit	is	deter-mined	by	a	"select"	control	line	S	as	shown.	The	ALU's	logical	operations	are	per-formed
bitwise;	that	is,	the	same	operation	/	is	applied	to	every	pair	of	data	linesx^j.	The	maximum	number	of	distinct	logical	operations	of	the	form/(*,,}•,)	is	16,which	is	the
number	of	distinct	truth	tables	of	two	Boolean	variables.	Hence	theselect	bus	S	needs	to	be	of	size	4	at	most,	as	in	Figure	4.28.	5	can	also	be	used	toselect	up	to	16
different	arithmetic	operations	such	as	X	+	Y,	X	-	Y,	Y	-	X,	X	+	1(increment),	X-	1	(decrement),	and	so	on,	as	needed.

The	logical	operations	in	Figure	4.28	can	be	obtained	by	generating	all	fourminterms	of/(*,,)',),	namely,

m3	=	xy{	m2	=	xft	m,	=	*,y,-	m0	=	y{y.f

for	every	pair	x$t	of	data	bits	and	by	using	the	control	lines	S	=	S3S-,SXS0	to	selectdesired	subsets	of	the	minterms	to	be	ORed	together.	In	particular,	if	we	constructthe
sum-of-products	expression

f(xity,)	=	m3S3	+	m2S2	+	mlSl	+	m^S0

(4.32)

then	we	see	that	every	combination	of	S^iS^q	produces	a	different	function.	Forexample,	5	=	0110	makes/(x,,y,)	=	x(y(	+	x-y{,	which	is	EXCLUSIVE-OR.	Becauseof	the
bitwise	nature	of	the	logic	operations,	we	can	replace	jc(	and	y,	in	(4.32)	withthe	n-bit	words	X	and	Y.

f(X,Y)	=	XYS3	+	XYS2	+	XYSX	+	XYS0

(4.33)

We	can	now	implement	the	logic	unit	directly	from	Equation	(4.33),	using	severalH-bit	word	gates	as	in	Figure	4.29.	The	adder-subtracter	can	be	designed	by	any	ofthe
techniques	presented	earlier,	with	appropriate	additional	connections	to	X,	Y,and	5.

Despite	its	conceptual	simplicity,	the	ALU	of	Figure	4.28	is	more	expensiveand	slower	than	necessary.	For	n	=	4,	the	logic	subunit	employs	about	25	gates	andinverters.	If
the	arithmetic	subunit	is	designed	with	carry	lookahead	in	the	style	ofFigure	4.6,	around	60	gates	are	needed,	depending	on	the	variants	of	add	and	sub-tract	that	are
implemented.	The	multiplexer	in	Figure	4.28	also	requires	additional
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Y	—*<-i>

Data

D-

3Z>

O-i

Dataout

53	S2	5[	S0	Select	5

Figure	4.29

An	n-bit	logic	unit	that	realizesall	16	two-variable	functidns.
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gates.	The	complete	4-bit	ALU	can	therefore	be	expected	to	contain	more	than	100gates	of	various	kinds	and	have	depth	9	or	so.	By	judicious	sharing	of	functionsbetween
the	two	main	subunits,	both	of	these	figures	can	be	reduced	by	a	third,	asthe	next	example	shows.

EXAMPLE	4.4	DESIGN	OF	A	COMBINATIONAL	ARITHMETIC-LOGIC	UNIT

[Hansen	and	hayes	1995].	We	now	examine	the	structure	of	a	well-known	com-binational	ALU	design	that	is	found	in	many	commercial	products	including	me74181,	an	IC
referred	to	as	a	4-bit	ALU/function	generator	[Texas	Instruments	1988].Like	the	circuit	of	Figure	4.29,	this	design	implements	all	16	two-variable	logic	func-tions,	as	well
as	16	arithmetic	functions	(some	of	which,	like	X	Y	plus	A,	are	of	ques-tionable	value).	Its	standard	realization	has	about	60	gates	and	depth	6;	see	problem4.21.	We	will
describe	its	structure	at	the	register	level,	following	the	model	developedin	[Hansen	and	Hayes	1995].

The	main	internal	features	of	the	74181	appear	in	Figure	4.30.	The	key	arithmeticoperation	of	twos-complement	addition	is	implemented	by	the	carry-lookaheadmethod.
As	in	the	design	of	Figure	4.6.	the	adder	consists	of	propagate-generate	logicfeeding	a	lookahead	circuit	that	computes	carries,	and	a	set	of	XOR	gates	that	computethe
final	sum.	The	74181's	carry-lookahead	generator	is	the	same	as	that	given	earlierwith	the	addition	of	propagate	and	generate	outputs	(denoted	p	and	g)	for
extensionpurposes.	However,	the	pg	and	sum	circuits	are	also	designed	to	be	shared	with	thelogic	unit	in	an	efficient,	but	nonobvious	fashion.	The	modules	labeled	M]	and
M2	gen-erate	a	pair	of	4-bit	signals	IP	and	IG	that	serve	as	internal	propagate	and	generate,respectively,	in	the	arithmetic	mode	and	as	minterm	sources	in	the	logic	mode.
FromFigure	4.30	we	see	that	each	data	output	function	Fi	is	defined	by

Ft	=	IPf®	IG/®	(10^	+	M)

(4.34)

Select	5

Carry	in	clr

Mode	M

Figure	4.30

A	register-level	view	of	the	74181	4-bit	ALU.

for	3	>	i	>	0,	where	IC	denotes	the	set	of	four	internal	carries	produced	by	the	carry-lookahead	generator.	The	IP	and	IG	functions	are	defined	by

IP,	=	A,	+	B,S0+B,Sl	(4.35)

IG^AiBfo	+	AjBfo	(4.36)

(See	Figure	4.64	in	this	chapter's	problem	set	for	the	gate-level	implementation	ofthese	functions.)

In	the	logic	mode	of	operation,	M	-	1,	so	(4.34)	becomes

F,	=	IP,	©	Jg	,	(4.37)

On	substituting	(4.35)	and	(4.36)	into	(4.37)	and	simplifying,	we	obtain

Fi	=A	,B,SQ+AfB,S	i	+	AtBS2	+	Afifo	(4.38)

This	expresses	F,(A,,fi()	in	sum-of-minterms	form,	with	a	distinct	(possibly	comple-mented)	select	variable	controlling	each	minterm.	It	therefore	produces	a	differentlogic
function	for	each	of	the	16	possible	combinations	of	the	5	variables,	and	so	isessentially	the	same	as	(4.33).	Hence	with	M=	1,	the	74181	acts	as	a	universal
functiongenerator	capable	of	producing	any	two-variable	Boolean	function	F(A,B).In	the	arithmetic	mode	M	=	0,	and	(4.34)	changes	to

F^/^e/G,©/^.,

This	has	the	general	form	of	a	sum	(or	difference)	output—compare	Equation	(4.11).We	can	interpret	the	entire	output	function	F	=	F3F2F]F0	more	easily	using	the	arith-
metic	expression

F	=	IP	plus	IG	plus	c-

(4.39)

which	is	implied	by	(4.35)	to	(4.37)	when	M	-	1.	Here	plus	denotes	twos-complementaddition	to	distinguish	it	from	+	denoting	logical	OR.	When	S	-	1001,	Equations
(4.35)and	(4.36)	imply	that	IP,	and	IG,	become	the	usual	propagate	and	generate	functions,IPj	=	Aj	+	Bj	and	/G,	=	Afi^	respectively.	Hence	the	control	settings	M	-	1	and	S
=	1001make	the	74181	behave	like	a	carry-lookahead	adder	that	computes

F	=	A	plus	B	plus	cjn

Changing	5	to	0110	produces	the	twos-complement	subtraction

F	=	A	minus	B	minus	cin

and	effectively	reconfigures	the	ALU	as	shown	in	Figure	4.4.

The	various	combinations	of	5	produce	a	total	of	16	different	functions	in	thearithmetic	mode,	only	a	few	of	which	are	useful.	For	example,	with	S	=	0100.	Equation(4.39)
becomes

F	=	1111	plus	0000	plus	cin

which	is	1111	when	cin	=	0,	that	is,	the	constant	minus-one	in	twos-complement	code.When	cjn	=	1,	F	changes	to	0000,	since	we	are	adding	plus-one	to	minus-one.	The
abil-ity	to	generate	constants	like	±1	and	0	in	this	way	is	useful	for	implementing	sometypes	of	instructions.

The74181's/J,	g,	and	coul	outputs	are	intended	to	allow	k	copies	of	the	74181	to	becombined	either	using	ripple-carry	propagation	or	carry-lookahead	to	form	a	4£-bitALU.
Figure	4.31	shows	a	16-bit	ALU	composed	of	four	74181	stages,	with	ripple-carry	propagation	between	stages;	compare	Figure	4.3.	Note	how	the	5	and	AT	control
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lines	are	shared,	while	the	data	lines	are	separate.	Note	too	that	no	interstage	connec-tions	are	needed	for	the	logic	operations	because	of	their	bitwise,	word-oriented
nature.Another	interesting	feature	of	the	74181	is	its	ability	to	act	as	a	magnitude	comparatorin	conjunction	with	the	carry	output	cout;	see	problem	4.23.	The	electronic
circuits	driv-ing	the	74181's	(A	=	B)	output	are	designed	so	that	"when	several	(A	=	B)	lines	arewired	together	as	in	Figure	4.31,	the	wired	connection	outputs	the	AND



function	of	allits	input	signals.	In	other	words,	the	overall	(A	=	B)	output	signal	is	1	if	and	only	if	each74181	slice	produces	(A	=	B)=	1.	This	type	of	technology-specific
connection	is	calleda	wired	AND.	No	extra	gates	or	other	"glue"	logic	are	needed	for	ripple-carry	expan-sion	of	the	74181.

4.2.2	Sequential	ALUs

Although,	as	we	have	seen,	both	multiplication	and	division	can	be	implementedby	combinational	logic,	it	is	generally	impractical	to	merge	these	operations	withaddition
and	subtraction	into	a	single,	combinational	ALU.	The	reason	is	twofold.Combinational	multipliers	and	dividers	are	costly	in	terms	of	hardware.	They	arealso	much	slower
than	addition	and	subtraction	circuits,	a	consequence	of	theirmany	logic	levels.	An	n-bit	combinational	multiplier	or	divider	is	typically	com-posed	of	n	or	more	levels	of
add-subtract	logic,	making	multiplication	and	divisionat	least	n	times	slower	than	addition	or	subtraction.	The	number	of	gates	in	themultiply-divide	logic	is	also	greater
by	a	factor	of	about	n.	Hence	except	when	n	isvery	small,	complete	ALUs	are	usually	constructed	from	low-cost	sequential	cir-cuits	where	add	and	subtract	each	take	one
clock	cycle,	while	multiplication	anddivision	are	multicycle	operations.

Basic	design.	Figure	4.32	shows	a	widely	used	sequential	ALU	design	thataims	at	minimizing	hardware	costs.	This	ALU	organization	is	found	in	the	IAScomputer	(Figure
1.11)	and	in	many	computers	built	after	IAS.	It	is	intended	to

(A	=	B)

(A	=	B)

F><:F,

(A	=	B)

741814-bitALU

t	f

4,-	A,-

l15:-A12	B15:512

Fn-F,4	J	(A	=	B)

741814-bitALU
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4>

Aw'.Aa	SiiiSo

Fn.Fi

(A=B)

Fv-Fn

741814-bitALU

4,<	4,>

A-,:A4	By.Bt

741814-bitALU

ALU	•*—|

A	A

4.-	4,-

A3A0	ByB0

-is—	SM

Figure	4.31

A	16-bit	combinational	ALU	composed	of	four	74181s	linked	by	ripple-carry	propagation.

Systembus

Accumulator	AC

Multiplier-quotientregister	MQ

Parallel	adder

andlogic	circuits

(Memory)	dataregister	DR

Flags

Control	unit

Figure	4.32

Structure	of	a	basic	sequential	ALU.
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implement	multiplication	and	division	using	one	of	the	sequential	digit-by-digitshift-and-add/subtract	algorithms	discussed	earlier.	Three	one-word	registers	areused	for
operand	storage:	the	accumulator	AC,	the	multiplier-quotient	register	MQ.and	the	data	register	DR.	AC	and	MQ	are	organized	as	a	single	register	AC.MQcapable	of	left-
and	right-shifting.	Additional	data	processing	is	provided	by	acombinational	ALU	capable	of	addition,	subtraction,	and	logical	operations;	wewill	refer	to	this	unit	as	the
add-subtract	unit.	This	unit	derives	its	inputs	from	ACand	DR	and	places	its	results	in	AC.	The	MQ	register	is	so-called	because	it	storesthe	multiplier	during	multiplication
and	the	quotient	during	division.	DR	stores	themultiplicand	or	divisor,	while	the	result	(product	or	quotient	and	remainder)	isstored	in	the	register-pair	AC.MQ.	The	role	of
these	registers	is	defined	conciselyas	follows:

Addition

Subtraction

Multiplication

Division

AND

OR

EXCLUSIVE-OR

NOT

AC	:=	AC	+	DRAC	:=	AC	-	DRAC.MQ	:=	DR	x	MQAC.MQ	:=	MQ/DRAC	:=	AC	and	DRAC	:=	AC	or	DRAC	:=	AC	xor	DRAC	:=	not(AC)



DR	can	serve	as	a	memory	data	register	to	store	data	addressed	by	an	instructionaddress	field	ADR.	Then	DR	can	be	replaced	by	M(ADR)	in	the	above	list	of
ALUoperations,	resulting	in	a	one-address	memory-referencing	format.

Register	files.	Modern	CPUs	retain	special	registers	like	the	multiplier-quo-tient	register	MQ	for	multiplication	and	division,	but	the	accumulator	AC	and	thedata	register
DR	are	usually	replaced	by	a	set	of	general-purpose	registers	R(,:Rm_|

known	as	a	register	file	RF.	Each	register	R,	in	RF	is	individually	addressable—itsaddress	is	the	subscript	/—so	that	arithmetic-logic	instructions	can	take	the	generictwo-
and	three-address	forms
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R2	:=/(R!,R2)	.	(4.40)

R3:=/(R1,R2)	(4.41)

respectively.	Hence	the	processor	can	retain	intermediate	results	in	fast,	easilyaccessed	registers,	rather	than	having	to	pack	them	off	to	external	memory	M.Clearly	RF
functions	as	a	small	random-access	memory	(RAM)	and,	in	fact,	isoften	implemented	using	a	fast	RAM	technology.	RF	differs	from	M	in	one	impor-tant	respect:	RF
requires	two	or	three	operands	to	be	accessible	simultaneously.For	example,	to	implement	(4.40)	as	a	single-cycle	instruction,	we	must	be	able	toread	R,	and	R2,	and	write
to	R2	in	the	same	clock	cycle.	RF	then	needs	severalaccess	ports	for	simultaneously	reading	from	or	writing	to	several	different	regis-ters.	Hence	a	register	file	is	often
realized	as	a	multiport	RAM.	A	standard	RAMhas	just	one	access	port	with	an	associated	address	bus	ADR	and	data	bus	D.	Thisport	can	be	used	to	read	or	write	the	data
word	in	the	single	word	location	wedenote	by	M(ADR).

To	build	a	multiport	register	file	requires	a	set	of	registers	of	the	appropriatesize	and	several	multiplexers	and	demultiplexers	that	allow	data	words	to	besteered	from	any
desired	registers	to	the	various	output	ports	(read	operations)	orfrom	the	various	input	ports	to	registers	(write	operations).	Of	course,	we	don'twant	several	devices
writing	to	the	same	register	R,	simultaneously,	although	theymay	read	from	several	R/s	simultaneously.	Figure	4.33	shows	a	three-port	registerfile	that	supports
simultaneous	reads	from	two	ports	A	and	5,	while	writing	cantake	place	via	a	third	port	C.	This	file	contains	four	16-bit	registers	and	meets	thedata	access	requirements
of	(4.40)	and	(4.41).	In	the	two-address	case	(4.40),	theaddress	of	R,	is	applied	to	port	A,	while	that	of	R2	is	applied	to	ports	B	and	C.

Figure	4.34	shows	a	representative	datapath	unit	for	implementing	logical	andfixed-point	operations;	it	is	often	referred	to	as	an	integer	or	fixed-point	unit.	Itcontains	a
register	file	RF	and	a	(combinational)	ALU	capable	at	least	of	additionand	subtraction.	Often	specialized	circuitry	is	added	for	multiplication	and	divi-sion	because	the
longer	delay	of	these	operations	and	their	use	of	double-lengthoperands	make	it	difficult	to	include	their	registers	in	RF.	Also	shown	are	linksthat	connect	the	datapath
unit	to	the	external	memory	M	(a	cache	or	main	mem-ory)	and	the	IO	system.	These	links	can	also	connect	to	other	functional	units	suchas	a	floating-point	unit.

ALU	expansion.	It	is	quite	feasible	to	manufacture	an	entire	sequential	ALUfor	fixed-point	w-bit	numbers	on	a	single	IC	chip.	Moreover,	the	ALU	can	easilybe	designed	for
expansion	to	handle	operands	of	size	n	=	km,	or	indeed	any	wordsize	n	>	m,	in	two	ways:

1.	Spatial	expansion:	Connect	k	copies	of	the	m-bit	ALU	in	the	manner	of	a	rip-ple-carry	adder	to	form	a	single	ALU	capable	of	processing	km-b\t	wordsdirectly.	The
resulting	array-like	circuit	is	said	to	be	bit	sliced	because	eachcomponent	ALU	concurrently	processes	a	separate	"slice"	of	m	bits	from	eachkm-b\\.	operand.

Data	in	C16L

Address	C

Address	A

PortC

Register	fileRF

Portal	|Portfi

Address	B

Writeaddress	C

Tel	ieT

Data	out	A	Data	out	B(a)

Data	in	C16L

J-	4-way	16-bitdemultiplexer

16J,	16|	16	L	16	L

16-bit	register	R3

16

X

16-bit	register	R2

16

JL.

16-bit	register	R,

16

16-bit	register	Rq

16

Readaddress	A

4-way	16-bitmultiplexer

Data	out	A

4-way	16-bit	/	2	Readmultiplexer	s/	address	B

16LData	out	B

(b)

Figure	4.33

A	register	file	with	three	access	ports:	(a)	symbol	and	(b)	logic	diagram.
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2.	Temporal	expansion:	Use	one	copy	of	the	m-bit	ALU	chip	in	the	manner	of	aserial	adder	to	perform	an	operation	on	/cm-bit	words	in	k	consecutive	steps(clock	cycles).	In
each	step	the	ALU	processes	a	separate	m-bit	slice	of	eachoperand.	This	processing	is	called	multicycle	or	multiple-precision	processing.

The	16-bit	ALU	in	Figure	4.31	composed	of	four	copies	of	the	4-bit	74181	ICis	an	example	of	a	bit-sliced	combinational	ALU.	The	hardware	cost	of	a	bit-slicedALU	such	as
this	increases	directly	with	k,	the	number	of	slices,	but	the	ALU'sperformance	measured,	say,	in	cycles	per	instruction	(CPI),	remains	essentiallyconstant.	The	cycle	period
does	increase	slowly	with	k,	however.	In	a	multicycleALU,	on	the	other	hand,	the	performance	decreases	directly	with	k.	but	the	amountof	hardware	remains	constant.	A
multicycle	ALU	must	be	controlled	by	a	(micro)program	that	repeatedly	applies	the	same	basic	instruction	to	all	slices	of	the	oper-ands,	which	must	be	supplied	serially
(slice	by	slice)	to	the	ALU.
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(Micro)	program	control	unit

To	M	and	IO	system

Figure	4.34

A	generic	datapath	unit	with	an	ALU	and	a	register	file.

Figure	4.35	shows	how	a	16-bit	ALU	can	be	constructed	from	four	4-bitsequential	ALU	slices.	The	data	buses	and	register	files	of	the	individual	slices	areeffectively
juxtaposed	to	increase	their	size	from	4	to	16	bits.	The	control	lines	thatselect	and	sequence	the	operations	to	be	performed	are	connected	to	every	slice	sothat	all	slices
execute	the	same	actions	in	lockstep	with	one	another.	Each	slice	thusperforms	the	same	operation	on	a	different	4-bit	part	(slice)	of	the	input	operandsand	produces	only
the	corresponding	part	of	the	results.	The	required	control	sig-nals	are	derived	from	an	external	control	unit,	which	can	be	hardwired	or	micro-programmed.	Certain
operations	require	information	to	be	exchanged	betweenslices.	For	example,	to	implement	a	shift	operation,	each	slice	must	be	able	to	senda	bit	to,	and	receive	a	bit	from,
its	left	or	right	neighbors.	Similarly,	when	perform-ing	addition	or	subtraction,	carry	bits	must	be	transmitted	between	neighboringslices.	For	this	purpose	horizontal
connections	are	provided	between	the	slices	asshown	in	Figure	4.35.

A	multicycle	implementation	of	the	16-bit	ALU	of	Figure	4.35	would	requirethe	basic	4-bit	ALU	to	store	internally	all	the	information	that	needs	to	beexchanged	between
slices.	Add	and	shift	operations	require	only	modest	changeslike	extra	flip-flops	to	store	the	output	carry	and	shift	signals,	as	well	as	(micro)instructions	of	the	add-with-
carry	type	that	make	use	of	these	stored	signals.	Multi-plication	and	division	require	more	significant	changes.

EXAMPLE	4.5	THE	ADVANCED	MICRO	DEVICES	2901	BIT-SLICED	ALU

[MICK	AND	brick	1980).	AMD	introduced	the	2900	series	of	ICs	for	bit-slicedprocessor	design	in	the	mid-1970s.	Its	elegant	design	has	been	widely	imitated,	and	its

principal	members	are	included	in	recent	VLSI	cell	libraries	[AT&T	Microelectronics1994].	The	2901	IC	is	the	simplest	of	several	4-bit	ALU	slices	in	the	2900	family.	Ithas
the	internal	organization	depicted	in	Figure	4.36	and	executes	a	small	set	of	opera-tions	usually	specified	by	microinstructions.	A	combinational	arithmetic-logic	circuitC
performs	three	arithmetic	operations	(twos-complement	addition	and	subtraction)and	five	logical	operations	on	4-bit	operands.	The	particular	operation	to	be	carried
outby	C	is	defined	by	a	9-bit	(micro)	instruction	bus	I	intended	to	be	driven	by	an	externalcontrol	unit.	A	pair	of	combinational	shifters	allow	results	generated	by	C	to	be
left-	orright-shifted	to	facilitate	the	implementation	of	multiplication,	division,	and	so	on	viashift-and-add/subtract	algorithms.	The	2901	has	a	general-register	organization
withsixteen	4-bit	registers	organized	as	a	16	x	4-bit	register	file	R[0:15],	referred	to	as	"theRAM."	An	additional	register	designated	Q	is	designed	to	act	as	the	multiplier-
quotientregister	when	implementing	multiplication	or	division.	C	obtains	its	inputs	either	fromthe	RAM,	Q,	or	an	external	input	data	bus	D;	all-0	constant	input	operands
may	also	be
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Figure	4.35

Sixteen-bit	ALU	composed	of	four	4-bit	slices.
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Figure	4.36

Organization	of	the	2901	4-bit	ALU	slice.

specified.	The	RAM	registers	to	be	used	as	operand	sources	or	destinations	are	speci-fied	by	the	4-bit	A	and	B	address	buses,	which	are	also	derived	from	an	external
micro-instruction.	The	results	generated	by	C	can	be	stored	internally	in	the	2901	and/orplaced	on	the	external	output	data	bus	Y.

A	set	of	k	2901s	can	be	interconnected	according	to	the	one-dimensional	arraystructure	of	Figure	4.35	to	form	a	processor	with	essentially	the	same	properties	as	the2901
but	handling	4/c-bit	instead	of	4-bit	data.	The	instruction	bus	I	and	the	RAMaddress	buses	A	and	B	are	the	main	control	lines	that	are	connected	in	common	to	allslices.
Direct	connections	between	the	shifters	on	adjacent	slices	permit	shifting	to	beextended	across	the	entire	processor	array.	Each	slice	produces	a	carry-out	signal	cout

that	can	be	connected	to	the	carry-in	line	cin	of	the	slice	on	its	left,	allowing	arithmeticoperations	to	be	extended	across	the	array	via	the	bit-sliced	scheme	of	Figure	4.7.

Ripple-carry	connections	between	slices	have	the	drawback	that	carry-propagationtime	increases	rapidly	with	the	number	of	slices.	Consequently,	the	2901	and	other	bit-
sliced	ALUs	also	support	the	implementation	of	carry	lookahead	in	the	style	of	Figure4.5.	To	this	end.	the	2901	produces	(in	complemented	form)	the	g	and	p
signalsrequired	for	carry	lookahead,	and	an	external	carry-lookahead	circuit	generates	the	cinsignals	for	the	slices	(except	the	right-most	one)	from	the	g's	and	p's	of	all
precedingslices.	The	2900	series	has	an	IC	for	this	purpose,	namely,	the	2902	4-bit	carry-lookahead	generator,	which	is	a	fast,	two-level	logic	circuit	that	implements
Equations(4.10).	The	2901	also	produces	three	flag	signals	providing	status	information	on	thecurrent	result	F	from	the	arithmetic-logic	circuit	C.	The	zero	flag	Z	indicates
whetherthe	all-0	result	F	=	0000	occurred;	the	overflow	flag	OVR	indicates	whether	overflowoccurred	during	arithmetic	operations;	and	the	sign	flag	F3	is	the	value	of	the
left-mostbit	of	F.	A	16-bit	ALU	composed	of	four	copies	of	the	2901	appears	in	Figure	4.37.This	circuit	employs	carry	lookahead.	and	also	shows	how	the	flag	signals	for
the	arrayare	produced	(compare	Figure	4.31).

The	290l's	9-bit	control	bus	I	contains	three	3-bit	fields—Is,	IF,	and	ID—whichspecify	the	operand	sources,	the	ALU	function,	and	the	result	destinations,	respec-tively;	see
Figure	4.38.	ID	is	also	used	to	control	shifting	of	the	result;	this	is	indicatedby	multiplication	by	2	(left	shift)	or	division	by	2	(right	shift)	in	the	figure.	The	variouspossible
combinations	of	the	three	I	fields	define	the	290l's	microinstruction	set	andenable	a	large	number	of	distinct	register-transfer	operations	to	be	specified.	For	exam-ple,	the
subtraction

R[6]:=R[7]-R[6]
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F3	-

OVR	**

Z	<•

Data	in	D



2902

carry-lookahead

generator

Figure	4.37

A	16-bit	4-slice	array	of	2901s	employing	carry	lookahead.
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Inputs If Function Id Outputs

Is R S Y R(B) Q

000 R(A) Q 000 R	+	S	+	C,n 000 F - F

001 R(A) R(B) 001 S-R-Cjn oo'i F - -

010 0 Q 010 R-S-Cin 010 R(A) F -

on 0 R(B) 011 RorS 011 F F -

100 0 R(A) 100 RandS 100 F r'F 2'Q

101 D R(A) 101 RandS 101 F 2"'F -

110 D Q 110 RxorS 110 F 2F 2Q

111 D 0 111 R	xnorS 111 F 2F -

Figure	4.38

Microoperatiom
performed	by	the	2901.

is	specified	by	the	(partial)	microinstruction

A,B,Is,IF,ID,Cin	=	01!	!'0110,001,010,011,0

This	microinstruction	applies	the	contents	of	registers	R[7]	and	R[6]	to	the	R	and	Sinputs,	respectively,	of	C	and	selects	the	ALU	function	R	-	S	-	C,n	(subtract	with	bor-
row);	it	also	causes	the	result	that	appears	on	F	to	be	stored	back	into	R[6].	Althoughno	data-transfer	operations	are	explicitly	specified	in	Figure	4.38,	they	are
easilyobtained	from	the	specified	functions.	For	instance,	the	operation

Q:=D

loads	register	Q	from	an	external	data	source:	it	can	be	realized	via	the	logical	ORoperation	Q	:=	D	or	0	as	follows:

A,B,Is,IF,ID,Cin	=	=	dddd.ddddA	11,011,000,	J	(4.42)

where	d	denotes	a	don't-care	value.

Multiplication	and	division	cannot	be	bit	sliced	in	the	same	way	as	addition,	sub-traction,	or	shifting.	However,	these	operations	can	be	performed	by	a	bit-sliced
ALUunder	the	control	of	a	microprogram	that	implements	one	of	the	shift-and-add/subtractalgorithms	described	earlier.	This	topic	is	discussed	further	in	Chapter	5.

Figure	4.39	gives	an	example	of	a	more	recent	ALU	chip,	the	GEC	PlesseyPDSP1601,	which,	for	brevity,	we	call	the	1601	[GEC	Plessey	Semiconductors1990].	This	single
IC	is	housed	in	an	84-pin	PGA	package	and	is	designed	to	pro-cess	16-bit	words	directly,	and	bigger	words	indirectly	via	either	bit	slicing	or	viamulticycle	expansion.	The
1601	supports	32	arithmetic	and	logical	operations	thatare	broadly	similar	to	those	of	the	2901	(Figure	4.38).	The	arithmetic	instructionsinclude	various	types	of	add,
subtract,	and	shift	applied	to	16-bit	twos-complementoperands.	The	1601	contains	a	16-bit	combinational	ALU	and	two	small	registerfiles.	It	also	has	a	combinational
"barrel"	shifter	that	can	shift	a	16-bit	operandfrom	1	to	16	places	to	the	left	or	right.	The	barrel	shifter	roughly	corresponds	to	the290l's	Q	shifter	but	is	much	more
powerful.	Shifters	of	this	sort	are	useful	whenimplementing	the	shifts	associated	with	multiplication,	division,	and	floating-pointoperations.	For	extension	via	bit	slicing,
the	1601	provides	carry	and	shift	IO	lines

A16-'

T

Register	A

B

16-'

II

Register	B
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Figure	4.39

Organization	of	GEC	Plessey	1601	ALU	and	barrel	shifter.

that	allow	k	copies	of	the	1601	to	be	chained	to	form	a	16/c-bit	bit-sliced	ALU	thatcan	operate	at	the	same	speed	as	a	single	1601	slice.	For	multicycling,	the	outputcarry
and	shift	bits	are	stored	internally	in	the	circuits	denoted	CC	and	SC	in	Fig-ure	4.39.

To	perform,	say,	a	64-bit	addition	in	bit-slice	mode	(referred	to	as	cascademode	in	the	1601	manufacturer's	literature),	a	microinstruction	APBCI,	denoting	Aplus	B	plus	CI,
is	executed	simultaneously	by	each	of	four	cascaded	1601	slices.The	carry-in	line	CI	is	set	to	0	in	the	least	significant	slice;	each	of	the	other	sliceshas	its	CI	line
connected	to	its	right	neighbor's	carry-out	line	CO.	To	perform	thesame	64-bit	addition	in	multicycle	mode,	a	single	copy	of	the	1601	is	used.	It	issupplied	with	four	16-bit
slices	of	the	input	operands	at	its	A	and	B	ports	in	foursuccessive	clock	cycles.	In	the	first	cycle	the	microinstruction	APBCI	is	appliedwith	CI	=	0.	In	the	remaining	three
cycles	the	microinstruction	APBCO,	denotingA	plus	B	plus	CO,	is	executed,	which	includes	in	the	sum	the	output	carry	bit	gen-erated	in	the	preceding	clock	cycle	and
stored	in	CC.
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Advanced	Topics

This	section	studies	several	additional	aspects	of	datapath	design.	First	we	discussthe	implementation	of	floating-point	operations.	Therf	we	examine	the	use	of	pipe-lining
to	increase	the	throughput	of	a	datapath	unit.

4.3.1	Floating-Point	Arithmetic

Let	(XM,	XE)	be	the	floating-point	representation	of	a	number	X,	which	thereforehas	the	numerical	value	XM	x	BXe.	Recall	from	section	3.2.3	that	the	mantissa	(sig-
nificand)	XM	and	the	exponent	XE	are	fixed-point	numbers	and	that	the	base	B	is	thesame	as	the	base	(radix)	of	XM.	To	simplify	the	discussion,	we	make	the
followingrealistic	assumptions:

1.	XM	is	an	«M-bit	binary	(twos-complement	or	sign-magnitude)	fraction.

2.	XE	is	an	nE-bit	integer	in	excess-2	E	code,	implying	an	exponent	biasof	2^"'.

3.	B-2.

We	also	assume	that	the	floating-point	numbers	are	stored	in	normal	form	only;hence	the	final	result	of	each	floating-point	arithmetic	operation	should	be	normal-ized.

Basic	operations.	General	formulas	for	floating-point	addition,	subtraction,multiplication,	and	division	are	given	in	Figure	4.40.	Multiplication	and	divisionare	relatively
simple	because	the	mantissas	and	exponents	can	be	processed	inde-pendently.	Floating-point	multiplication	requires	a	fixed-point	multiplication	of	themantissas	and	a
fixed-point	addition	of	the	exponents.	For	example,	if	X	=1.32400111	x	1017	and	Y	=	1.04799245	x	1021,	the	product	X	x	Y	is	given	by(1.32400111	x	1.04799245)	x	10(17
+	21)	=	1.38758607	x	1038.	Floating-point	divi-sion	requires	a	fixed-point	division	involving	the	mantissas	and	a	fixed-point	sub-traction	involving	the	exponents.	Thus
multiplication	and	division	are	not	muchharder	to	implement	than	the	corresponding	fixed-point	operations.

Floating-point	addition	and	subtraction	are	complicated	by	the	fact	that	theexponents	of	the	two	input	operands	must	be	made	equal	before	the	correspondingmantissas
can	be	added	or	subtracted.	As	suggested	by	Figure	4.40,	this	exponentequalization	can	be	done	by	right-shifting	the	mantissa	XM	associated	with	thesmaller	exponent
XE	a	total	of	YE	-	XE	digit	positions	to	form	a	new	mantissa

Addition	X	+	Y	=	(XM2*E	~Ye	+	Ym)	x	2Ye	}	where	XE	<	K,

Subtraction	X-	Y=	(XM2*E	"	Ye	-	Ym)	x	2ke

Multiplication	X	x	Y	=	(XM	x	YM)	x	2*E	+	YfL

Division	XJY=(XMI	YM)	x	2*E	~	Ye

'E

Figure	4.40

The	four	basic	arithmetic	operations	for	floating-point	numbers.

XM2*E	Ye,	which	can	then	be	combined	directly	with	YM.	Thus	floating-point	addi-tion	and	subtraction	have	three	main	steps:

1.	Compute	YE-XE,	a	fixed-point	subtraction.

2.	Shift	XM	by	YE	-	XE	places	to	the	right	to	form	XM	2*e	"	Y*.

3.	Compute	XM	2*E	~Ye	±	YM,	a	fixed-point	addition	or	subtraction.

For	example,	to	add	the	decimal	floating-point	numbers	X	=	1.32400111	x	1017and	Y=	1.04799245	x	1021,	we	first	compute	YE	-XE	=	21	-	17	=	4,	identifying	XEas	the
smaller	exponent.	We	then	right-shift	XM	by	four	places	to	obtain	XM2^	=0.00013240.	Finally,	we	perform	the	mantissa	addition	XM2r"	+YM	=	0.00013240	+1.04799245
=	1.04812485,	so	the	final	result	has	mantissa	1.04812485	and	expo-nent	21.

Each	floating-point	arithmetic	operation	needs	an	extra	step	in	order	to	nor-malize	the	result.	A	number	X	=	(XM,	XE)	is	normalized	by	left-shifting	(right-shifting)	XM	and
decrementing	(incrementing)	XE	by	1	to	compensate	for	eachone-digit	shift	of	XM.	As	noted	earlier,	a	twos-complement	fraction	is	normalizedwhen	the	sign	bit	xn	_,
differs	from	the	bit	xn_2	on	its	right,	a	fact	used	to	terminatethe	normalization	process.	A	sign-magnitude	fraction	is	normalized	by	left-shiftingthe	magnitude	part	until
there	are	no	leading	0s,	that	is,	until	xn_2	=	1.	(The	nor-malization	rules	are	different	if	the	base	B	is	not	two.)	The	left-most	bit	of	themantissa	may	be	hidden,	since
normalization	fixes	its	value;	see	the	discussion	ofthe	IEEE	754	floating-point	standard	in	Example	3.4.



Difficulties.	Several	minor	problems	are	associated	with	exponent	biasing.	Ifbiased	exponents	are	added	or	subtracted	using	fixed-point	arithmetic	in	the	courseof	a
floating-point	calculation,	the	resulting	exponent	is	doubly	biased	and	must	becorrected	by	subtracting	the	bias.	For	example,	let	the	exponent	length	be	4,	and	letthe	bias
be	24"1	=	8.	Suppose	that	exponents	XE	=	1111	and	YE	=	0101	denoting	+7and	-3,	respectively,	are	to	be	added.	If	ordinary	binary	addition	is	used,	we	obtainthe	sum
XE+	YE=	10100,	which	denotes	12	=	4	+	8	in	excess-8	code.	The	sum10100	is	now	corrected	by	subtracting	the	bias	1000	to	produce	1100,	which	is	thecorrect	biased
representation	of	XE	+	YE	=	4.

Another	problem	arises	from	the	all-0	representation	usually	required	of	zero.If	X	x	Y	is	computed	as	(XM	x	YM)	x	2	E	+	E	and	either	XM	or	YM	is	zero,	the	result-ing
product	has	an	all-0	mantissa	but	may	not	have	an	all-0	exponent.	A	specialstep	is	then	needed	to	make	the	exponent	bits	0.

A	floating-point	operation	causes	overflow	or	underflow	if	the	result	is	toolarge	or	too	small	to	be	represented.	Overflow	or	underflow	resulting	from	man-tissa	operations
can	usually	be	corrected	by	shifting	the	mantissa	of	the	resultand	modifying	its	exponent;	this	is	done	automatically	during	floating-point	pro-cessing.	For	instance,	adding
the	normalized	decimal	numbers	X	=	5.1049	x	107and	Y	=	7.9379	x	107	produces	the	sum	13.0428	x	107.	which	is	normalized	to1.3043	x	108	by	shifting	XM	one	digit	to
the	right	(and	rounding	off	the	result)and	incrementing	the	exponent	by	one.	If,	however,	the	exponent	overflows	orunderflows,	an	error	signal	indicating	floating-point
overflow	or	underflow	isgenerated.	A	floating-point	result	that	has	overflowed	may	sometimes	beretained	in	"denormalized"	form,	as	discussed	in	Example	3.4.

To	preserve	accuracy	during	floating-point	calculations,	one	or	more^	extrabits	called	guard	bits	are	temporarily	attached	to	the	right	end	of	the	mantissa
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xn-ixn-2---xixo-	F°r	example,	a	guard	bit	jc_,	is	needed	when	results	are	to	berounded	rather	than	truncated	to	n	bits.	Rounding	is	accomplished	by	adding	1to	xQ	and
truncating	the	result	to	n	bits.	When	a	mantissa	is	right-shifted	duringthe	alignment	step	of	addition	or	subtraction,	the	bits	shifted	from	the	right	endcan	be	retained	as
guard	bits.	In	the	case	of	floati'ng-point	multiplication,	bitsfrom	the	right	half	of	the	2/i-bit	result	of	multiplying	two	Ai-bit	(unsigned)	man-tissas	serve	as	guard	bits.
Suppose,	for	instance,	that	XM	=	0.1...	and	YM	=0.1...	are	normalized	positive	mantissas	(fractions).	Multiplying	them	by	a	stan-dard	fixed-point	multiplication	algorithm
yields	an	unnormalized	double-lengthresult	of	the	form

PM	=	XMxYM	=	0M...	(4.43)

which	contains	a	leading	0.	If	PM	is	now	truncated	or	rounded	to	n	bits,	then	theprecision	of	the	result	is	only	n	-	1	bits.	It	is	clearly	desirable	to	retain	an	additionalbit
from	the	double-length	product	so	that	when	(4.43)	is	normalized	by	a	left	shift,the	result	contains	n	significant	bits.	We	therefore	employ	two	guard	bits	in	thiscase,	one
to	maintain	precision	during	normalization	and	one	for	rounding	pur-poses.

Floating-point	units.	Floating-point	arithmetic	can	be	implemented	by	twoloosely	connected	fixed-point	datapath	circuits,	an	exponent	unit	and	a	mantissaunit.	The
mantissa	unit	performs	all	four	basic	operations	on	the	mantissas;	hence	ageneric	fixed-point	arithmetic	circuit	such	as	that	of	Figure	4.32	can	be	used.	Asimpler	circuit
capable	of	only	adding,	subtracting,	and	comparing	exponents	suf-fices	for	the	exponent	unit.	Exponent	comparison	can	be	done	by	a	comparator	orby	subtracting	the
exponents.	Figure	4.41	outlines	the	structure	of	a	floating-pointunit	employing	the	foregoing	approach.	The	exponents	of	the	input	operands	areput	in	registers	El	and	E2,
which	are	connected	to	an	adder	that	computes	El	+	E2.The	exponent	comparison	required	for	addition	and	subtraction	is	made	by	com-puting	El	-	E2	and	placing	it	in	a
counter	register	E.	The	larger	exponent	is	thendetermined	from	the	sign	of	E.	The	shifting	of	one	mantissa	required	before	the

Mantissa	unit

AC

MQ

Adder

DR

Data	bus

Figure	4.41

Datapath	of	a	floating-point	arithmetic	unit.
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mantissa	addition	or	subtraction	can	occur	is	controlled	by	E.	The	magnitude	of	E	269is	sequentially	decremented	to	zero.	After	each	decrement,	the	appropriate	man-
tissa	(whose	location	in	the	mantissa	unit	varies	with	the	operation	being	per-formed)	is	shifted	one	digit	position.	Once	the	mantissas	have	been	aligned,	they	a	apaare
processed	in	the	usual	manner.	The	exponent	of	the	result	is	also	computed	andplaced	in	E.

All	computers	with	floating-point	instructions	also	have	fixed-point	instruc-tions,	so	it	is	sometimes	desirable	to	design	a	single	ALU	to	execute	both	fixed-point	and
floating-point	instructions.	This	design	takes	the	form	of	a	fixed-pointarithmetic	unit	in	which	the	registers	and	the	adder	can	be	partitioned	into	expo-nent	and	mantissa
parts	as	in	Figure	4.41	when	floating-point	operations	are	beingperformed.	In	recent	years	it	has	become	more	common	to	implement	fixed-point	and	floating-point
instruction	in	separate	units,	a	fixed-point	or	integer	unitFXU	and	a	floating-point	unit	FPU.	This	separation	makes	it	possible	for	fixed-point	and	floating-point	instructions
to	be	executed	in	parallel.

Addition.	We	now	consider	the	implementation	of	floating-point	addition	inmore	detail.	Figure	4.42	presents	an	addition	algorithm	intended	for	use	with	thefloating-point
unit	of	Figure	4.41;	with	minor	modifications	it	can	also	be	used	forfloating-point	subtraction.	The	mantissa	is	assumed	to	be	a	binary	fraction,	and	theexponent	a	biased
integer;	the	base	B	is	2.	The	first	step	of	the	algorithm	is	equal-ization	of	the	exponents,	which	is	done	by	subtracting	them	and	aligning	the	man-tissas	by	shifting	one	of
them	until	the	difference	between	the	exponents	has	beenreduced	to	zero.	Next	the	aligned	mantissas	are	added.	Finally	the	result	is	normal-ized,	if	necessary,	by	again
shifting	the	mantissa	and	making	a	compensatingchange	in	the	exponent.	The	mantissa	and	exponent	of	the	final	result	are	placed	inthe	AC	and	E	registers,	respectively.
Tests	are	also	performed	for	floating-pointoverflow	and	underflow;	if	either	occurs,	a	flag	ERROR	is	set	to	1.	A	separate	testis	made	for	a	zero	result	which,	if	indicated	by
AC	=	0,	causes	E	to	be	set	to	0	also.

Several	improvements	can	be	made	to	this	algorithm:	these	are	left	as	an	exer-cise	(problem	4.29).	We	can	save	time	by	checking	to	see	whether	one	of	the	inputoperands
X	or	Y	is	zero	at	the	start	and	simply	making	the	nonzero	operand	theresult.	If	both	X	and	Y	are	zero,	either	operand	may	be	used	as	the	result.	If	the	dif-ference	between
exponents	is	very	large	(IEI	>	nM),	then	the	shifting	process	toalign	one	of	the	mantissas,	say,	XM	in	AC,	will	result	in	AC	=	0	after	nM	steps.	Con-tinued	shifting	to	make
E	=	0	will	not	affect	the	result,	which	in	this	case	will	beYM.	Note	also	that	it	is	more	efficient	to	terminate	the	shifting	after	nM	steps	insteadof	IEI	steps,	as	is	done	in
Figure	4.42.

Figure	4.43	shows	the	step-by-step	application	of	the	addition	algorithm	ofFigure	4.42	to	two	32-bit	floating-point	numbers.	The	numbers	have	the	32-bit	for-mat	of	the
IEEE	Standard	754	described	in	Example	3.4.	In	this	format	each	num-ber	N	has	a	23-bit	fractional	mantissa	M	with	a	hidden	bit.	an	8-bit	exponent	E	inexcess-127	code,
and	a	base	B	=	2.	The	value	of	/Vis	therefore	given	by	the	formula

The	numbers	to	be	added	in	this	instance	are

AT	=	0	01111111	10000000000000000000000Y=0	10000111	00101011010000000000000
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register	AC	Kf-LO],	DR^m-IiO].	E[/»e-1:0],	El[nE-l:0],	E2[nE-l:0],



AC_OVERFLOW,	ERROR;BEGIN:	AC_OVERFLOW	:=	0,	ERROR	:=	0.

LOAD:	El	:=	XE,	AC	:=	XM:

E2	:=	YE,	DR	:=	YM;

{Compare	and	equalize	exponents}

COMPARE:	E:=E1-E2;

EQUALIZE:	if	E	<	0	then	AC	:=	right-shift(AC),	E	:=	E	+	1,

go	to	EQUALIZE;	else

if	E	>	0	then	DR	:=	right-shift(DR),	E	:=	E	-	1,go	to	EQUALIZE;

{Add	mantissas}

ADD:	AC	:=	AC	+	DR,	E	:=	max(El,E2);

{Adjust	for	mantissa	overflow	and	check	for	exponent	overflow}

OVERFLOW:	if	AC_OVERFLOW	=	1	then	begin

if	E	=	EMAX	then	go	to	ERROR:AC	:=	right-shift(AC),	E	:=	E	+	1,	go	to	END;	end

{Adjust	for	zero	result}

ZERO:	if	AC	=	0	then	E	:=	0.	go	to	END;

{Normalize	result}

NORMALIZE:	if	AC	is	normalized	then	go	to	END;

UNDERFLOW:	if	E	>	EMIN	then

AC	:=	left-shift(AC),	E	:=	E	-	1,	go	to	NORMALIZE;

{Set	error	flag	indicating	overflow	or	underflow}

ERROR:	ERROR	:=	1;

END:

Figure	4.42

Algorithm	for	floating-point	addition.

which	denote	+1.510and	+299.25,0,	respectively.	The	exponent	subtraction	XE	-	YEin	the	COMPARE	step	is	done	using	excess-127	code	and	produces	11110111	=-810.
Note	that	a	0	in	the	left-most	bit	position	of	E	always	indicates	a	negativenumber	in	this	code	(see	Figure	3.25).	Now	the	EQUALIZE	step	is	executed,	caus-ing	E	to	be
incremented	and	AC,	which	contains	the	mantissa	of	X	(including	itshidden	bit),	to	be	right-shifted.	After	eight	shifts,	E	reaches	zero,	indicated	by	itsleft-most	bit	changing
from	0	to	1.	Then	the	mantissa	addition	takes	place,	and	thelarger	exponent	is	transferred	from	El	to	E.	The	sum	appearing	in	AC	is	normal-ized,	so	the	final	result	X	+	Y
=	300.7510	has	its	exponent	in	E	and	its	mantissa	inAC.	The	sum	is	eventually	stored	in	the	following	standard	format.

X+Y=0	10000111	00101100110000000000000

EXAMPLE	4.6	FLOATING-POINT	ADD	UNIT	OF	THE	IBM	SYSTEM/360

model	91	[Anderson	et	al.	1967].	We	now	briefly	describe	the	floating-point
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El E2 E

Step AC	UK

LOAD 01111111 10000111 00000000 11000000000000...	00	10010101101000...	00

=	*E =	^E =	1-*M	=1-^1 Design

COMPARE 01110111=	XE-YE

EQUALIZE 01111000 01100000000000...	00

01111001 00110000000000. .00

01111010 00011000000000. .00

01111011 00001100000000. .00

01111100 00000110000000. .00

01111101 00000011000000. .00

01111110 00000001100000. .00

01111111 00000000110000. .00

10000000

10000111



ADD =	>E 10010110011000...	00=	AC	+	DR

Result 10000111=	(X+50e
10010110011000...	00

=	i.(X+y)M

Figure	4.43

Illustration	of	the	floating-point	addition	algorithm	of	Figure	4.42.

adder	of	the	IBM	System/360	Model	91,	a	mainframe	computer	of	the	mid-1960swhose	advanced	design	features,	including	caches	and	several	types	of	instruction-level
parallelism,	were	very	influential.	Figure	4.44	shows	the	datapath	of	the	Model91	's	add	unit.	It	adds	or	subtracts	32-bit	and	64-bit	numbers	having	the	floating-
pointformat	specific	to	the	System/360	family	and	its	successors	(see	section	3.2.3).	Thegeneral	algorithm	of	Figure	4.42	is	used	with	some	changes	to	increase	speed.	In
par-ticular,	the	shifting	needed	to	align	the	mantissas	and	subsequently	to	normalize	theirsum	is	carried	out	by	combinational	logic	(barrel	shifters)	rather	than	by	shift
registers.These	shifters	allow	k	hexadecimal	digits	(recall	that	the	base	B	is	16)	to	be	shiftedsimultaneously.	The	corresponding	subtraction	of	k	from	the	exponent
required	fornormalization	is	also	done	in	one	clock	cycle	by	using	an	extra	adder	(adder	31.

The	operation	of	this	floating-point	adder	unit	is	as	follows.	The	exponents	of	theinput	operands	are	placed	in	registers	El	and	E2,	and	the	corresponding	mantissas
areplaced	in	Ml	and	M2.	Next	E2	is	subtracted	from	El	using	adder	1:	the	result	is	used	toselect	the	mantissa	to	be	right-shifted	by	shifter	1	and	also	to	determine	the
length	ofthe	shift.	For	example,	if	El	>	E2	and	El	-	E2	=	k,	M2	is	right-shifted	by	k	digit	posi-tions,	that	is.	4k	bit	positions.	The	shifted	mantissa	is	then	added	to	or
subtracted	fromthe	other	mantissa	via	adder	2,	a	56-bit	parallel	adder	with	several	levels	of	carry	look-ahead.	The	resulting	sum	or	difference	is	placed	in	a	temporary
register	R	where	it	isexamined	by	a	special	combinational	circuit,	the	zero-digit	checker.	The	output	z	ofthis	circuit	indicates	the	number	of	leading	0	digits	(or	leading	Fs
in	the	case	of	nega-tive	numbers)	of	the	number	in	R.	The	number	z	is	then	used	to	control	the	final	nor-malization	step.	The	contents	of	R	are	left-shifted	z	digits	by
shifter	2.	and	the	result	isplaced	in	register	M3.	The	corresponding	adjustment	is	made	to	the	exponent	by	sub-tracting	z	using	adder	3.	In	the	event	that	R	=	0,	adder	3
can	be	used	to	set	all	bits	of	E3to	0,	which	denotes	an	exponent	of	-64.
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Figure	4.44

Floating-point	add	unit	of	the	IBM	System/360	Model	91.

Coprocessors.	Complicated	arithmetic	operations	like	exponentiation	and	trig-onometric	functions	are	costly	to	implement	in	CPU	hardware,	while
softwareimplementations	of	these	operations	are	slow.	A	design	alternative	is	to	use	auxil-iary	processors	called	arithmetic	coprocessors	to	provide	fast,	low-cost
hardwareimplementations	of	these	special	functions.	In	general,	a	coprocessor	is	a	separateinstruction-set	processor	that	is	closely	coupled	to	the	CPU	and	whose
instructionsand	registers	are	direct	extensions	of	the	CPU's.	Instructions	intended	for	thecoprocessor	are	fetched	by	the	CPU,	jointly	decoded	by	the	CPU	and	the
coproces-sor,	and	executed	by	the	coprocessor	in	a	manner	that	is	transparent	to	the	pro-grammer.	Specialized	coprocessors	like	this	are	used	for	tasks	such	as
managingthe	memory	system	or	controlling	graphics	devices.	The	MIPS	RX000	series,	forexample,	was	designed	to	allow	the	CPU	to	operate	with	up	to	four
coprocessors[Kane	and	Heinrich	1992].	One	of	these	is	a	conventional	floating-point	processor,which	is	implemented	on	the	main	CPU	chip	in	later	members	of	the	series.

Coprocessor	instructions	can	be	included	in	assembly	or	machine	code	justlike	any	other	CPU	instructions.	A	coprocessor	requires	specialized	control	logic	tolink	the	CPU
with	the	coprocessor	and	to	handle	the	instructions	that	are	executedby	the	coprocessor.	A	typical	CPU-coprocessor	interface	is	depicted	in	Figure4.45.	The	coprocessor	is
attached	to	the	CPU	by	several	control	lines	that	allow	the
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.	To	main	memoryJ	and	10	devices

Figure	4.45

Connections	between	a	CPU	and	a	coprocessor.

activities	of	the	two	processors	to	be	coordinated.	To	the	CPU,	the	coprocessor	is	apassive	or	slave	device	whose	registers	can	be	read	and	written	into	in	much	thesame
manner	as	external	memory.	Communication	between	the	CPU	and	copro-cessor	to	initiate	and	terminate	execution	of	coprocessor	instructions	occurs	auto-matically	as
coprocessor	instructions	are	encountered.	Even	if	no	coprocessor	isactually	present,	coprocessor	instructions	can	be	included	in	CPU	programs,because	if	the	CPU	knows
that	no	coprocessor	is	present,	it	can	transfer	programcontrol	to	a	predetermined	memory	location	where	a	software	routine	implement-ing	the	desired	coprocessor
instruction	is	stored.	This	type	of	CPU-generated	inter-ruption	of	normal	program	flow	is	termed	a	coprocessor	trap.	Thus	thecoprocessor	approach	makes	it	possible	to
provide	either	hardware	or	software	sup-port	for	certain	instructions	without	altering	the	source	or	object	code	of	the	pro-gram	being	executed.

A	coprocessor	instruction	typically	contains	the	following	three	fields:	anopcode	F0	that	distinguishes	coprocessor	instructions	from	other	CPU	instructions,the	address	F]
of	the	particular	coprocessor	to	be	used	if	several	coprocessors	areallowed,	and	finally	the	type	F2	of	the	particular	operation	to	be	executed	by	thecoprocessor.	The	F2
field	can	include	operand	addressing	information.	By	havingthe	coprocessor	monitor	the	system	bus,	it	can	decode	and	identify	a	coprocessorinstruction	at	the	same	time
as	the	CPU;	the	coprocessor	can	then	proceed	to	exe-cute	the	coprocessor	instruction	directly.	This	approach	is	found	in	some	earlycoprocessors	but	has	the	major
drawback	that	the	coprocessor,	unlike	the	CPU,does	not	know	the	contents	of	the	registers	defining	the	current	memory	addressingmodes.	Consequently,	it	is	common	to
have	the	CPU	partially	decode	every	copro-cessor	instruction,	fetch	all	required	operands,	and	transfer	the	opcode	and	oper-ands	directly	to	the	coprocessor	for
execution.	This	is	the	protocol	followed	in680X0-based	systems	employing	the	68882	floating-point	coprocessor,	which	isthe	topic	of	the	next	example.
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EXAMPLE	4.7	THE	MOTOROLA	68882	FLOATING-POINT	COPROCESSOR

[motorola	1989].	The	Motorola	68882	coprocessor	extends	680X0-series	CPUs

274 Type Opcode Operation	specified
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Advanced	Topics Data	transfer FMOVE Move	word	to/from	coprocessor	data	or	control	register

FMOVECR Move	word	to/from	ROM	storing	constants	(0.0,7t,	e,	etc.)

FMOVEM Move	multiple	words	to/from	coprocessor

Data	processing FADD Add

FCMP Compare

FDIV Divide

FMOD Modulo	remainder

FMUL Multiply

FPvEM Remainder	(IEEE	format)

FSCAJLE Scale	exponent

FSGLMUL Single-precision	multiply

FSGLDIV Single-precision	divide

FSUB Subtract

FABS Absolute	value

FACOS Arc	cosine

FASIN Arc	sine

FATAN Arc	tangent

FATANH Hyperbolic	arc	tangent

FCOS Cosine

FCOSH Hyperbolic	cosine

FETOX e	to	the	power	of	x



FETOXMI (e	to	the	power	of	x)	minus	1

FGETEXP Extract	exponent

FGETMAN Extract	mantissa

FINT Extract	integer	part

FINTPvZ Extract	integer	part	rounded	to	zero

FLOGN Logarithm	of	x	to	the	base	e

FLOGNP1 Logarithm	of	x	+	1	to	the	base	e

FLOG	10 Logarithm	to	the	base	10

FLOG2 Logarithm	to	the	base	2

FNEG Negate

FSIN Sine

FSINCOS Simultaneous	sine	and	cosine

FSINH Hyperbolic	sine

FSQRT Square	root

FT	AN Tangent

FTANH Hyperbolic	tangent

FTENTOX 10	to	the	power	of	x

FTWOTOX 2	to	the	power	of	x

FLOGN Logarithm	of	x	to	the	base	e

Program	control FBcc Branch	if	condition	code	(status)	cc	is	1

FDBcc Test,	decrement	count,	and	branch	on	cc

FNOP No	operation

FRESTORE Restore	coprocessor	state

FSAVE Save	coprocessor	state

FScc Set	(cc	=	1)	or	reset	(cc	=	0)	a	specified	byte

FTST Set	coprocessor	condition	codes	to	specified	values

FTRAPcc Conditional	trap

Figure	4.46

Instruction	set	of	the	Motorola	68882	floating-point	coprocessor.

like	the	68020	(section	3.1.2)	with	a	large	set	of	floating-point	instructions.	The	68882and	the	68020	are	physically	coupled	along	the	lines	indicated	by	Figure	4.45.
Whiledecoding	the	instructions	it	fetches	during	program	execution,	the	68020	identifiescoprocessor	instructions	by	their	distinctive	opcodes.	After	identifying	a
coprocessorinstruction,	the	68020	CPU	"wakes	up"	the	68882	by	sending	it	certain	control	signals.The	68020	then	transmits	the	opcode	to	a	predefined	location	in	the
68882	that	servesas	an	instruction	register.	The	68882	decodes	the	instruction	and	begins	its	execution,which	can	proceed	in	parallel	with	other	instructions	executed
within	the	CPU	proper.When	the	coprocessor	needs	to	load	or	store	operands,	it	asks	the	CPU	to	carry	out	thenecessary	address	calculations	and	data	transfers.

The	68882	employs	the	IEEE	754	floating-point	number	formats	described	inExample	3.4	with	certain	multiple-precision	extensions;	it	also	supports	a	decimalfloating-
point	format.	From	the	programmer's	perspective,	the	68882	adds	to	the	CPUa	set	of	eight	80-bit	floating-point	data	registers	FP0:FP7	and	several	32-bit	controlregisters,
including	instruction	(opcode)	and	status	registers.	Besides	implementing	awide	range	of	arithmetic	operations	for	floating-point	numbers,	the	68882	has	instruc-tions	for
transferring	data	to	and	from	its	registers,	and	for	branching	on	conditions	itencounters	during	instruction	execution.	Figure	4.46	summarizes	the	68882's	instruc-tion	set.
These	coprocessor	instructions	are	distinguished	by	the	prefix	F	(floating-point)	in	their	mnemonic	opcodes	and	are	used	in	assembly-language	programs	justlike	regular
680X0-series	instructions;	see	Fig.	3.12.	The	status	or	condition	codes	ccgenerated	by	the	68882	when	executing	floating-point	instructions	include	invalidoperation,
overflow,	underflow,	division	by	zero,	and	inexact	result.	Coprocessor	sta-tus	is	recorded	in	a	control	register,	which	can	be	read	by	the	host	CPU	at	the	end	of	aset	of
calculations,	enabling	the	CPU	to	initiate	the	appropriate	exception-processingresponse.	As	some	coprocessor	instructions	have	fairly	long	(multicyle)	executiontimes,	the
68882	can	be	interrupted	in	the	middle	of	instruction	execution.	Its	statemust	then	be	saved	and	subsequently	restored	to	complete	execution	of	the
interruptedinstruction.
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The	appearance	of	coprocessors	stems	in	part	from	the	fact	that	until	the	1980sIC	technology	could	not	provide	microprocessors	of	sufficient	complexity	toinclude	on-chip
floating-point	units.	Once	such	microprocessors	became	possible,arithmetic	coprocessors	began	to	migrate	onto	CPU	chips,	losing	some	of	their	sep-arate	identity	in	the
process	—especially	in	the	case	of	CISC	processors.	For	exam-ple,	the	1990-vintage	Motorola	68040	microprocessor	integrates	a	68882-stylefloating-point	coprocessor



with	a	68020-style	CPU	in	a	single	microprocessor	chip[Edenfield	et	al.	1990].	Arithmetic	coprocessors	provide	an	attractive	way	of	aug-menting	the	performance	of	a
RISC	CPU	without	affecting	the	simplicity	and	effi-ciency	of	the	CPU	itself.	The	multiple	function	(execution)	units	in	superscalarmicroprocessors	like	the	Pentium
resemble	coprocessors	in	that	each	unit	has	aninstruction	set	that	it	can	execute	independently	of	the	program	control	unit	and	theother	execution	units.

4.3.2	Pipeline	Processing

Pipelining	is	a	general	technique	for	increasing	processor	throughput	withoutrequiring	large	amounts	of	extra	hardware	[Kogge	1981;	Stone	1993].	It	is	appliedto	the
design	of	the	complex	datapath	units	such	as	multipliers	and	floating-point
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adders.	It	is	also	used	to	improve	the	overall	throughput	of	an	instruction	set	pro-cessor,	a	topic	to	which	we	return	in	Chapter	5.

Introduction.	A	pipeline	processor	consists	of	a	sequence	of	m	data-processing	cir-cuits,	called	stages	or	segments,	which	collectively	perform	a	single	operation	on
astream	of	data	operands	passing	through	them.	Some	processing	takes	place	ineach	stage,	but	a	final	result	is	obtained	only	after	an	operand	set	has	passedthrough	the
entire	pipeline.	As	illustrated	in	Figure	4.47,	a	stage	5,	contains	a	multi-word	input	register	or	latch	R:,	and	a	datapath	circuit	C,	that	is	usually	combina-tional.	The	/?,-'s
hold	partially	processed	results	as	they	move	through	the	pipeline;they	also	serve	as	buffers	that	prevent	neighboring	stages	from	interfering	with	oneanother.	A	common
clock	signal	causes	the	/v,'s	to	change	state	synchronously.Each	Rj	receives	a	new	set	of	input	data	D,_,	from	the	preceding	stage	5,_!	exceptfor	R\	whose	data	is	supplied
from	an	external	source.	D,_,	represents	the	resultscomputed	by	Ci_]	during	the	preceding	clock	period.	Once	Dj_l	has	been	loadedinto	Rh	Cj	proceeds	to	use	D,_,	to
compute	a	new	data	set	Dt.	Thus	in	each	clockperiod,	every	stage	transfers	its	previous	results	to	the	next	stage	and	computes	anew	set	of	results.

At	first	sight	a	pipeline	seems	a	costly	and	slow	way	to	implement	the	targetoperation.	Its	advantage	is	that	an	m-stage	pipeline	can	simultaneously	process	upto	m
independent	sets	of	data	operands.	These	data	sets	move	through	the	pipelinestage	by	stage	so	that	when	the	pipeline	is	full,	m	separate	operations	are	being	exe-cuted
concurrently,	each	in	a	different	stage.	Furthermore,	a	new,	final	resultemerges	from	the	pipeline	every	clock	cycle.	Suppose	that	each	stage	of	the	m-stage	pipeline	takes
T	seconds	to	perform	its	local	suboperation	and	store	itsresults.	Then	7"	is	the	pipeline's	clock	period.	The	delay	or	latency	of	the	pipeline,that	is,	the	time	to	complete	a
single	operation,	is	therefore	mT.	However,	thethroughput	of	the	pipeline,	that	is,	the	maximum	number	of	operations	completedper	second	is	1/7/.	Equivalently,	the
number	of	clock	cycles	per	instruction	or	CPIis	one.	When	performing	a	long	sequence	of	operations	in	the	pipeline,	its	perfor-mance	is	determined	by	the	delay	(latency)
T	of	a	single	stage,	rather	than	by	thedelay	mT	of	the	entire	pipeline.	Hence	an	m-stage	pipeline	provides	a	speedup	fac-tor	of	m	compared	to	a	nonpipelined
implementation	of	the	same	target	operation.

Control	unit

1 r ' p i r ■ r i i ' i

)ata R C. R- c. "*..."* R C

in

Dataout

—v	V

Stage	S|	Stage	S2

VStage	S„

Figure	4.47

Structure	of	a	pipeline	processor.

Any	operation	that	can	be	decomposed	into	a	sequence	of	suboperations	ofabout	the	same	complexity	can	be	realized	by	a	pipeline	processor.	Consider,	forexample,	the
addition	of	two	normalized	floating-point	numbers	x	and	y,	a	topicdiscussed	in	section	4.3.1.	This	operation	can	be	implemented	by	the	followingfour-step	sequence:
compare	the	exponents,	align	the	mantissas	(equalize	the	expo-nents),	add	the	mantissas,	and	normalize	the	result.	These	operations	require	thefour-stage	pipeline
processor	shown	in	Figure	4.48.	Suppose	that	x	has	the	normal-ized	floating-point	representation	(xM,xE),	where	xM	is	the	mantissa	and	xE	is	theexponent	with	respect	to
some	base	B	=	2k.	In	the	first	step	of	adding	x	=	(xMjcE)	toy	=	(yM,yE),	which	is	executed	by	stage	S{	of	the	pipeline,	xE	and	yE	are	compared,an	operation	performed	by
subtracting	the	exponents,	which	requires	a	fixed-pointadder	(see	Example	4.6).	S{	identifies	the	smaller	of	the	exponents,	say,	xE,	whosemantissa	xM	can	then	be
modified	by	shifting	in	the	second	stage	S2	of	the	pipelineto	form	a	new	mantissa	x'M	that	makes	(x'M,yE)	=	(xM,xE).	In	the	third	stage	themantissas	x'M	and	yM,	which
are	now	properly	aligned,	are	added.	This	fixed-pointaddition	can	produce	an	unnormalized	result;	hence	a	fourth	and	final	step	isneeded	to	normalize	the	result.
Normalization	is	done	by	counting	the	number	k	ofleading	zero	digits	of	the	mantissa	(or	leading	ones	in	the	negative	case),	shiftingthe	mantissa	k	digit	positions	to
normalize	it,	and	making	a	corresponding	adjust-ment	in	the	exponent.

Figure	4.49	illustrates	the	behavior	of	the	adder	pipeline	when	performing	asequence	of	N	floating-point	additions	of	the	form	x(	+	y,	for	the	case	N	=	6.	Addsequences	of
this	type	arise	when	adding	two	yV-component	real	(floating-point)vectors.	At	any	time,	any	of	the	four	stages	can	contain	a	pair	of	partially	processedscalar	operands
denoted	Qt,,y,)	in	the	figure.	The	buffering	of	the	stages	ensures	thatS,	receives	as	inputs	the	results	computed	by	stage	5,_,	during	the	preceding	clockperiod	only.	If	Tis
the	pipeline's	clock	period,	then	it	takes	time	4T	to	compute	thesingle	sum	x,	+	y,;	in	other	words,	the	pipeline's	delay	is	AT.	This	value	is	approxi-mately	the	time	required
to	do	one	floating-point	addition	using	a	nonpipelinedprocessor	plus	the	delay	due	to	the	buffer	registers.	Once	all	four	stages	of	the	pipe-line	have	been	filled	with	data,	a
new	sum	emerges	from	the	last	stage	S4	every	Tseconds.	Consequently,	N	consecutive	additions	can	be	done	in	time	(N	+	3)T,implying	that	the	four-stage	pipeline's
speedup	is

277

CHAPTER	4

Datapath

Design

S(4)	=

4NN+3

x	-	(xM.	xE)

>'	=	(>'m.Ve)

Data

Ri Exponentadder *:
Mantissashifter

c2
R3

Mantissaadder

c3
R>

Exponent

adder	and

mantissa

shifter

Q

Stage	5,(Exponentcomparison)

Stage	S2

(Mantissaalignment)

'VStage	S3(Mantissaaddition)

Stage	54(Normalization)



Figure	4.48

Four-stage	floating-point	adder	pipeline.
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Figure	4.49

Operation	of	the	four-stage	floating-point	adder	pipeline.

For	large	N,	5(4)	=	4	so	that	results	are	generated	at	a	rate	about	four	times	that	of	acomparable	nonpipelined	adder.	If	it	is	not	possible	to	supply	the	pipeline	with	dataat
the	maximum	rate,	then	the	performance	can	fall	considerably,	an	issue	to	whichwe	return	in	Chapter	5.

Pipeline	design.	Designing	a	pipelined	circuit	for	a	function	involves	firstfinding	a	suitable	multistage	sequential	algorithm	to	compute	the	given	function.This	algorithm's
steps,	which	are	implemented	by	the	pipeline's	stages,	should	bebalanced	in	the	sense	that	they	should	all	have	roughly	the	same	execution	time.Fast	buffer	registers	are
placed	between	the	stages	to	allow	all	necessary	data	items(partial	or	complete	results)	to	be	transferred	from	stage	to	stage	without	interfer-ing	with	one	another.	The
buffers	are	designed	to	be	clocked	at	the	maximum	ratethat	allows	data	to	be	transferred	reliably	between	stages.

Figure	4.50	shows	the	register-level	design	of	a	floating-point	adder	pipelinebased	on	the	nonpipelined	design	of	Figure	4.44	and	employing	the	four-stageorganization	of
Figure	4.48.	The	main	change	from	the	nonpipelined	case	is	theinclusion	of	buffer	registers	to	define	and	isolate	the	four	stages.	A	further	modifi-cation	has	been	made	to
implement	fixed-point	as	well	as	floating-point	addition.
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Pipelined	version	of	the	floating-point	adder	of	Figure	4.44.

The	circuits	that	perform	the	mantissa	addition	in	stage	53	and	the	correspondingbuffers	are	enlarged,	as	shown	by	broken	lines	in	Figure	4.50.	to	accommodatefull-size
fixed-point	operands.	To	perform	a	fixed-point	addition,	the	input	oper-ands	are	routed	through	53	only,	bypassing	the	other	three	stages.	Thus	the	circuitof	Figure	4.50	is
an	example	of	a	multifunction	pipeline	that	can	be	configuredeither	as	a	four-stage	floating-point	adder	or	as	a	one-stage	fixed-point	adder.	Ofcourse,	fixed-point	and
floating-point	subtraction	can	also	be	performed	by	this	cir-cuit;	subtraction	and	addition	are	not	usually	regarded	as	distinct	functions	in	thiscontext,	however.

280	The	same	function	can	sometimes	be	partitioned	into	suboperations	in	several
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Advanced	Topics	tne	'°^c	design,	an(*	the	need	to	share	stages	with	other	functions	in	a	multifunc-

tion	pipeline.	A	floating-point	adder	can	have	as	few	as	two	stages	and	as	many	assix.	For	example,	five-stage	adders	have	been	built	in	which	the	normalizationstage	(54
in	Figure	4.50)	is	split	into	two	stages:	one	to	count	the	number	k	of	lead-ing	zeros	(or	ones)	in	an	unnormalized	mantissa	and	a	second	stage	to	perform	thek	shifts	that
normalize	the	mantissa.

Whether	or	not	a	particular	function	or	set	of	functions	F	should	be	imple-mented	by	a	pipelined	or	nonpipelined	processor	can	be	analyzed	as	follows.	Sup-pose	that	F	can
be	broken	down	into	m	independent	sequential	steps	Fl,F2,.-.,Fm	sothat	it	has	an	m-stage	pipelined	implementation	Pm.	Let	F,	be	realizable	by	a	logiccircuit	C,	with
propagation	delay	(execution	time)	7*,.	Let	TR	be	the	delay	of	eachstage	Sj	due	to	its	buffer	register	7?,	and	associated	control	logic.	The	longest	7",times	create
bottlenecks	in	the	pipeline	and	force	the	faster	stages	to	wait,	doing	nouseful	computation,	until	the	slower	stages	become	available.	Hence	the	delaybetween	the
emergence	of	two	results	from	Pm	is	the	maximum	value	of	7",.	Theminimum	clock	period	(the	pipeline	period)	Tc	is	defined	by	the	equation

Tc	=	max{r,}	+	TR	for	i	=	1,2,...,m	(4.44)

The	throughput	of	Pm	is	\ITC	=	l/(max{r,}	+	7"R).	A	nonpipelined	implementationPx	of	F	has	a	delay	of	Z/=j	Ti	or,	equivalently,	a	throughput	of	1/(XJ=1	TX	Weconclude	the
m-stage	pipeline	Pm	has	greater	throughput	than	Px\	that	is,	pipeliningincreases	performance	if

Equation	(4.44)	also	implies	that	it	is	desirable	for	all	7",	times	to	be	approximatelythe	same;	that	is,	the	pipeline	stages	should	be	balanced.

Feedback.	The	usefulness	of	a	pipeline	processor	can	sometimes	beenhanced	by	including	feedback	paths	from	the	stage	outputs	to	the	primary	inputsof	the	pipeline.
Feedback	enables	the	results	computed	by	certain	stages	to	be	usedin	subsequent	calculations	by	the	pipeline.	We	next	illustrate	this	important	con-cept	by	adding
feedback	to	a	four-stage	floating-point	adder	pipeline	like	that	ofFigure	4.50.

example	4.8	summation	by	a	pipeline	processor	.	Consider	the	prob-lem	of	computing	the	sum	of	./V	floating-point	numbers	bl,b2,---,bN-	It	can	be	solved	byadding
consecutive	pairs	of	numbers	using	an	adder	pipeline	and	storing	the	partialsums	temporarily	in	external	registers.	The	summation	can	be	done	much	more	effi-ciently	by
modifying	the	adder	as	shown	in	Figure	4.51.	Here	a	feedback	path	has	beenadded	to	the	output	of	the	final	stage	54,	allowing	its	results	to	be	fed	back	to	the	firststage
5|.	A	register/?	has	also	been	connected	to	the	output	of	S4,	so	that	stage's	resultscan	be	stored	indefinitely	before	being	fed	back	to	5,.	The	input	operands	of	the	modi-
fied	pipeline	are	derived	from	four	separate	sources:	a	variable	X	that	is	typicallyobtained	from	a	CPU	register	or	a	memory	location;	a	constant	source	K	that	can
applysuch	operands	as	the	all-0	and	all-1	words;	the	output	of	stage	S4,	representing	theresult	computed	by	S4	in	the	preceding	clock	period;	and,	finally,	an	earlier	result
com-puted	by	the	pipeline	and	stored	in	the	output	register	R.
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\ Multiplexer	r*	-	-\	Multiplexer /- 1

I

Stage	5, «--- -4

3 1

1 Stage	52 ♦	-- -4

' r

Stage	S3 ■« -4

i '

Stage	54 «--- -4

1 r

Register	/? ^

Control

Output

Figure	4.51

Pipelined	adder	with	feedback	paths.

The	jV-number	summation	problem	is	solved	by	the	pipeline	of	Figure	4.51	in	thefollowing	way.	The	external	operands	bx,b2,...,bN	are	entered	into	the	pipeline	in	a	con-
tinuous	stream	via	input	X.	This	process	requires	a	sequence	of	register	or	memoryfetch	operations,	which	are	easily	implemented	if	the	operands	are	stored	in



contiguousregister/memory	locations.	While	the	first	four	numbers	bx,b2,bi,bA	are	being	entered,the	all-0	word	denoting	the	floating-point	number	zero	is	applied	to	the
pipeline	inputK,	as	illustrated	in	Figure	4.52	for	times	t	=	1:4.	After	four	clock	periods,	that	is,	at	timet	=	5,	the	first	sum	0	+	bx	=	6,	emerges	from	54	and	is	fed	back	to
the	primary	inputs	ofthe	pipeline.	At	this	point	the	constant	input	K	=	0	is	replaced	by	the	current	result	54	=bv	The	pipeline	now	begins	to	compute	bx	+	b$.	At	t	=	6,	it
begins	to	compute	b2	+	b6;at	/	=	7,	computation	of	fc3	+	bn	begins,	and	so	on.	When	bx	+	b5	emerges	from	the	pipe-line	at	t	=	8,	it	is	fed	back	to	5,	to	be	added	to	the
latest	incoming	number	b9	to	initiatecomputation	of	bt	+	b5	+	b9.	(This	case	does	not	apply	to	Figure	4.52,	where	b%	=	bs	isthe	last	item	to	be	summed.)	In	the	next	time
period,	the	sum	b2	+	bb	emerges	from	thepipeline	and	is	fed	back	to	be	added	to	the	incoming	number	bw.	Thus	at	any	time,	thepipeline	is	engaged	in	computing	in	its
four	stages	four	partial	sums	of	the	form
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bi	+	b1	+	bu+b^	+	...

fc4	+&■	+	&,,	+	fe.fi	+	...

(4.45)
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Summation	of	an	eight-element	vector.
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When	the	last	input	operand	bN	has	entered	the	pipeline,	the	feedback	structure	isagain	altered	to	allow	the	four	partial	sums	in	(4.45)	to	be	added	together	to
producethe	desired	result	bx	+	b2	+	...	+	bx.	The	necessary	modification	to	the	feedback	struc-ture	is	shown	in	Figure	4.52	for	the	case	N	=	8.	At	t	=	9,	the	external
inputs	to	the	pipe-line	are	disabled	by	setting	them	to	zero,	and	the	first	of	the	four	partial	sums	bx	+	b5	atthe	output	of	stage	54	is	stored	in	register	R.	Then	at	t	=	10.
the	new	result	b2	+	b6	fromS4	is	fed	back	to	the	pipeline	inputs,	along	with	the	previous	result	bx	+	b5	obtainedfrom	R.	Thus	computation	of	bx	+	b5	+	b2	+	b6.	which	is
the	sum	of	half	of	the	inputoperands,	begins	at	this	point.	After	a	further	delay	of	one	time	period,	computation	ofthe	other	half-sum	bi	+	b-,	+	bA	+	b%	begins.	When	b,	+
b5	+	b2	+	bb	emerges	from	S4	att=	14,	it	is	stored	in	R	until	i»4	+	£>„	+	b3	+	b7	emerges	from	54	at	t	-	16.	At	this	point	theoutputs	of	54	and	R	are	fed	back	to	Sv	The
final	result	is	produced	four	time	periodslater—at	t	=	20	in	the	case	of	N	=	8.
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It	is	easily	seen	that	for	the	general	case	of	TV	operands,	the	scheme	of	Figure	4.52can	compute	the	sum	of	N	>	4	floating-point	numbers	in	time	(N	+	11)7",	where	T	is
thepipeline's	clock	period,	that	is.	the	delay	per	stage.	Since	a	comparable	nonpipelinedadder	requires	time	4NT	to	compute	SUM.	we	obtain	a	speedup	here	of	about
4N/(N	+11),	which	approaches	4	as	N	increases.

The	foregoing	summation	operation	can	be	invoked	by	a	single	vector	instruc-tion	of	a	type	that	characterized	the	vector-processing,	pipeline-based	"supercom-puters"	of
the	1970s	and	1980s	[Stone	1993].	For	instance.	Control	Data	Corp.'sSTAR-100	computer	[Hintz	and	Tate	1972]	has	an	instruction	SUM	that	computes
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the	sum	of	the	elements	of	a	specified	floating-point	vector	B	=	(bx,	b2,...,bN)	ofarbitrary	length	N	and	places	the	result	in	a	CPU	register.	The	starting	(base)address	of	B,
which	corresponds	to	a	block	of	main	memory,	the	name	C	of	theresult	register,	and	the	vector	length	N	are	all	specified	by	operand	fields	of	SUM.We	can	see	from	Figure
4.52	that	a	relatively	complex	pipeline	control	sequence	isneeded	to	implement	a	vector	instruction	of	this	sort.	This	complexity	contributessignificantly	to	both	the	size
and	cost	of	vector-oriented	computers.	Moreover,	toachieve	maximum	speedup,	the	input	data	must	be	stored	in	a	way	that	allows	thevector	elements	to	enter	the	pipeline
at	the	maximum	possible	rate—generally	onenumber-pair	per	clock	cycle.

The	more	complex	arithmetic	operations	in	CPU	instruction	sets,	includingmost	floating-point	operations,	can	be	implemented	efficiently	in	pipelines.	Fixed-point	addition
and	subtraction	are	too	simple	to	be	partitioned	into	suboperationssuitable	for	pipelining.	As	we	see	next,	fixed-point	multiplication	is	well	suited	topipelined	design.

Pipelined	multipliers.	Consider	the	task	of	multiplying	two	n-bit	fixed-pointbinary	numbers	X	=	xn_lxn_2..	.x0	and	Y	=	)'„_1y„_2-	•	•	v0.	Combinational	array	multi-pliers	of
the	kind	described	in	section	4.1.2	are	easily	converted	to	pipelines	by	theaddition	of	buffer	registers.	Figure	4.53	shows	a	pipelined	array	multiplier	thatemploys	the	1-bit
multiply-and-add	cell	M	of	Figure	4.19	and	has	n	=	3.	Each	cellM	computes	a	1-bit	product	xy	and	adds	it	to	both	a	product	bit	from	the	precedingstage	and	a	carry	bit



generated	by	the	cell	on	its	right.	Thus	the	n	cells	in	each	stageSit	0	<	i	<	n	-	1,	compute	a	partial	product	of	the	form

/>,■	=	/>,-_,+jri2,r

(4.46)
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Figure	4.53

Multiplier	pipeline	using	ripple-carry	propagation.
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with	the	final	product	Pn_x	=	XY	being	computed	by	the	last	stage.	In	addition	tostoring	the	partial	products	in	the	buffer	registers	denoted	/?,,	the	multiplicand	Yand	all
hitherto	unused	multiplier	bits	must	also	be	stored	in	/?,-.

An	/i-stage	multiplier	pipeline	of	this	type	can	overlap	the	computation	of	nseparate	products,	as	required,	for	example,	when	multiplying	fixed-point	vectors,and	can
generate	a	new	result	every	clock	cycle.	Its	main	disadvantage	is	the	rela-tively	slow	speed	of	the	carry-propagation	logic	in	each	stage.	The	number	of	Mcells	needed	is
n2,	and	the	capacity	of	all	the	buffer	registers	is	approximately	3«2(see	problem	4.31);	hence	this	type	of	multiplier	is	also	fairly	costly	in	hardware.For	these	reasons,	it	is
rarely	used.

Multipliers	often	employ	a	technique	called	carry-save	addition,	which	is	par-ticularly	well	suited	to	pipelining.	An	n-bit	carry-save	adder	consists	of	n	disjointfull	adders.
Its	input	is	three	/7-bit	numbers	to	be	added,	while	the	output	consists	ofthe	n	sum	bits	forming	a	word	5	and	the	n	carry	bits	forming	a	word	C.	Unlike	theadders
discussed	so	far,	there	is	no	carry	propagation	within	the	individual	adders.The	outputs	5	and	C	can	be	fed	into	another	«-bit	carry-save	adder	where,	as	shownin	Figure
4.54,	they	can	be	added	to	a	third	n-bit	number	W.	Observe	that	the	carryconnections	are	shifted	to	the	left	to	correspond	to	normal	carry	propagation.	Ingeneral,	m
numbers	can	be	added	by	a	treelike	network	of	carry-save	adders	to	pro-duce	a	result	in	the	form	(5,C).	To	obtain	the	final	sum,	S	and	C	must	be	added	bya	conventional
adder	with	carry	propagation.

Multiplication	can	be	performed	using	a	multistage	carry-save	adder	circuit	ofthe	type	shown	in	Figure	4.55;	this	circuit	is	called	a	Wallace	tree	after	its	inven-tor	[Wallace
1964].	The	inputs	to	the	adder	tree	are	n	terms	of	the	form	M,	=xiY2k.	Here	M,	represents	the	multiplicand	Y	multiplied	by	the	/th	multiplier	bitweighted	by	the
appropriate	power	of	2.	Suppose	that	Mi	is	In	bits	long	and	thata	full	double-length	product	is	required.	The	desired	product	P	is	Z£Tq	M;.	Thissum	is	computed	by	the
carry-save	adder	tree,	which	produces	a	2«-bit	sum	and	a
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A	carry-save	(Wallace	tree)	multiplier

2«-bit	carry	word.	The	final	carry	assimilation	is	performed	by	a	fast	adder—acarry-lookahead	adder,	for	instance—with	normal	internal	carry	propagation.

The	strictly	combinational	multiplier	of	Figure	4.55	is	practical	for	moderatevalues	of	n,	depending	on	the	level	of	circuit	integration	used.	For	large	n,	the	num-ber	of
carry-save	adders	required	can	be	excessive.	Carry-save	techniques	can	stillbe	used,	however,	if	the	multiplier	is	partitioned	into	k	m-bit	segments.	Only	mterms	M,	are
generated	and	added	via	the	carry-save	adder	circuits.	The	process	isrepeated	k	times,	and	the	resulting	sums	are	accumulated.	The	product	is	thereforeobtained	after	k
iterations.

Carry-save	multiplication	is	well	suited	to	pipelined	implementation.	Figure4.56	shows	a	four-stage	pipelined	version	of	the	carry-save	multiplier	of	Figure4.55.	The	first
stage	decodes	the	multiplier	and	transfers	appropriately	shifted	cop-ies	of	the	multiplicand	into	the	carry-save	adders.	The	output	of	the	first	stage	is	aset	of	numbers
(partial	products)	that	are	then	summed	by	the	carry-save	addertree.	The	carry-save	logic	has	been	subdivided	into	two	stages	by	the	insertion	ofbuffer	registers	(denoted
R	in	the	figure).	The	fourth	and	final	stage	contains	acarry-lookahead	adder	to	assimilate	the	carries.	This	type	of	multiplier	is	easilymodified	to	handle	floating-point
numbers.	The	input	mantissas	are	processed	in	afixed-point	multiplier	pipeline.	The	exponents	are	combined	by	a	separate	fixed-point	adder,	and	a	normalization	circuit	is
also	introduced.

The	next	example	describes	the	pipelined	floating-point	unit	of	the	Motorola68040	microprocessor,	which	integrates	the	functions	of	the	68020	microprocessor(section
3.1.2	and	Examples	3.3,	3.6,	and	3.8)	and	its	68882	floating-point	copro-cessor	(Example	4.7)	in	a	single	IC	containing	more	than	1.2	million	transistors.

Inputbus
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A	pipelined	carry-save	multiplier.

This	floating-point	unit	also	implements	many	of	the	design	techniques	covered	inthis	section.

EXAMPLE	4.9	THE	PIPELINED	FLOATING-POINT	UNIT	OF	THE	MOTOR-OLA	68040	[EDENfield	et	al.	1990).	This	member	of	the	680X0	series	of	one-chip	32-bit
microprocessors	was	introduced	in	1990.	It	executes	the	combined	instruc-tion	sets	of	the	68020	CPU	and	the	68882,	which	are	listed	in	Figures	3.12	and
4.46,respectively,	and	is	about	four	times	as	fast	as	the	68020	for	a	fixed	clock	rate.	The68040	contains	two	pipelined	arithmetic	processors:	an	integer	unit	(IU),	which
handlesinteger	instructions,	logical	instructions,	and	address	calculations,	and	a	floating-pointunit	(FPU),	which	we	now	examine.	A	key	design	goal	of	the	FPU	is
compatibility	withobject	code	written	for	the	68020	and	68882,	as	well	as	compatibility	with	the	IEEE754	floating-point	standard.	Only	the	subset	of	the	68882's
instructions	listed	in	Figure4.57,	including	the	four	basic	arithmetic	operations	and	square	root,	are	actually	real-ized	in	hardware.	Also	included	is	a	small	set	of	data-
transfer	and	program-control

288 Type Opcode Operation	specified

SECTION	4.3 Data	transfer FMOVE Move	word	to/from	coprocessor	data	or	control	register

Advanced	Topics FMOVEM Move	multiple	words	to/from	coprocessor

Data	processing FADD Add

FCMP Compare

FDIV Divide

FMUL Multiply

FSUB Subtract

FABS Absolute	value

FNEG Negate

FSQRT Square	root

Program	control FBcc Branch	if	condition	code	(status)	cc	is	1

FDBcc Test,	decrement	count,	and	branch	on	cc

FRESTORE Restore	coprocessor	state

FSAVE Save	coprocessor	state

FScc Set	(cc	=	1)	or	reset	(cc	=	0)	a	specified	byte

FTST Set	coprocessor	condition	codes	to	specified	values

FTRAPcc Conditional	trap

Figure	4.57

Subset	of	the	68882	floating-point	instruction	set	implemented	by	the	68040.

instructions	to	support	floating-point	operations.	The	remaining	68882	instructionsmust	be	simulated	by	software,	for	which	the	68040	provides	some	hardware	support.

The	68040's	FPU	has	the	three-stage	pipeline	organization	shown	in	Figure	4.58.It	is	designed	to	handle	floating-point	number	sizes	of	32,	64,	and	80	bits.	The	FPU
isdivided	into	two	largely	independent	subunits:	one	for	64-bit	mantissas	(which	expandto	67	bits	when	guard	digits	are	included)	and	the	other	for	16-bit	exponents.	The
FPUobtains	its	operands	from	and	sends	its	results	to	the	IU	in	a	way	that	mimics	the68882's	communication	with	its	host	CPU.	The	pipeline's	first	stage	5,	(referred	to
asthe	floating-point	conversion	unit)	reformats	input	and	output	operands	to	meet	IEEE754	requirements,	and	is	the	only	stage	that	communicates	with	the	IU.	Stage	5,
alsohas	an	ALU	for	comparing	input	exponents,	as	required	in	floating-point	addition	orsubtraction.	The	second	stage	52	(the	floating-point	execution	unit)	contains	a
large(67	bit)	ALU,	a	fast	barrel	shifter,	and	an	array	multiplier;	this	stage	is	responsible	forexecuting	all	major	operations	on	mantissas.	The	final	stage	S3	(the	floating-
point	nor-malization	unit)	rounds	off	and	normalizes	results;	it	also	deals	with	exceptional	cases.Various	buses	shown	in	simplified	form	in	Figure	4.58	provide	bypass	and
feedbackpaths	through	the	pipeline.	The	clocking	of	the	pipeline	is	complicated	by	the	need	touse	several	cycles	to	transfer	long	operands	so	that	the	minimum	delay	of
each	stage	istwo	cycles.	The	delay	of	a	floating-point	operation	can	vary	from	2	clock	cycles	tomore	than	100	in	the	case	of	the	FSQRT	instruction.

Certain	instructions	such	as	FABS,	FMOVE,	and	FNEG	are	executed	entirelywithin	stage	S{	and	thus	have	a	delay	of	two	clock	cycles.	The	add	and	subtract	instruc-tions
FADD	and	FSUB	use	all	three	stages	of	the	FPU	and	have	a	delay	of	three.	Theseinstructions	see	a	pipeline	whose	organization	resembles	that	of	Figure	4.50,	with
thelatter's	middle	stages	S2	and	53	merged	into	the	68040's	second	(execution)	stage	S2-FMUL	is	executed	primarily	by	the	64	x	8-bit,	fixed-point	multiplier	in	S2.	The
multi-plication	of	two	mantissas	requires	several	passes	through	the	multiplier	circuit,	which

implements	the	carry-save	multiplication	method	discussed	earlier.	Two	passes	can	bemade	per	clock	cycle	of	the	pipeline,	so	that	the	final	set	of	sum-carry	pairs	is	gener-
ated	in	four	clock	cycles.	An	additional	cycle	through	SVs	ALU	assimilates	the	carriesand	yields	the	final	product.	The	floating-point	division	instruction	FDIV	is	imple-
mented	by	a	shift-and-subtract	algorithm	of	the	non-restoring	type,	which	requires	nospecial	division	hardware	but	takes	up	to	38	clock	cycles.
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Pipelined	floating-point	unit	of	the	Motorola	68040.
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Systolic	arrays.	Closely	related	conceptually	to	arithmetic	pipelines	are	thedata-processing	circuits	called	systolic	arrays	[Johnson,	Hurson.	and	Shirazi1993]	formed	by
interconnecting	a	set	of	identical	data-processing	cells	in	a	uni-form	manner.	Data	words	flow	synchronously	from	cell	to	cell,	with	each	cell	per-forming	a	small	step	in	the
overall	operation	of	the	array.	The	data	are	not	fullyprocessed	until	the	end	results	emerge	from	the	array's	boundary	cells.	A	one-dimensional	systolic	array	is	therefore	a
kind	of	pipeline	with	identical	stages.	Atwo-dimensional	systolic	array	has	a	structure	not	unlike	the	divider	array	in	Fig-ure	4.27,	but	its	cells	are	sequential	rather	than
combinational.	In	general,	a	sys-tolic	array	permits	data	to	flow	through	the	cells	in	several	directions	at	once.	Asin	pipelines,	buffering	must	be	included	within	the	cells
to	isolate	different	sets	ofoperands	from	one	another.	The	name	systolic	derives	from	the	rhythmic	nature	ofthe	data	flow,	which	can	be	compared	with	the	rhythmic
contraction	of	the	heart(the	systole)	in	pumping	blood	through	the	body.	Systolic	processors	have	beendesigned	to	implement	various	complex	arithmetic	operations	such
as	convolu-tion	(problem	4.34),	matrix	multiplication,	and	solution	techniques	for	linearequations.	We	illustrate	the	concepts	involved	by	a	two-dimensional	systolic
arraythat	performs	matrix	multiplication.

Let	X	be	an	n	x	n	matrix	of	fixed-point	or	floating-point	numbers	defined	by

X	=

4,	1	A1.2	•••-M.nf2,	1	Xl,2	•••JC2,	n

Vl

For	brevity	we	write	X	=	[jc(;],	where	xt]	is	the	element	in	the	/th	row	andyth	col-umn	of	X.	The	product	of	X	and	another	n	x	n	matrix	Y=	[v^]	is	the	n	x	n	matrixZ	=	[z,,]
given	by

"i.j	~	—	Xi.	I

XV

k,j

(4.47)

k	=	1

A	systolic	array	for	matrix	multiplication	may	be	constructed	from	a	cell	(Figure4.59a)	that	executes	the	following	multiply-and-add	operation	on	individual	num-bers
(scalars):



:=z	+	x	x	v

(4.48)

Note	that	the	same	type	of	operation	appears	in	the	cell	M	of	the	fixed-point	arraymultiplier	in	Figure	4.53,	with	1-bit	operands	replacing	the	n-bit	numbers	usedhere.
Multiply-and-add	is	also	a	basic	instruction	type	in	recent	CPUs	such	as	thePowerPC.

Each	cell	C,-	-	of	the	matrix	multiplier	receives	its	x	and	y	operands	from	theleft	and	top,	respectively.	In	addition	to	computing	z,	Ci}	propagates	its	x	and	yinput	operands
rightward	and	downward,	respectively.	The	systolic	matrix	multi-plier	is	constructed	from	n(2n	-	1)	copies	of	C,	,	which	are	connected	in	the	two-dimensional	mesh
configuration	depicted	in	Figure	4.59b.	The	n	operands	formingthe	/th	row	of	X	flow	horizontally	from	left	to	right	through	the	/th	row	of	cells	asthey	might	through	a	one-
dimensional	pipeline.	The	n	operands	forming	the	y'th

column	of	Y	flow	vertically	through	the	_/th	column	of	cells	in	a	similar	manner.The	x	and	y	operands	are	carefully	ordered	and	separated	by	zeros	as	shown	in	thefigure	so
that	the	specific	operand	pairs	xlhyk}	appearing	in	(4.47)	meet	at	anappropriate	cell	of	the	array,	where	they	are	multiplied	according	to	(4.48)	andadded	to	a	running
sum	z	.	The	z's	emerge	from	the	left	side	of	C(J,	so	that	there	isa	flow	of	partial	results	from	right	to	left	through	the	cell	array.	Each	row	of	cellseventually	issues	the
corresponding	row	of	the	matrix	product	Z	from	its	left	side.

To	illustrate	the	operation	of	the	matrix	multiplier,	consider	the	computation	ofZ\	i	in	Figure	4.59/?.	Specializing	Equation	(4.47)	for	the	case	where	n	=	3,	we	get

zi,i=	*u)'i,i+	x\,iyi,\+	-*i,3}!3,i
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Figure	4.59

Systolic	array	for	matrix	multiplication:	(a)	basic	cell	and	(b)	3	x	5	array.

292	The	operand	xl,	flows	rightward	through	the	top	row	of	cells	meeting	only	zero

.r„,..,	.	.	values	of	v	and	z	until	it	encounters	y,	,	at	cell	C\	-,	at	time	r	=	3.	This	cell	then	com-

SECTION	4.4	'	*»1	I,J

Summary	putes	z	=	*t	jy,,	+	0,	which	it	sends	to	the	cell	C,	2	on	its	left.	At	the	same	time	C,	3

forwards	y,	,	to	the	second	row	of	cells	for	use	in	computing	the	second	row	of	theresult	matrix	Z;	it	also	forwards	xu	to	its	right	neighbor	C,	4.	In	the	next	clockcycle	(t	=
4),	xx2	and	y2x	are	applied	to	Cl2-	This	cell	therefore	computes	z	=.x,	2y2,i	+	z,	where	z'	=	xx	,y,	,.	Finally	at	t	=	5,	the	last	pair	of	operands	xx3	and	y3,converge	at	the
boundary	cell	C,	,,	which	computes	z	=	xl3y3]	+	z,	using	the	valuez	-	xi,i3'i,i	+	x\.iy7.\	supplied	by	C,	2;	z	is	the	desired	result	z,	,.	At	time	t	=	6,	Cx	,emits	a	zero,	and	at	t	=
7,	it	emits	the	next	element	zX2	of	Z.	This	process	continuesuntil	all	the	elements	of	the	first	row	of	Z	have	been	generated.	Concurrently	and	ina	similar	way,	the
remaining	rows	of	cells	compute	the	other	rows	of	Z.	Note,	how-ever,	that	xi+x	j	is	produced	two	cycles	later	than	x/;.	The	last	result	z„„	emergesfrom	the	array	at	t	=	An	-
3.	Thus	using	0(n2)	cells,	this	systolic	array	performsmatrix	multiplication	in	O(n)	time,	that	is,	linear	time.	Roughly	speaking,	the	arraygenerates	n	elements	of	the
product	matrix	Z	in	one	step	(two	clock	cycles	in	thepresent	example).

The	major	characteristics	of	a	systolic	array	can	be	deduced	from	the	preced-ing	example.

1.	It	provides	a	high	degree	of	parallelism	by	processing	many	sets	of	operandsconcurrently.

2.	Partially	processed	data	sets	flow	synchronously	through	the	array	in	pipelinefashion,	but	possibly	in	several	directions	at	once,	with	complete	results	eventu-ally
appearing	at	the	array	boundary.

3.	The	use	of	uniform	cells	and	interconnection	simplifies	implementation,	forexample,	when	using	single-chip	VLSI	technology.

4.	The	control	of	the	array	is	simple,	since	all	cells	perform	the	same	operations;however,	care	must	be	taken	to	supply	the	data	in	the	correct	sequence	for	theoperation
being	implemented.

5.	If	the	X	and	Y	matrices	are	generated	in	real	time,	it	is	unnecessary	to	storethem	before	computing	X	x	Y,	as	with	most	sequential	or	parallel	processingtechniques.
Thus	the	use	of	systolic	arrays	reduces	overall	memory	require-ments.

6.	The	amount	of	hardware	needed	to	implement	a	systolic	array	like	that	of	Figure4.59	is	relatively	large,	even	taking	maximum	advantage	of	VLSI.

Systolic	arrays	have	found	successful	application	in	the	design	of	special-purposearithmetic	circuits	for	digital	signal	processing,	where	data	must	be	processed	inreal
time	at	very	high	speeds	using	operations	like	matrix	multiplication.

4.4SUMMARY

The	datapath	or	data-processing	part	of	a	CPU	is	responsible	for	executing	arith-metic	and	logical	(nonnumerical)	instructions	on	various	operand	types,	includingfixed-
point	and	floating-point	numbers.	The	power	of	an	instruction	set	is	oftenmeasured	by	the	arithmetic	instructions	it	contains.	The	arithmetic	functions	ofsimpler	machines
such	as	RISC	processors	may	be	limited	to	the	addition	and	sub-

traction	of	fixed-point	numbers.	More	powerful	processors	incorporate	multiplyand	divide	instructions	and	in	many	cases	have	the	hardware	needed	to	processfloating-
point	instructions	as	well.

Arithmetic	circuit	design	is	a	well-developed	field.	Fixed-point	adders	andsubtracters	are	easily	constructed	from	combinational	logic.	The	simplest	but	slow-est	adder
circuits	employ	ripple-carry	propagation.	High-speed	adders	reducecarry-propagation	delays	by	techniques	such	as	carry	lookahead.	Fixed-point	mul-tiplication	and
division	can	be	implemented	by	shift-and-add/subtract	algorithmsthat	resemble	manual	methods.	The	product	or	quotient	of	two	km-bit	numbers	isformed	in	k	sequential
steps,	where	each	step	involves	an	m-bit	shift	and,	possibly,a	km-bit	addition	or	subtraction.	Division	is	inherently	more	difficult	than	multipli-cation	due	to	the	problem	of
determining	quotient	digits.	Both	multipliers	anddividers	can	be	implemented	by	combinational	logic	array	circuits	but	at	a	substan-tial	increase	in	the	amount	of
hardware	required.

The	simplest	ALU	is	a	combinational	circuit	that	implements	fixed-pointaddition	and	subtraction,	typically	using	the	carry-lookahead	method;	it	alsoimplements	a	set	of
bitwise	(word)	logical	operations.	Multiplication	and	divisionalgorithms	of	the	shift-and-add/subtract	type	can	be	realized	by	adding	a	fewoperand	registers—an
accumulator	AC,	a	multiplier-quotient	register	MQ,	and	amultiplicand-dividend	register	MD—as	well	as	a	small	control	unit.	Datapathunits	usually	contain	an	addressable
register	file—in	effect,	a	small,	high-speedRAM—to	store	ALU	operands.	The	register	file	has	several	10	ports	to	allowoperands	in	several	different	registers	to	be
accessed	simultaneously.	Bit	slicing	isa	useful	technique	for	constructing	a	large	ALU	from	multiple	copies	of	a	smallALU	slice.	Multicycling	allows	a	small	ALU	to	process
large	operands	at	lowerhardware	cost	but	more	slowly	than	bit	slicing.

Floating-point	and	other	complex	operations	can	be	implemented	by	an	auton-omous	execution	unit	within	the	CPU	or	by	a	program-transparent	extension	to	theCPU
called	a	coprocessor.	A	floating-point	processor	is	typically	composed	of	apair	of	fixed-point	ALUs—one	to	process	exponents	and	the	other	to	process	man-tissas.	Special
circuits	are	needed	for	normalization	and,	in	the	case	of	floating-point	addition	and	subtraction,	exponent	comparison	and	mantissa	alignment.

Finally,	the	throughput	of	a	complex	datapath	circuit	such	as	a	floating-pointprocessor	can	be	substantially	increased	with	low	hardware	overhead	by	a	tech-nique	called
pipelining.	The	operations	of	interest	are	broken	into	a	sequence	ofsteps,	each	of	which	is	implemented	by	a	pipeline	stage.	Buffering	between	thestages	allows	an	«-stage
pipeline	to	execute	up	to	n	separate	instructions	concur-rently.	Hence	the	pipeline's	throughput	when	executing	a	long	sequence	ofinstructions	exceeds	by	a	factor	of	up
to	/;	that	of	a	similar	but	nonpipelined	pro-cessor.	Systolic	arrays	extend	the	pipeline	concept	from	one	to	two	or	more	data-processing	dimensions.
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4.5PROBLEMS

4.1.	Figure	4.60	gives	the	logic	diagram	of	a	small	arithmetic	circuit	found	in	a	commercialIC	with	the	10	signals	renamed	to	conceal	their	identities,	(a)	What	is	the
overall	func-tion	of	this	circuit?	(b)	Identify	the	purpose	of	every	10	signal,	(c)	Why	do	all	input

294

SECTION	4.5Problems



Figure	4.60

Small	arithmetic	circuit	from	a	commercial	IC.

lines	contain	inverters,	which	apparently	increase	the	circuit's	gate	count	without	con-tributing	to	its	functionality?

4.2.	A	1-bit	or	full	subtracter	implements	the	arithmetic	equation

where	z:	and	bt	denote	the	difference	and	borrow	functions,	respectively,	(a)	Derive	apair	of	logic	equations	defining	s,	and	bt.	(b)	Design	an	«-bit	subtracter	whose	opera-
tion	is	analogous	to	that	of	a	ripple-carry	adder.

4.3.	Redesign	the	n-bit	twos-complement	adder-subtracter	of	Figure	4.4	so	that	it	can	com-pute	any	of	the	three	operations	X	+	Y,	X	-	Y,	or	Y	-	X,	as	specified	by	a	2-bit
MODEcontrol	input.

4.4.	Addition	and	subtraction	of	sign-magnitude	numbers	is	complicated	by	the	fact	that	tocompute	X	+	Y,	the	magnitudes	\X\	and	\Y\	must	be	compared	to	determine	the
operationto	perform	and	the	order	of	the	operands.	This	can	be	seen	from	Figure	4.61	whichgives	a	complete	procedure	for	addition	of	«-bit,	sign-magnitude	numbers.
Design	aregister-level	circuit	to	compute	the	three	functions	X	+	Y,	X	-	Y,	and	Y-X.	Assumethat	the	word	size	n	is	16	bits	and	that	the	standard	design	components	are
available,including	a	16-bit	(unsigned)	adder,	a	16-bit	(unsigned)	subtracter,	and	a	16-bit	mag-nitude	comparator.

4.5.	Suppose	that	the	adder-subtracter	circuit	of	Figure	4.62	has	been	designed	for	twos-complement	numbers.	It	computes	the	sum	Z	=	X	+	Y	when	control	line	SUB	=	0
andthe	difference	Z	=	X	-	Y	when	SUB	=	1.	An	overflow	flag	v	is	to	be	added	to	the	circuit,but	it	is	not	possible	to	access	internal	lines.	In	other	words,	only	those	data	and
control

1.	X	and	Y	both	positive:	Add	X	=	xn_xxn_2...x0	and	Y	=	>'n_i>n_2—>'o	(modulo	2")	to	form	the	resultZ	=	z„_iZ„_2—2o-	(This	is	"-bit	unsigned	addition).

2.	X	positive;	Y	negative:	Let	1X1	=	xn_2xn_y..xn	and	\Y\	=	y„

>fl'

^-3->0

Vr,	If	LX1	<	M,	subtract	X	from	y

(modulo	2").	If	1X1	>	\Y\,	then	set	v„_,	to	0	and	subtract	Yfrom	X	(modulo	2").

3.	X	negative;	Ypositive:	If	in	<	LX1,	subtract	Y	from	X	(modulo	2").	If	in	>	1X1,	set.r„_,	to	0	andsubtract	X	from	Y	(modulo	2").

4.	X	and	Y	both	negative:	Add	X	and	Y	(modulo	2")	and	set	z„_,	to	1.

Figure	4.61

Algorithm	for	subtracting	sign-magnitude	numbers.

295

CHAPTER	4

Datapath

Design

1

n-bit	adder-subtracter

"}	"}

SUB

Figure	4.62

An	n-bit	adder-subtracter	circuit.

lines	appearing	in	the	figure	can	be	used	to	compute	v.	Construct	a	suitable	logic	circuitfor	v.

4.6.	Consider	again	the	adder-subtracter	of	Figure	4.62,	assuming	now	that	it	has	beendesigned	for	sign-magnitude	numbers.	It	computes	Z	=	X	+	Y	when	SUB	=	0	and	Z
=X-	Y	when	SUB	=	1.	Assume	that	the	circuit	contains	an	n-bit	ripple-carry	adder	anda	similar	«-bit	ripple-borrow	subtracter	and	that	you	have	access	to	all	internal
lines.Derive	a	logic	equation	that	defines	an	overflow	flag	v	for	this	circuit.

4.7.	Give	an	informal	interpretation	and	proof	of	correctness	of	the	two	expressions	(4.12)for/?	and	g	that	define	the	propagate	and	generate	conditions,	respectively,	for	a
4-bitcarry-lookahead	generator.

4.8.	Show	how	to	extend	the	16-bit	design	of	Figure	4.8	to	a	64-bit	adder	using	the	sametwo	component	types:	a	4-bit	adder	module	and	a	4-bit	carry-lookahead	generator.

4.9.	Stating	your	assumptions	and	showing	your	calculations,	obtain	an	good	estimate	foreach	of	the	following	for	both	an	n-bit	carry-lookahead	adder	and	an	n-bit	ripple-
carryadder:	(a)	the	total	number	of	gates	used;	(b)	the	circuit	depth	(number	of	levels):	and(c)	the	maximum	gate	fan-in.

4.10.	Another	useful	technique	for	fast	binary	addition	is	the	conditional-sum	method.	Itand	a	closely	related	method	called	carry-select	addition	are	based	on	the	idea	of
si-multaneously	generating	two	versions	of	each	sum	bit	s\:	a	version	s],	which	assumesthat	its	input	carry	c,_,	=	1.	and	a	second	version	s?,	which	assumes	that	ct_{	=	0.
Amultiplexer	controlled	by	<?,_,	then	selects	either	sj	or	s®	to	be	sr	The	advantage	ofthis	method	is	that	the	sums	(and	carries)	can	be	generated	without	waiting	for	their
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Figure	4.63

Three-bit	conditional-sumadder.

incoming	carries	to	arrive.	Figure	4.63	shows	a	3-bit	conditional-sum	adder	fromwhich	its	general	structure	and	operation	can	readily	be	deduced,	(a)	Construct	a	gate-
level	logic	circuit	for	the	CS	module,	(b)	Show	how	to	extend	the	circuit	of	Figure4.63	from	3	to	7	bits,	(c)	Briefly	compare	the	conditional-sum	and	carry-
lookaheadtechniques	in	terms	of	speed	and	hardware	costs.

4.11.	Suppose	the	combinational	array	multiplier	of	Figures	4.17	and	4.18	is	given	the	un-signed	integer	operands	X=	1010	and	Y=	1001.	Determine	the	output	signals
generatedby	every	adder	cell	when	the	array	computes	X	x	Y.

4.12.	Use	the	multiplier	cell	of	Figure	4.19	to	construct	a	combinational	array	multiplier	for5-bit	unsigned	numbers.	Draw	a	logic	diagram	for	the	multiplier	and	show	all
the	sig-nals	(including	constant	signals)	applied	to	every	cell.

4.13.	Suppose	a	multiplier	MULT)6	for	16-bit	unsigned	numbers	is	constructed	from	ANDand	adder	arrays	as	illustrated	by	Figures	4.17	and	4.18,	respectively.	Let	d
denote	thepropagation	delay	of	a	single	gate	G	and	let	D	=	Ad	be	the	delay	of	a	full	adder	FA.(a)	How	many	copies	of	FA	are	needed	to	build	MULT,6?	(b)	What	is	the
worst-casedelay	of	MULT16?	(c)	Observe	that	the	bottom	row	of	full	adders	in	Figure	4.17	is	asimple	ripple-carry	adder	ADD.	Stating	all	your	assumptions,	estimate	the
speedup	inmultiplication	that	results	from	replacing	ADD	in	MULT,6	by	a	carry-lookaheadadder	of	standard	design.

4.14.	Suppose	the	Booth	array	multiplier	of	Figure	4.20	is	given	the	signed	integer	operandsX	=	1010	and	Y	=	1001.	Determine	the	output	signals	generated	by	every	M
cell	whenthe	array	computes	X	x	Y.

4.15.	In	bit-by-bit	multiplication	of	Kby	Xy	bit	x,	=	1	in	position	i	of	X	causes	an	addition	thatcontributes	2'Y	to	the	solution	P.	Clearly	x{	-	0	contributes	nothing	to	P.	In	the
Boothalgorithm	x(	=	1	causes	either	addition	or	subtraction;	in	the	latter	case	it	contributes

-2'Yto	the	solution.	Thus	X	x	Y	is	computed	in	the	form	(±2']Y	±	2'2Y	±	...	±	2'kY)	=(±2''	±	2'2	±	...	±	2,k)	x	Y.	Booth's	algorithm	effectively	multiplies	by	a	number	X*
thathas	digits	weighted	by	-2'	as	well	as	the	usual	+2'.	We	can	make	this	weighting	explicitby	"recoding"	X	into	X*	using	the	threedigits	0,	1.	and	1.	where	1	in	position	i
denotesa	weight	of-2'.	For	example,	X*	=	1	100100	10	is	evaluated	as	+28	-	27	+	24	-	21	=7010	=	01001110-,.	A"*	is	an	instance	of	a	signed-digit	number,	a	useful	concept
in	de-signing	multipliers	and	dividers.	Using	the	recoding	rules	implicit	in	Booth's	algorithm,obtain	signed-digit	representations	of	the	twos-complement	integers	A	=
011010001and	B=	101011110.
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4.16.	Booth	multiplication	skips	over	runs	of	zeros	and	ones,	which	reduces	the	number	ofadd	and	subtract	steps	needed	to	multiply	two	n-bit	numbers	from	n	to	a
variable	num-ber	whose	average	value	nave	is	less	than	n.	Some	designers	argued	that	this	fact	can	beexploited	to	reduce	the	average	multiplication	time	from	n	to	«ave
steps,	(a)	Show	that"ave	=	"/2.	(Hint:	Assume	«ave	is	known	and	use	it	to	determine	[n	+	l]ave).	(b)	Explainwhy	practical	multipliers	are	rarely	designed	to	use	this
speedup	technique.	(See	thefollowing	problem	for	a	practical	speedup	technique	for	Booth	multipliers.)

4.17.	A	faster	version	of	Booth's	multiplication	algorithm	for	twos-complement	numbers,known	as	the	modified	Booth	algorithm	(MBA),	examines	three	adjacent	bits
.r(+1.v,.v,_|of	the	multiplier	A"	at	a	time,	instead	of	two.	Besides	the	three	basic	actions	performedby	the	original	Booth	algorithm,	which	can	be	expressed	as	add	0.	Y,	or	-
Y	to	A	(theaccumulated	partial	products).	MBA	performs	two	more	actions:	add	+2	Yor	-2Y	to	A.These	have	the	effect	of	increasing	the	radix	from	two	to	four	and	allow	an
n-bit	mul-tiplication	to	be	done	in	n/2	clock	cycles	instead	of	n	(at	the	usual	cost	of	more	hard-ware).	Figure	4.64	shows	a	pencil-and-paper	application	of	MBA	to	two	8-bit
twos-complement	integers	X	and	Y.	(a)	Construct	a	truth	table	that	defines	the	basic	actionsof	MBA	as	a	function	of	j:/+1jc^c,_,.	(b)	Give	an	HDL	description	of	MBA	along
the	linesof	Figure	4.15.

4.18.	Division	circuits	usually	include	logic	to	detect	a	dividend-divisor	combination	thatwill	cause	the	quotient	to	overflow.	Suppose	that	a	divider	for	«-bit	unsigned
integershas	a	double-word	(2rc-bit)	dividend	D	and	a	single-word	divisor	V.	in)	What	generalcondition	must	be	satisfied	for	quotient	overflow	to	occur?	(b)	How	would	you
modify

Operands	Values 1 x.+lxrri-l Action

Multiplicand	Y	10101010

Multiplier	X	11001110 0 100

P0	0000000010101100 Add	-2Y	to	A

P2	00000000000000 2 111 Add	0	to	A

P4	111110101010 4 001 Add+KtoA

P6	0001010110 6 110 Add	-Y	to	A

P	0001000011001100

=	Pu+P2	+	P4	+	Pb

Figure	4.64

Illustration	of	the	modified	(radix-4)	Booth	method	of	multiplication.

298	the	sequential	division	circuit	of	Figure	4.23	to	introduce	an	overflow	detector	using	as

little	extra	logic	as	possible?
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4.19.	Suppose	the	restoring	array	divider	of	Figure	4.27	has	the	integer	operands	D	=	100110and	V-	101.	Determine	the	results	Q	and	/?,	as	well'as	the	vertical	output



signals	gen-erated	by	every	D	cell	when	the	array	computes	D/V.

4.20.	Consider	the	divider	array	of	Figure	4.27	that	is	designed	to	handle	a	word	size	of	n	=3	with	a	double-length	(6	bit)	dividend	D.	(a)	Why	are	there	four	rows	of	D	cells
insteadof	three?	(b)	Suppose	that	dividends	are	restricted	to	3	bits	instead	of	6.	Which	cellscan	then	be	deleted	from	the	array?

4.21.	Figure	4.65	shows	a	gate-level	logic	diagram	for	the	74181	ALU/function	generator.The	inputs	have	been	assigned	the	names	used	in	Figure	4.30,	but	the	eight
outputs	areabstractly	labeled/,	:/g.	Deduce	(without	using	any	outside	sources)	the	correspondencebetween	the	output	signal	names	in	the	two	figures;	that	is,	identify	all
the	outputs	inFigure	4.65	and	explain	your	reasoning.

4.22.	(a)	What	arithmetic	and	logic	functions	are	computed	by	the	74181	ALU	when	5	=53525,50	=	1100?	(b)	A	useful	logic	operation	of	the	74181	is	the	EXCLUSIVE-
ORfunction	A	©	B.	What	values	should	5,	M,	and	cjn	have	in	this	case?	Briefly	explain	yourreasoning.

4.23.	The	74181	ALU	is	designed	for	use	as	a	4-bit	magnitude	comparator.	For	this	purposeit	must	be	set	to	its	arithmetic	subtract	mode	(M	=	1,	S	=	0110)	with	cjn	=	1.
The	rela-tions	between	the	magnitudes	of	A	and	B	can	then	be	determined	from	the	combinedvalues	of	the	two	outputs	(A	=	B)	and	cout.	Identify	the	specific	output
values	that	indi-cate	each	of	the	following:	A	=	B,	A	<	B,	A	<	B,	A	>	B,	and	A	>	B.

4.24.	Show	how	to	connect	four	copies	of	the	74181	to	form	a	16-bit	ALU	with	carry	looka-head	across	all	stages.

4.25.	Design	a	register	file	in	the	style	of	Figure	4.33	that	stores	eight	32-bit	numbers	andhas	one	read	port	A	and	one	write	port	B.

4.26.	Suppose	the	register	file	RF16	of	Figure	4.33	is	to	be	built	out	of	four	identical	4-bitslices	denoted	RF4.	(a)	Give	a	register-level	diagram	showing	the	internal
structure	ofRF4.	(b)	Show	how	four	copies	of	RF4	are	interconnected	to	form	RF16.

4.27.	Design	a	16-bit	bit-sliced	ALU	using	four	copies	of	the	AMD	2901	4-bit	slice.	Usecarry	lookahead	and	use	NAND	gates	to	design	the	necessary	carry-generation
logic.Give	a	block	diagram	of	your	design	and	give	a	set	of	Boolean	equations	that	specifythe	carry-lookahead	function.

4.28.	Suppose	the	1601	ALU	of	Figure	4.39	operating	at	a	clock	frequency	of	20	MHz	isused	to	build	an	ALU	intended	to	execute	a	long	sequence	of	80-bit	additions.	What
isthe	maximum	throughput	in	operations	per	second	if	the	1601-based	ALU	is	set	up	toperform	80-bit	operations	(a)	in	bit-sliced	mode	and	(b)	in	multicycling	mode.

4.29.	Modify	the	algorithm	for	floating-point	addition	in	Figure	4.42	to	make	the	followingimprovements:	(a)	Perform	either	addition	or	subtraction	as	specified	by	an
opcode	inthe	instruction	register	IR.	(b)	Test	for	zero	operands	at	the	start	and	skip	as	muchcomputation	as	possible	when	X	and/or	Y	is	zero,	(c)	Modify	the	mantissa
assignment

Oi
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Figure	4.65

Logic	diagram	for	the	74181	ALU/function	generator.

strategy	to	reduce	the	amount	of	shifting	when	\E\	>	nM.	(d)	Introduce	separate	flagsOVR_ERROR	and	UND_ERROR	to	indicate	overflow	and	underflow,
respectively:these	flags	replace	ERROR.

4.30.	(a)	List	the	advantages	and	disadvantages	of	designing	a	floating-point	processor	inthe	form	of	a	£-stage	pipeline,	(b)	A	floating-point	pipeline	has	five	stages	5,,	S2.
S3,54,	and	S5	whose	delays	are	120,	90,	100,	85,	and	110	ns,	respectively.	What	is	the

300	pipeline's	maximum	throughput	in	millions	of	floating-point	operations	per	second

(MFLOPS)9

SECTION	4.5Problems

4.31.	Consider	the	logic	diagram	for	a	pipelined	3	x	3-bit	multiplier	appearing	in	Figure	4.53.(a)	The	six	unconnected	line	stubs	attached	to	some	of	the	M	cells	are
redundant	in	thatthey	always	carry	the	logic	value	0.	Certain	connected	lines	are	also	redundant	in	thissense	and	are	included	only	to	make	the	stages	uniform.	Identify	all
such	redundantconnections,	(b)	Consider	a	general	n	x	n	version	of	this	multiplier	pipeline.	Assumingthat	the	stages	are	identical	and	are	labeled	S0,	Sl,...,Sn_],	show	that
the	total	numberof	1-bit	buffer	registers	of	type	R	needed	is	3n2	-	n.

4.32.	In	digital	signal	processing	it	is	sometimes	necessary	to	multiply	a	high-speed	streamof	rt-bit	numbers	Yx,	Y2,	Y3,...	by	a	single	number	X.	The	output	should	be	a
stream	of«-bit	results	YyX,	Y2X,	K3X,...	moving	at	the	same	rate	as	the	input	stream.	Assumingthat	X	and	Yt	are	positive	n-bil	binary	fractions,	design	a	pipeline	processor
to	carry	outthis	type	of	multiplication	efficiently.	If	the	pipeline	is	constructed	from	gates	of	aver-age	delay	d,	estimate	its	throughput.

4.33.	Outline	how	the	Motorola	68040's	FPU	can	be	used	to	multiply	two	32-bit	mantissasto	produce	a	64-bit	product,	given	that	its	mantissa	multiplier	is	designed	for	64
x	8-bitnumbers.

4.34.	Let	X	=	x0,x{,	...,*„_	i	and	Y=y0,yl,...,yn_l	be	two	fixed-point	vectors	of	length	n.	Thedouble-length	vector	Z	=	Zq,	zt,...,	z2n_2,	^2n-\	defined	by

*<	=	2**,-

xy,

where	Xj	=	V:	=	0	if/	<	0	is	called	the	convolution	of	X	and	Y.	This	operation	is	usefulin	applications	such	as	digital	signal	processing.	Design	a	one-dimensional
systolicarray	to	implement	convolution.	The	array	should	have	the	general	structure	of	a	pipe-line	with	the	X,	Y,	and	Z	vectors	flowing	horizontally.	Describe	the	functions
of	theprocessing	cell	(stage)	and	draw	a	diagram	illustrating	the	operation	of	the	systolicarray	in	the	style	of	Figure	4.59.

4.35.	The	Coordinate	Rotation	Digital	Computer	(CORDIC)	technique	[Voider	1959]	is	afast,	low-cost	way	to	compute	trigonometric	functions.	It	treats	a	number	Z	as	a
vectorrepresented	by	Cartesian	coordinates	(X,	Y),	and	operations	analogous	to	vector	rota-tion	calculate	the	required	functions	of	Z.	Suppose	that	the	vector	Z	is	rotated
throughan	angle	9.	The	result	Z'	=	(X\	Y')	is	defined	by	the	equations

X'	=	Xcos9	±ysin9

r=ycos9TXsine	(4.49)



where	the	upper	and	lower	signs	correspond	to	clockwise	and	counterclockwise	rota-tion,	respectively.	These	equations	imply	that

X"=X7cos0=X±	ytanG

y"	=	r/cos9	=	y	±	X	tan9	(4.50)

Z"	=	(X",	Y")	can	be	interpreted	as	the	original	vector	Z	after	rotation	through	anangle	9	and	a	magnitude	increase	by	the	factor	K	=	l/cos9.	If	tanO	is	a	power	of	2,	then

the	multiplication	by	tan8	in	(4.50)	can	be	realized	by	shifting.	The	essence	ofCORDIC	is	to	implement	the	rotation	described	by	(4.50)	as	a	sequence	of	n	+	1	rota-tions
through	angles	a,	such	that

and

9	=	ot0±	a,	±	a2±	...±	a„a,-	=	tan"1	(2"')

(4.51)(4.52)

Then	if	Z	=	(X0,	Y0),	rotation	through	angle	a,	is	defined	by	(4.51)	and	(4r§2)	and	hasthe	form

Yut	=	Y	+X2-

(4.53)

The	resulting	vector	Zn	has	magnitude	Kn\Z0\,	where	Kn	-	n"_	0(cosa,)_1	is	a	constantdepending	on	n,	which	converges	toward	1.6468.	Observe	that	the	only	operations
in(4.53)	are	addition,	subtraction,	and	shifting.

The	signs	appearing	in	(4.51)	depend	on	9	and	must	be	computed	in	order	todetermine	the	operations	needed	to	evaluate	(4.53).	The	sign	computation	is	done	bystoring
the	constants	{a,}	in	a	table.	In	each	iteration	it	is	determined	which	of	+<x,and	-a,	causes	19	+	(oCq	±	a,	±	...±	a,)l	to	converge	toward	zero.	If	+cc,	(-a,)	isselected,	then
the	upper	(lower)	signs	in	(4.51)	are	used,	which	correspond	to	a	clock-wise	(counterclockwise)	rotation	through	the	angle	a,.	Each	iteration	increases	theaccuracy	of	(X,,
Y,)	by	about	1	bit.

CORDIC	is	used	to	calculate	sin9,	cos9,	and	tan9	as	follows:	Let	X0	=	Kn_x	~0.6073	and	Y0	=	0.0,	where	n	has	been	chosen	to	achieve	the	desired	accuracy.	Com-pute
(Xn,	Y)	according	to	(4.53).	From	(4.49)	and	(4.50)	we	see	that	Xn	=	A^cosO	andYn	=	A'^f0sin9;	hence	Xn	and	Yn	are	the	required	values	of	cos9	and	sin9,
respectively,tan9	can	now	be	computed	by	YJXn.	(a)	Give	in	tabular	form	all	the	calculationsrequired	by	CORDIC	to	compute	sin	33°	to	three	decimal	places,	(b)	Draw	a
register-level	logic	circuit	for	a	simple	CORDIC	arithmetic	unit	that	computes	sin	9	and	cos9.

4.36.	Describe	how	the	CORDIC	technique	presented	in	the	preceding	problem	can	beadapted	to	compute	the	inverse	trigonometric	functions	sin""1*,	cos"1*,	and	tan'*.
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CHAPTER	5

Control	Design

In	this	chapter	we	study	the	register-level	design	of	the	control	part	of	aninstruction-set	processor;	the	data-processing	part	was	covered	in	Chapter	4.The	two	basic
approaches	to	control-unit	design—hardwired	and	micropro-grammed—are	discussed	in	detail.	The	complex	task	of	controlling	pipelinedand	superscalar	processors	is	also
examined.

5.1

BASIC	CONCEPTS

First	we	discuss	the	general	structure	and	behavior	of	control	units.	Then	we	exam-ine	the	design	of	hardwired	controllers,	which	are	characterized	by	the	use	of
fixed(nonprogrammable)	logic	circuits.

5.1.1	Introduction

We	saw	in	section	2.1.1	that	it	is	useful	to	separate	a	digital	system	into	two	parts:a	datapath	(data	processing)	unit	and	a	control	unit.	The	datapath	is	a	network
offunctional	and	storage	units	capable	of	performing	certain	(micro)	operations	ondata	words.	The	purpose	of	the	control	unit	is	to	issue	control	signals	to	the	data-path.
These	control	signals	enter	the	datapath	at	"control	points"	where	they	selectthe	functions	to	be	performed	at	specific	times	and	route	the	data	through	theappropriate
parts	of	the	datapath	unit.	In	other	words,	the	control	unit	logicallyreconfigures	the	datapath	to	implement	some	specified	instruction	or	program.

A	CPU's	datapath	contains	circuits	to	perform	arithmetic	and	logical	opera-tions	on	words	such	as	fixed-point	or	floating-point	numbers.	The	internal	sfruc-
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A	Data

Instructions

Figure	5.1

Processor	composed	of	adatapath	unit	DP	and	a	controlunit	CU.

ture	of	the	datapath	circuit	DP	of	a	small	microprocessor	is	depicted	in	Figure	5.1.It	contains	a	register	file	RF	for	temporary	storage	of	operands,	two	functionalunits	Fx
and	F2	responsible	for	data	processing,	and	multiplexers	to	allow	the	datato	be	steered	through	DP.	Typical	functional	units	are	an	ALU	performing	addi-tion,	subtraction,
and	logical	operations;	a	shifter;	or	a	multiplier.	The	control	unitCU	receives	external	instructions	or	commands,	which	it	converts	into	a	sequenceof	control	signals	that
the	CU	applies	to	DP	to	implement	a	sequence	of	register-transfer	operations.

Figure	5.2	shows	the	control	signals	that	implement	an	addition	instruction	ofthe	form	ADD	A,B,	which	we	write	as

A:=A	+	B;

(5.1)

in	our	HDL	notation.	Assume	that	this	operation	can	be	executed	in	a	single	clockcycle,	whose	timing	details	are	not	of	concern	at	this	level	of	abstraction.	The
inputvariables	A	and	B	are	obtained	from	registers	of	the	same	name	in	RF,	and	theresult	is	stored	back	into	register	A.	Observe	that	the	registers	of	RF	permit
theircontents	to	be	read	from	and	written	into	in	the	same	clock	cycle,	a	basic	propertyof	the	(edge-triggered)	flip-flops	from	which	such	registers	are	constructed.	RF
isconfigured	with	one	input	and	two	output	ports	to	support	operations	like	(5.1)with	two	or	three	addresses.	Besides	selecting	the	data	registers	to	be	used,	the	con-trol
unit	CU	must	also	select	the	operation	to	be	performed	on	the	data,	in	this	case,functional	unit	Fr's	ADD	operation.	Finally	the	necessary	logical	connections	forthe	data	to
flow	through	DP	must	be	established	by	applying	appropriate	controlsignals	to	the	multiplexers.

ADDA.B

Active

DP controlsignals 1

\

AB

I

A

1 / i '

p	q	r	s	MUXX	.\	\	1

Select	p-t

Write	ARead	AReadB

CU

Select	u-wSelect	v-x

AddOverflow

A	+	B

f RF ■«—

1	,

A	w i	b ',

i	u	v	MUX-,

\	W	X~^	v	; r

A	B

".'	1 F2 Figure	5.2

♦■1 The	processor	of	Figure	5.1configured	to	implement	the

add	operation	A	:=	A	+	B.
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Thus	we	see	that	CU	must	activate	the	following	three	types	of	control	signalsduring	the	clock	cycle	in	which	the	ADD	A,B	instruction	is	executed.

•	Function	select:	Add.

•	Storage	control:	Read	A,	Read	B,	Write	A.

•	Data	routing:	Select	p-t,	Select	u-w,	Select	v-x

There	is	usually	some	feedback	of	control	information	from	DP	to	CU	to	indicateexceptional	conditions	encountered	during	instruction	execution.	In	the	example	ofFigure
5.2,	the	functional	unit	F,	performing	the	addition	sends	an	overflow	signalto	CU	whenever	the	sum	A	+	B	exceeds	the	normal	word	size.

Multicycle	operations.	Many	types	of	instructions	are	executed	in	a	singleclock	cycle—indeed,	single-cycle	execution	is	a	central	goal	of	RISC	design.	Someinstructions
require	more	than	one	clock	cycle	for	their	execution,	however.	Forexample,	double-precision	addition	can	be	implemented	by	a	two-instructionsequence	(program)	of	the
form

ADDADDC

AL,	BLAH,	BH

(5.2)

which	involves	two	double-word	operands	A	and	B.	The	first	(ADD)	instruction	in(5.2)	adds	the	low-order	half	(right	word)	of	B	to	the	low-order	half	of	A,
implicitlygenerating	and	storing	a	carry-out	signal	C.	The	second	(ADDC)	instruction	addsthe	high-order	half	of	B	to	the	high-order	half	of	A	along	with	the	carry	C.
thusensuring	that	carries	are	propagated	across	the	full	double-length	result.	This	shortprogram	is	implemented	in	two	consecutive	clock	cycles	by	activating	the
controlsignals	listed	below,	not	all	of	which	appear	in	Figure	5.2.
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Cvcle

Functionselect

Add

Storagecontrol

Datarouting

Read	AL.	Read	BL.	Select	p-t.	Select	u-w,	Select	v-xWrite	AL

Add	with	carry	Read	AH,	Read	BH,	Select	p-t.	Select	u-w.	Select	v-xWrite	AH

(5.3)

This	low-level	description	of	the	double-precision	addition	in	terms	of	the	controlsignals	to	be	activated	is	an	example	of	a	microprogram	and	is	contrasted	with	thehigher-
level	program	for	the	same	operation	appearing	in	(5.2).	Each	line	of	(5.3)is	an	example	of	a	microinstruction	specifying	a	set	of	low-level	microoperations.A	further
complication	arises	when	the	execution	of	a	microoperation	is	condi-tional	on	the	values	of	certain	data	or	control	signals.	For	example,	the	varioussequential
multiplication	algorithms	covered	in	the	preceding	chapters	are	speci-fied	by	multistep	algorithms	that	can	be	viewed	as	multicycle	microprograms.	TheBooth
multiplication	algorithm	(Figure	4.15),	for	instance,	has	statements	of	thefollowing	type:

LOOP:

OUTPUT:

if	CONDI	=	true	then	ADD	A,Belse	SUB	A,B;

if	COND2	=	true	then	go	to	OUTPUTelse	LOOP;

We	can	expand	the	microinstruction	format	of	(5.3)	to	accommodate	condi-tional	operations	in	the	following	straightforward	(but	inefficient)	way:

Currentaddress

Conditionselect	C

Next	address

Function	select

C	=	true	C	*■	true	C	=	true	C	*	true

Storagecontrol

Datarouting

ADR1 CONDI ADR2 ADR2

ADR2ADR3 COND2 ADR3 ADR1

ADD

SUB

(5.4)

Here	we	are	introducing	some	new	fields	to	specify	a	condition	C	to	be	tested,	aswell	as	alternative	control	signals	to	be	activated	depending	on	the	current	value	ofC.
Typically,	C	corresponds	to	a	status	control	signal	from	DP,	or	to	a	special	sig-nal	generated	within	CU,	such	as	an	end-of-loop	condition.	If,	for	instance.	C	=CONDI	in	the
preceding	example,	then	one	of	the	two	function-select	signals,ADD	or	SUB,	is	activated.	To	vary	the	order	in	which	the	microinstructions	areexecuted,	a	pair	of	next-
address	fields	is	also	provided,	one	of	which	is	selected	bythe	current	value	of	C.	This	technique	requires	attaching	an	address	to	every	micro-instruction,	thus	completing
the	analogy	between	microinstructions	and	higher-level	(assembly	language)	formats.

Implementation	methods.	Historically,	two	general	approaches	to	control	unitdesign	have	evolved.	One	approach	views	the	controller	as	a	sequential	logic	cir-cuit	or
finite-state	machine	that	generates	specific	sequences	of	control	signals	inresponse	to	externally	supplied	instructions;	see	Figure	5.3a.	It	is	designed	with	theusual	goals
of	minimizing	the	number	of	components	used	and	maximizing	thespeed	of	operation.	Once	the	unit	is	constructed,	the	only	way	to	implementchanges	in	control-unit
behavior	is	by	redesigning	the	entire	unit.	Such	a	circuit	istherefore	said	to	be	hardwired.	The	format	of	(5.4)	is	essentially	similar	to	thestate-table	format	for	describing
the	behavior	of	a	(hardwired)	sequential	circuit,	asillustrated	in	(5.5).
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Currentstate

ADR1ADR1ADR2ADR2ADR3

Currentinput

Nextstate



Current	outputs

Function	Storage	Routing

CONDI	=	1	ADR2	ADD

CONDI	=0	ADR2	SUB

COND2	=	1	ADR3

COND2	=	0	ADR1

(5.5)

Microprogramming	provides	an	alternative	method	of	designing	program	con-trol	units.	A	microprogrammed	control	unit	has	the	structure	shown	in	Figure	5.3fr.It	is	built
around	a	storage	unit	called	a	control	memory,	where	all	the	control	sig-nals	are	stored	in	a	programlike	format	resembling	(5.4).	The	control	memorystores	a	set	of
microprograms	designed	to	implement	or	emulate	the	behavior	of	thegiven	instruction	set.	Each	instruction	causes	the	corresponding	microprogram	tobe	fetched	and	its
control	information	extracted	in	a	manner	that	resembles	thefetching	and	execution	of	a	program	from	the	computer's	main	memory.

Controlsignals Statussignals Addresslogic —*■ Controlmemory

Sequentiallogiccircuit

Statussignals i 1	i I ' r

Microinstructionregister

Decoder

j i

1	L_ Control

w signals

Instructionregister

Instruction

'	»o

(a)

(b)

Figure	5.3

General	structure	of	(a)	a	hardwired	and	(b)	a	microprogrammed	control	unit.
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section	5	control	signals	into	formatted	words	(microinstructions).	Since	the	control	signals

Basic	Concepts	are	embedded	in	a	kind	of	low-level	software—this	is	referred	to	as	firmware—

design	changes	can	be	easily	made	just	by	altering	the	contents	of	the	control	mem-ory.	On	the	negative	side,	microprogrammed	control	units	are	more	costly	to	man-
ufacture	than	hardwired	units	due	to	the	presence	of	the	control	memory	and	itsaccess	circuitry.	Microprogrammed	units	also	tend	to	be	slower	because	of	theextra	time
required	to	fetch	microinstructions	from	the	control	memory.	RISC	pro-cessors,	with	their	emphasis	on	small,	fast	instruction	sets,	favor	the	use	of	hard-wired	control
units.

CPU	control	units,	both	hardwired	and	microprogrammed,	are	often	organizedas	(micro)	instruction	pipelines	in	order	to	improve	their	performance.	As	we	sawin	section
4.3.2,	pipelining	is	a	relatively	low-cost	way	of	increasing	a	processor'sthroughput	by	decomposing	its	operation	into	a	sequence	of	relatively	independentsteps.	Program
control	naturally	involves	a	sequence	of	steps	(instruction	fetchingand	decoding,	input	operand	fetching,	operation	execution,	and	result	storage)	thatcan	be	carried	out
concurrently	with	different	instructions.	Modern	CPUs	makeextensive	use	of	pipelines	to	increase	their	effective	instruction	execution	rate[Stone	1993].

5.1.2	Hardwired	Control

Next	we	examine	the	design	of	control	units	that	use	fixed	logic	circuits	to	interpretinstructions	and	generate	control	signals	from	them.

Design	methods.	Control-unit	design	involves	various	trade-offs	between	theamount	of	hardware	used,	the	speed	of	operation,	and	the	cost	of	the	design	processitself.	To
illustrate	these	issues,	we	consider	two	systematic	approaches	to	thedesign	of	hardwired	controllers	[Hayes	1993:	Baranov	1994].	These	methods	arerepresentative	of
those	used	in	practice,	but	by	themselves	are	suitable	only	forsmall	control	units	such	as	might	be	encountered	in	simple	RISC	processors	orapplication-specific
controllers.

•	Method	1:	The	classical	method	of	sequential	circuit	design,	which	was	dis-cussed	briefly	in	section	2.1.3.	It	attempts	to	minimize	the	amount	of	hardware,in	particular,
by	using	only	|~log2/>~|	flip-flops	to	realize	a	F-state	circuit.

•	Method	2:	An	approach	that	uses	one	flip-flop	per	state	and	is	known	as	the	one-hot	method.	While	expensive	in	terms	of	flip-flops,	this	method	simplifies	CUdesign	and
debugging.

In	practice,	processor	control	units	are	often	so	complex	that	no	one	design	methodby	itself	can	yield	a	satisfactory	circuit	at	an	acceptable	cost.	The	most
acceptabledesign	may	consist	of	several	linked,	but	independently	designed,	sequential	circuits.

State	tables.	The	behavior	required	of	a	control	unit,	like	that	of	any	finite-state	machine,	can	be	represented	by	a	state	table	of	the	general	type	shown	in	Fig-ure	5.4a.
The	rows	of	the	state	table	correspond	to	the	set	of	internal	states	{5,}.These	states	are	determined	by	the	information	stored	in	the	machine	at	discretepoints	of	time
(clock	cycles).	Let	X	and	Z	denote	the	input	and	output	variables.

Inputs

State h h Im

«i su,oU] 512,	0]2	.	.	. *l,m«	^l^n

S2 "2,1.	^2,1 ■^2.2'	^2,2 S^	02.m

Sn Ski.	o„, s&	on2	.	.	. \.m'	OnJn



(a)

Inputs

State 'l h im Outputs

S. S1.1 Sl2 S\jn 0\

S2 ^2.1 S2,2 $2*, 02

sn SnA Sn.2 •^n,m 0„
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(*)Figure	5.4

State	tables	for	a	finite-state	machine:	(a)	Mealy	type	and	(b)	Moore	type.

The	columns	correspond	to	the	combinations	of	the	X	signals	that	can	be	applied	tothe	machine	and	are	denoted	here	by	{/,}.	The	entry	in	row	5,	and	column	L	has
theform	SjpOjj,	where	S,7	is	the	next	state	of	the	machine	that	results	from	the	applica-tion	of	input	combination	/,	and	0{	denotes	the	output	signals	that	appear	on
Zwhenever	the	machine	is	in	state	S,	with	input	/	applied.	In	general,	an	entry	in	thestate	table	defines	a	specific,	one-cycle	transition	between	two	states.

Control	units	have	a	feature	that	favors	a	slightly	different	style	of	state	table:Their	output	signal	values	often	depend	on	the	current	state	5,	only	and	so	are	inde-pendent
of	the	input	combination	L.	If	all	outputs	are	of	this	type,	the	circuit	iscalled	a	Moore	machine,	in	contrast	with	the	more	general	Mealy	machine	of	Fig-ure	5.4a.	(These
names	honor	G.	H.	Mealy	and	E.	F.	Moore	who	were	earlyresearchers	into	finite-state	machine	theory	[Mealy	1955;	Moore	1956].)	The	statetable	of	Figure	5.4a	becomes	a
Moore	machine	if	for	every	row	i,	we	have	Otj	-Oik=	0,for	ally,	k	=	1,2,...,m.	In	that	case	we	can	represent	the	machine's	behaviorin	the	more	compact	format	of	Figure
5.4b,	where	the	output	signals	associatedwith	each	row	are	placed	in	a	separate	column.

GCD	processor.	To	illustrate	the	classical	and	one-hot	approaches	to	control-unit	design,	we	will	apply	them	to	a	special-purpose	processor	that	computes	thegreatest
common	divisor	gcd(X,Y)	of	two	positive	integers	X	and	Y\	gcd(X,Y)	isdefined	as	the	largest	integer	that	divides	exactly	into	both	A"	and	Y.	For	example,ga/(12,18)	=	6,	and
gcd{\2,\l)	=	1.	It	is	customary	to	assume	that	gcd(0,0)	=	0.

We	use	a	variant	of	Euclid's	algorithm	[Cormen,	Leisersor.,	and	Rivest	1990]to	calculate	gcd(X,Y).	Figure	5.5	gives	an	HDL	description	of	this	method.

310

SECTION	5.1Basic	Concepts

gcd(in:	X,Y;	out:	Z);

register	AT?,	YR,	TEMPR;

XR	:=	X; {Input	the	data}

YR	:=	Y;

while	XR	>	0	do	begin «

UXR<YR	then	begin {Swap	AT?	and	K/?}

TEMPR	:=	YR,

YR	:=	XR.

XR	:=	TEMPR:	end

XR	:=	AT?	-	YR; {Subtract	YR	from	AT?}

end Figure	5.5

Z	:=	YR,end	go/; {Output	the	result} Procedure	gcd	to	compute	the	greatest

common	divisor	of	two	numbers.

The	basic	idea	is	to	subtract	the	smaller	of	the	two	numbers	from	the	otherrepeatedly—recall	that	division	corresponds	to	repeated	subtraction—until	weobtain	a	number
that	divides	the	other.	For	example,	with	X	=	20	and	Y	=	12,	ourgcd	algorithm	proceeds	as	follows:

Conditions Actions

A7?:=20;	YR	:=	12:

AT?>0: XR	>	YR: XR:=XR-YR	=	8;

AT?>0: XR	<	YR: YR	:=	8;	XR	:=	12; XR =	XR-YR	=	4,

AT?>0: XR<YR: YR	:=	4:	AT?	:=	8; XR =	XR-YR	=	4;

AT?>0 XR	<	YR: YR	:=	4;	AT?	:=	4; XR =	XR-YR	=	0;

AT?<0: Z:=4;

Hence	we	conclude	that	gcd(20,\2)	=	4.

Analysis	of	the	gcd	procedure	suggests	that	its	datapath	unit	DP	should	containa	pair	of	registers	XR	and	YR	to	store	the	corresponding	variables,	one	or	morefunctional
units	to	perform	subtraction	and	magnitude	comparison,	and	multiplex-ers	for	data	routing,	as	indicated	in	Figure	5.6.	We	do	not	need	to	include	a	registerfor	the



"temporary"	variable	TEMPR,	as	we	would	in	a	typical	programmed	imple-mentation,	because	we	can	read	from	and	write	to	a	register	in	the	same	clockcycle.	The	swap
operation	can	therefore	be	done	without	conflict	in	one	cycle	thus:

X:=Y,	Y:=X;	(5.6)

The	control	unit	CU	generates	control	signals	Load	XR	and	Load	YR	to	loadeach	register	independently	with	the	input	data	X	and	Y.	A	control	signal	Select	XYroutes	X	and
Kto	XR	and	YR,	respectively.	Another	signal	Swap	controls	the	swapoperation	defined	by	(5.6),	which	requires	routing	the	outputs	of	the	XR	and	YRregisters	to	each
other's	inputs.	A	final	signal	Subtract	is	assumed	to	control	thesubtraction	XR	:=	XR	-	YR	by	routing	the	output	of	the	subtracter	to	XR.	The	inputsignals	to	CU	are	an
asynchronous	Reset	signal,	two	comparison	signals	(XR	>	YR)and	(XR	>	0)	generated	by	DP,	and	the	usual,	implicit	clock	signal.

We	can	identify	a	set	of	states	for	CU	by	examining	the	behavior	defined	in	theHDL	specification	(refer	to	Figure	5.5)—a	simple	process	here,	but	one	that	is

X	Y

Reset

T	T	T	I	T

Multiplexers	MUX

Register	XR

Register	YR

Subtractor

Comparators

Datapath	unit	DP

Controlunit	CU

SubtractSwapSelect	XY

LoadXR

LoadYR

(XR	>	YR)(XR	>	0)

Figure	5.6

Hardware	needed	to	implement	the	gcd	procedure.

tedious	and	error-prone	in	the	case	of	large	control	units.	A	start	state	50	is	enteredwhen	Reset	becomes	1;	this	state	also	loads	X	and	Y	into	the	DP	registers.	The	sub-
sequent	actions	of	the	gcd	processor	are	either	a	swap	or	a	subtraction,	for	whichwe	define	the	states	5,	and	S2,	respectively.	A	final	state	53	is	entered	whengcd(X,Y)	has
been	computed.	Figure	5.7	gives	a	Moore-type	state	table	defining	theCU's	behavior.	Each	state	transition	is	deduced	directly	from	the	HDL	description.If	the	input
control	signal	(XR	>	0)	=	0,	indicating	that	the	while	loop	should	beskipped,	a	transition	is	made	from	S0	to	53;	this	yields	the	first	next-state	entry	inthe	top	row	of	Figure
5.7.	If,	on	the	other	hand,	(XR	>	0)	=	1,	the	while	loop	isentered,	and	a	transition	is	made	to	S,	to	perform	a	swap	if	(XR	>	YR)	=	0;	other-wise,	the	transition	is	to	S2	to
perform	a	subtraction.	The	latter	case	defines	to	thethird	entry	of	the	state	table,	whose	input	combination	is	(XR	>	0)(XR	>	YR)	=11.
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Inputs	(XR	>	0)(XR	>	YR)
mmmmtmmmammmummm

Outputs

State 0- 10 11 Subtract Swap Select	XY LoadXR LoadYR

S0	(Begin) s3 5, St 0 0 1 1 1

5,	(Swap) s2 Si s2 0 1 0 1 1

S2	(Subtract) s3 5, S2 1 0 0 1 0

53	(End) s3 S3 S) 0 0 0 0 0

Figure	5.7

State	table	defining	the	control	unit	of	the	gcd	proce^or.

312	Since	a	subtraction	always	follows	a	swap,	all	next-state	entries	in	the	second	row

section	5	are	^2'	^e	corresPonding	active	outputs	are	the	two	register-load	signals	Load	XR

Basic	Concepts	an(*	L°ad	^'	al°ng	witn	Swap,	which	route	the	outputs	of	XR	and	YR	to	YR	and

XR,	respectively.	The	next	states	for	state	S2	are	the	same	as	those	for	S0;	the	activeoutputs	are	Subtract,	which	routes	the	output	XR	-	yR	of	the	subtracter	to	XR,
andLoadXR.	The	final	state	S3	is	assumed	to	be	a	"dead"	state	that	is	unaffected	by	allinputs	(except	Reset)	and	produces	no	active	outputs.

Classical	method.	The	major	steps	of	the	classical	design	method	are	as	fol-lows:

1.	Construct	a	P-tow	state	table	that	defines	the	desired	input-output	behavior.

2.	Select	the	minimum	number	p	of	D-type	flip-flops	and	assign	a	p-bil	binarycode	to	each	state.

3.	Design	a	combinational	circuit	C	that	generates	the	primary	output	signals	{z,}and	the	secondary	outputs	{D,}	that	must	be	applied	to	the	flip-flops.

We	now	apply	this	method	to	the	design	of	the	control	unit	CU	for	the	gcd	pro-cessor.	We	have	already	constructed	the	necessary	state	table	(Figure	5.7).	Sincethere	are
four	states,	we	require	two	flip-flops,	whose	outputs	DXDQ	=	y^Q	defineCU's	internal	states.	We	assign	the	binary	patterns	to	the	four	states	in	the	follow-ing	obvious
way:

S0	=	00

S,=0	11	(5.7)

52=1053=1	1

We	note	in	passing	that	the	state	assignment	pattern	affects	the	complexity	of	thecircuit	in	subtle	ways.

At	this	point	we	can	construct	a	binary	version	of	the	state	table,	the	excitationtable,	as	shown	in	Figure	5.8.	The	D	flip-flop's	characteristic	equation	D,+	(r	+	1)	=£>,(?)
defines	the	inputs	Dx*	and	D0+	to	the	flip-flops.	CU's	combinational	logic	Ccan	now	be	derived	from	the	excitation	table	using	any	available	manual	or	auto-matic	method.
Suppose,	for	instance,	that	we	use	two-level	sum-of-products	(SOP)minimization.	It	is	easily	checked	that	C	is	defined	by	the	following	SOP	equa-tions,	which	lead	directly
to	the	design	of	Figure	5.9.	Note	that	all	gates	in	anAND-OR	SOP	circuit	can	be	changed	to	NANDs	to	produce	a	NAND-NAND	real-ization	of	the	original	function.

Dy+	=	(XR	>0)	+	(XR>	YR)	+	D0

D0+	=	DXDQ+	(XR>XR)Do	+(XR>0)-DoSubtract	=	DlD0	(5.8)



Swap	=	DlD0Select	XY=	DXDQLoadXR=	D0	+	D,LoadYR=	D,
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(XR> 0) (XR> YR) £>i D0 *V n	+uo Subtract Swap XY XR YR

0 d 0 0 1 1 0 0 1 1

0 d 0 1 1 0 0 1 0 1

0 d i 0 1 1 1 0 0 0

0 d l 1 1 1 0 0 0 0 0

1 0 0 0 0 1 0 0 1 1

1 0 0 1 1 0 0 1 0 1

1 0 1 0 0 1 1 0 0 0

1 0 1 1 1 1 0 0 0 0 0

1 1 0 0 1 0 0 0 1 1

1 1 0 1 1 0 0 1 0 1

1 1 1 0 1 0 1 0 0 0

1 1 1 1 1 1 0 0 0 0 0

Figure	5.8

Excitation	table	for	the	control	unit	of	the	gcd	processor.

One-hot	method.	While	the	classical	design	method	minimizes	a	controlunit's	memory	elements,	its	effect	on	the	amount	of	combinational	logic	C	is	lessobvious.
Furthermore,	control	units	designed	by	this	technique	tend	to	have	a	com-plicated,	"random"	structure,	which	makes	design	debugging	and	subsequentmaintenance	of	the
circuit	difficult.	An	alternative	approach	that	simplifies	the

Reset

(XR	>	0)

(XR	>	YR)

>

4>

_>

_>

^ry^n>

zv

>CK

CLR	b-

D>CK

CLR	t>-

Clock

Figure	5.9

All-NAND	classical	design	for	the	control	unit	of	the	gcd	processor.

>>

SubtractSwap

LoadXR

Select	XYLoadYR

314	design	process	and	gives	C	a	regular	and	predictable	structure,	is	the	one-hot

method,	so	called	because	its	binary	state	assignment	always	contains	a	single	1—

Basic	Concepts	tne	"not"	bit—while	all	the	remaining	bits	are	0.	Thus	the	state	assignment	for	a

four-state	machine	like	the	gcd	processor	takes	the	following	form:

S0	=	0	0	0	1

(5.9)

52	=	0	1	0	0

53	=	1	0	0	0

In	general,	P	flip-flops	are	needed	to	represent	P	states,	so	the	one-hot	method	isrestricted	to	fairly	small	values	of	P.



A	key	feature	of	this	technique	is	that	the	next-state	and	output	equations	havea	simple,	systematic	form	and	can	be	written	down	directly	from	the	control	unit'soriginal
symbolic	state	table.	Because	the	binary	pattern	assigned	to	each	state	is,in	effect,	fully	decoded,	we	can	find	out	whether	the	machine	is	in	state	S,	merelyby	inspecting
the	corresponding	hot	state	variable	Dt.	The	classical	methodrequires	us	to	check	all	state	variables	to	get	this	information.

Suppose	that	state	5,	in	a	one-hot	design	has	the	hot	variable	£),-.	Further,	sup-pose	that	IjA,	I:2,	...,	Lj,	denote	all	input	combinations	that	cause	a	state	transitionfrom	S,
to	S;.	Then	each	AND	combination	of	the	form	D-l,v	must	make	D,	=	1.Hence,	considering	all	such	combinations	that	cause	transitions	to	S,,	we	can	write

D,+	=	D,(/M	+	IX2	+	...	+	/,.„,)	+	D2(I2A	+	I22	f	...	+	I2M2)	+	...	(5.10)

This	immediately	yields	the	SOP	form

D;	=	D]I]A	+	£>,/,	2	+	...	+	£,/!„,	+	D2I2,	+	D2I22	+	...	+	D2I2n2	+	...

which	is	practical	to	implement	by	an	AND-OR	or	NAND-NAND	circuit,	pro-vided	that	each	state	transition	is	determined	by	relatively	few	states	and	input	vari-ables,	as
is	common	in	control-unit	behavior.	Equation	(5.10)	can	also	lead	directlyto	fairly	simple	factored	forms.	Consider	the	state	table	of	Figure	5.7	for	the	gcdprocessor's	CU.
State	5,	appears	as	a	next	state	only	for	50	and	S2,	in	each	case	withthe	input	combination	(XR	>	0)(XR	>XR).	Hence	(5.10)	becomes

ZV	=	D0-	(XR	>	0)	•	(XR	>	XR)	+	Dr	(XR	>	0)-	(XR	>	XR)

=	(D0	+	D2)•	(XR	>	0)•	(XR	>	XR)

The	primary	output	equations	are	even	easier	to	derive	for	one-hot	designs.	Ifoutput	signal	zk	is	1	(active)	only	in	rows	k,h	for	h	=	l,2,...,mk,	then	we	have

zk=DkA	+	Dk2+...+	Dktmk	(5.11)

De	Morgan's	law	of	Boolean	algebra	allows	us	to	rewrite	this	OR	equation	as

zk=	Dk.\Dk2-Dk,mk

in	which	form	it	can	be	generated	by	a	single	NAND	whose	inputs	are	the	comple-mented	outputs	of	the	flip-flops.	In	the	gcd	processor	case,	output	Load	YR	=	1	instates
S0	and	5!	only;	therefore

LoadYR	=	D0	+	D}	=	D0DX

The	entire	set	of	next-state	and	output	equations	obtained	by	applying	(5.10)	315and	(5.11)	to	the	gcd	processor's	CU	follows.
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Dj+=	DQ	■	(XR	>	0)	•	(XR	>	XR)	+	D2•	(XR	>	0)	■	(XR	>	XR)D2+=	D0■	(XR	>	0)-(XR	>	XR)	+	Dx	+	D2■	(XR	>0)(XR>XR)

D2+=D0(XR>0)	+D2(XR>0)	+	D3

Subtract	=	D2

Swap	=	Dj

Select	XY=D0

LoadXR	=	D0	+	Dl	+	D2

Load	YR	=	D0	+	Dx

A	NAND	implementation	of	these	equations	appears	in	Figure	5.10.	Note	that	theasynchronous	Reset	line	must	set	D0	to	1	and	all	other	state	variables	to	0.

The	steps	of	the	one-hot	design	method	for	a	Moore	machine	can	be	summa-rized	as	follows:

1.	Construct	a	f-row	state	table	that	defines	the	desired	input-output	behavior.

2.	Associate	a	separate	D-type	flip-flop	Di	with	each	state	5,.	and	assign	the	P-bitone-hot	binary	code	D^D-,,...,D,_,,D(,Dl+	{....,DP	=	0,0,...,0,1,0,...,0	to	S,.

3.	Design	a	combinational	circuit	C	that	generates	the	primary	and	secondary	out-put	signals	{D,}	and	{zk}.	respectively.	D,+	is	defined	by	the	logic	equation

d;=	I>,(/,.i	+	/,.2+■•	+	',,,,,)

i=i

where	ljX,lj2,...,ljn	denote	all	input	combinations	that	cause	a	transition	from	S;to	Sj.	If	zk	=	1	(active)	only	in	rows	k,h	for	h	=	1.2	mk.	then	ztis	defined	by

Z*=	Dk,i	+	Dk.2+	■+Dk.m,=	DkADk2...DLmk

We	next	present	an	example	that	illustrates	the	application	of	the	one-hotmethod	to	a	computer's	IO	interface,	specifically	to	a	direct-memory	access(DMA)	controller,
which	handles	data	transfers	between	main	memory	and	high-speed	IO	devices.	(DMA	communication	is	discussed	in	Chapter	7.)

example	5.1	design	OF	A	DMA	CONTROLLER.	This	problem,	which	isadapted	from	[Actel	1994],	is	representative	of	control	units	that	link	several	interact-ing	systems—
in	this	case,	main	memory	and	a	set	of	IO	devices.	The	target	machine	isthe	control	part	of	a	four-channel	DMA	controller	of	the	kind	found	in	the	IO	sub-system	of	most
computers.	It	is	a	six-state	Moore-type	machine	with	four	input	andfive	output	signals,	which	are	identified	as	follows:

Inputs.	10REQ	Any	of	four	data-transfer	request	signals

CONT	Continue	(indicates	pending,	unprocessed	requests)
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(XR	>	0)

(XR	>	YR)

Subtract

Figure	5.10

All-NAND	one-hot	design	for	the	control	unit	of	the	gcd	processor.



MACK	Memory	transfer	acknowledgment

PBGNT	Processor	bus	grant	(indicates	availability	of	data-transferbus)

Outputs:	CE	Count	enable	(bookkeeping	function)

CMREQ	Channel	memory	request

CNTLD	Counter	load	(bookkeeping	function)

RLD	Register	load	(bookkeeping	function)

PBREQ	Processor	bus	request	for	control	of	data-transfer	bus

The	behavior	of	the	DMA	controller	is	given	by	the	state	transition	diagram	of	Figure5.11a.	Each	transition	is	marked	with	the	corresponding	active	input	control
signals.Since	every	transition	is	triggered	by	only	one	such	signal,	this	notation	is	quite	com-pact.	Each	state	is	marked	with	the	(boxed)	name	of	the	output	control	signals
that	itactivates—the	number	of	such	signals	ranges	from	zero	to	two.	A	state	table	in	thestyle	of	Figure	5.4	that	is	equivalent	to	Figure	5.1	la	is	easy	to	construct,	but	it	is
largebecause	of	the	many	possible	input	combinations.	Noting	that	most	input	signals	do	notaffect	a	given	state	transition,	and	so	are	assigned	the	don't-care	value	d,	we
can	con-dense	the	state	table	into	the	compact	form	of	Figure	5.1	lb.

IOREQ

MACK

\rld JcONT

1 fs5\

CMREQ	|

MACK

(a)

Inputs Present Next Outputs

IOREQ	COAT	MACK	PBGNT state state PBREQ	CNTLD	CMREQ RLD CE

0 d d d So So 0 0	0 0 0

1 d d d So 5, 0 0	0 0 0

d d d 0 5, Si 1 0	0 0 0

d d d 1 Si s2 1 0	0 0 0

d d 0 d S2 s2 0 1	1 0 0

d d 1 d s2 S3 0 1	1 0 0

d d d d S3 S4 0 0	0 0 1

d 0 d d s* So 0 0	0 1 0

d 1 d d s* s, 0 0	0 1 0

d d 0 d Ss 5, 0 0	1 0 0

d d 1 d Ss S3 0 0	1 0 0
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(b)

Figure	5.11

State	behavior	of	the	DMA	controller:	(a)	state	transition	graph	and	(b)	condensedstate	table.
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IOREQ

PBGNT	1

MACK



CONT

PBREQ

Figure	5.12

One-hot	design	for	the	DMA	controller.

Now	we	assign	a	D	flip-flop	D,	to	each	state	S,	and	write	down	the	six	state-transition	equations	directly	from	Figure	5.11.

ZV	=	D0-	IOREQ	+	D4-	CONT

D,+	=	DQ-	IOREQ	+	D,	•	PBGNTD2+	=	DrPBGNT+	Dr	MACKD{	=D2MACK	+	D5-	MACK

D4+	=	D}	319
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Control	DesignThe	output	equations	are	also	immediately	obtained	from	Figure	5.11.

CE	=	D3

CMREQ	=	D2	+	D5

CNTLD	=	D2

RLD	=	Dir

PBREQ	=	D{

Figure	5.12	shows	an	all-NAND	circuit	derived	from	these	equations.	Note	the	regularstructure	of	the	combinational	logic,	which	is	typical	of	one-hot	designs.	An
equivalentclassical	design	has	three	flip-flops	but	a	much	more	irregular	combinational	part.

5.1.3	Design	Examples

This	section	presents	some	examples	to	illustrate	the	foregoing	methods	for	design-ing	hardwired	control	units.	We	will	use	these	examples	again	in	our	discussion
ofmicroprogrammed	control.

Multiplier	control.	First	consider	the	design	of	a	control	unit	CU	for	the	twos-complement	(Robertson)	multiplier	introduced	in	Example	4.2	(section	4.1.2).	Theblock
diagram	of	the	multiplier's	datapath	unit	DP	(Figure	4.12)	is	redrawn	inexpanded	form	in	Figure	5.13	to	show	a	set	of	control	points,	which	representabstractly	the	control
signals	and	associated	logic	circuits	needed	to	link	CU	andDP.	These	control	signals	are	derived	from	the	multiplication	algorithm	in	Figure4.13	and	are	listed	in	Figure
5.14.	In	general,	a	control	point	can	be	associated	witheach	distinct	action	(register-transfer	operation)	opt	appearing	in	the	algorithmbeing	implemented.	Its	enabling
control	signal	c,	is	inserted	into	the	component	orinterconnections	associated	with	op,.	Operations	that	take	place	simultaneouslymay	be	able	to	share	control	signals.
(Procedures	to	eliminate	redundant	controlsignals	are	considered	later.)	The	statement	labeled	BEGIN	in	Figure	4.13,	forinstance,	requires	the	registers	A,	COUNT,	and	F
to	be	reset	simultaneously	to	theall-zero	state.	A	single	control	signal	c10	is	therefore	provided	for	this	purpose.	Itcan	be	connected	directly	to	the	CLEAR	inputs	of	the
three	registers	in	question,	sono	additional	logic	is	needed	to	implement	the	c,0	control	point.	Control	signals	c8and	c9	transfer	a	data	word	from	the	input	bus	INBUS	to
registers	Q	and	M.	respec-tively,	and	are	shown	in	the	corresponding	data	paths	of	Figure	5.13;	these	signalsmay	be	connected	to	the	registers'	(parallel)	LOAD	inputs.
Control	signal	c5	servesto	change	the	function	performed	by	the	parallel	adder	from	addition	to	subtractionfor	the	correction	step;	it	also	resets	Q[0]	to	0.	The	remaining
control	signals	ofFigure	5.14	are	defined	similarly.	Figure	5.13	introduces	a	control	signal	calledCOUNT7,	which	is	set	to	1	when	COUNT	=	111,	and	is	set	to	0
otherwise.COUNT7,	the	right-most	bit	Q[0]	of	the	multiplier	register	Q	and	the	externalBEGIN	signal	serve	as	the	primary	inputs	to	CU.
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c5—	*.

ClO	—	*

Signlogic
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r	4	I

Accumulator	i	'	'	Multiplier	register
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c3	c4

I	I

._J	L_.
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signals
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Multiplicand	register

M
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COUNT7
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Controlunit

Comparator

1-7

COUNT

■—	Cio

6*	c9

■>

Cfl

Internal

».	c,	V	control

signals

►■	Mo

Figure	5.13

Twos-complement	multiplier	with	a	set	of	control	points.

The	multiplication	algorithm	is	reformulated	as	a	flowchart	in	Figure	5.15	todisplay	the	control	signals	from	Figure	5.14	and	indicate	when	each	one	is	acti-vated.	The
flowchart	resembles	a	state	transition	graph	that	describes	the	behaviorof	both	the	control	and	datapath	units.	To	obtain	a	state	table	for	the	control	unitCU,	we	associate
a	state	S,	with	every	operation	block	in	Figure	5.15.	leading	to	theseven	states	labeled	S^.Sj.	An	additional	state	50	represents	the	reset	or	waiting	con-dition	of	the
control	unit.	CU	has	three	primary	input	signals—BEGIN.	Q[0],	andCOUNT7;	hence	there	are	eight	possible	input	combinations.	Figure	5.16	shows	aneight-state	Moore-
type	state	table	in	the	style	of	Figure	5.7,	which	is	deriveddirectly	from	Figure	5.15.	This	state	table	is	not	necessarily	the	smallest	such	tabledefining	the	desired	control
function.	In	fact,	the	13	output	control	signals	c0:cn,END	can	be	immediately	reduced	to	8	because	several	sets	are	equivalent	in	thatthey	are	always	activated	together,
specifically	c0	=	c^	=	cn,	c2	=	c3	=	c4,	and	c9	=
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c0	Set	sign	bit	of	A	to	F.

c.	Right-shift	register-pair	A.Q.

c2	Transfer	adder	output	to	A.

c3	Transfer	A	to	left	input	of	adder.

c4	Transfer	M	to	right	input	of	adder.

c5	Perform	subtraction	(correction).	Clear	Q[0].

c6	Transfer	A	to	output	bus.

c7	Transfer	Q	to	output	bus.

c8	Transfer	word	on	input	bus	to	Q.

c9	Transfer	word	on	input	bus	to	M.

c10	Clear	A,	COUNT,	and	F	registers.	Figure	5.14

c,,	Increment	COUNT.	Control	signals	for	the	twos-

END	Completion	signal	(CU	idle).	,	,	!*•_«•

_	&	'	complement	multiplier.

c10.	Methods	also	exist	that	attempt	to	reduce	the	number	of	states	by	merging"compatible"	states;	see	Problem	5.8.	To	eliminate	a	flip-flop	in	this	case,	wewould	need	to
reduce	the	number	of	states	of	CU	from	eight	to	four	or	fewer,	whichis	not	possible.

In	the	following	example,	we	apply	the	two	basic	hardwired	design	techniques,classical	and	one	hot,	to	the	multiplier,	taking	Figures	5.15	and	5.16	as	startingpoints.

EXAMPLE	5.2	IMPLEMENTING	A	MULTIPLIER	CONTROL	UNIT.	The	multi-plier	control	unit	CU	is	small	enough	that	the	classical	design	approach	can	be	appliedto	it.
This	technique	uses	the	minimum	number	of	flip-flops,	in	this	case	three,	whoseoutputs	D2DXDQ	denote	CU's	internal	state.	We	make	the	natural	assignment	of	thebit-
pattern	D2DXD0	=	i	to	state	S,,	yielding	50	=	000,	5,	=	001,	52	=	010,	and	so	on.The	remaining	problem	is	to	design	the	combinational	logic	circuit	portion	C	of	CU,a
straightforward	but	fairly	tedious	task,	because	C	has	six	inputs	BEGIN,	Q[0],COUNT7,D2,D,,D0and	11	outputs:	D2+,DpD0V0,C2,c5,c6,<:7,<:g,c1,,END.

The	behavior	of	CU's	combinational	logic	C	is	defined	by	an	excitation	table,which	is	obtained	by	replacing	the	symbolic	states	of	Figure	5.16	with	the	correspond-ing	3-bit
patterns.	It	remains	to	design	C.	Figure	5.17	shows	the	results	of	applying	thetwo-level	optimization	program	espresso	to	this	problem.	The	espresso	program	imple-ments
an	efficient	algorithm	that	finds	a	minimum	or	near-minimum	number	of	prod-uct	terms	(prime	implicants),	in	this	case	only	13,	needed	to	define	C.	The	inputdescription
(Figure	5.17a)	is	a	64-row	excitation	table	for	C	written	in	espresso's	PLA-style	format.	For	example,	the	last	row	of	Figure	5.17a

111111	00000001000

specifies	the	state	transition	from	57	to	50,	with	input	combination	BEGIN	Q[0]COUNT7	=111	and	active	output	c1	=	1.	The	last	row	of	espresso's	solution	(Figure5.176)

—	110	11100010000

specifies	the	transition	from	S6	to	57,	with	input	combination	BEGIN	Q[0]	COUNT7	=—	denoting	don't	cares,	and	active	output	signal	c6	=	1.	This	captures	the	fact	that
Sb	isalways	followed	by	57,	independent	of	CU's	primary	input	signals.	A	NAND	realiza-tion	of	the	multiplier	CU	appears	in	Figure	5.18.	which	directly	realizes	the
minipiumSOP	form	obtained	via	espresso.

Control	Design
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We	can	also	implement	CU	directly	from	the	state	table	of	Figure	5.16,	or,	equallyeasily,	from	the	flowchart	of	Figure	5.15	by	the	one-hot	method.	Eight	flip-flops
areneeded	to	accommodate	CU's	eight	states	S0:S7.	Equations	(5.10)	and	(5.11)	give	thenext-state	and	output	equations.	The	next-state	equations	are

D0+	=	D0-	BEGIN	+	D-

ZV	=	D,

D3+	=	D2Q[0]	+	D4-0[O]-	COUNT!

D4+	=	D2	Q[0]	+	D3	+	D4-	Q[0]	■	COUNT!

D5+	=	D4Q[0]COUNT7

D6+	=	D5	+	D4-	Q[0]	■	COUNT!

D7+	=	D6

c

J

1	,,	c9>	c10

A:=0COUNT	:=	0

F:=0M	:=	INBUS

Q	:=	INBUS

A	:=	A	+	MF	:=	M(7)	and	Q(0)	or	F

co.q.c,,

A(0)	:=	F

A(6:0).Q:=	A.Q(7:1)

COUNT	:=	COUNT+1

OUTBUS	:=	Q

OUTBUS

f	End	J

Cycle	0

Cycles	1	to	7

Figure	5.15

Flowchart	for	the	twos-complement	multiplier.

Cycle	8

Cycle	9

Inputs:	BEGIN	Q[0]	Count7

Outputs
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State	000	001	010	Oil	100	101	110	111	c0	c,	c,	c,	c,	c.	c,	c7	c«	c,	c1ft	c,,	END

SoS2

s*s4

S*

SoS2S3

s*

S3

•Jfl	Sn

So

s2

S3

s,s5s6s7sn

Si

s2s4

S4S4

5,	0000000000001

52	0000000001100

53	0000000010000

54	0011100000000

55	11000000000105656	00111100000005757	0000001000000Sn	5n	0000000100000
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Figure	5.16

State	table	for	the	multiplier	control	unit.

.model.inputs.output

.i	6

.0	11

.p	64

000000

001000

010000

011000

100000

101000

110000

111000

000001

001001

010001

011001

100001

101001

110001

111001

000010

001010

mult007.pla

BGN	Q0	CT7	D2	Dl	DOs	D2+	D1+	D0+	cO	c2	c5	c6c7	c8	c9	END

000000000000000000000010000100001000010001000010000100001000010000100001000010001000010000

000001000001000001000001000001000001000001000001000010000010000010000010000010000010000010000010000100000100

101111110111

111111

.end

000000010000000000100000000001000

(a)

model milt005.pla

.inputs BGN	Q0	CT7	D2	Dl	DO

.output s	D2+	D1+	D0+	cO	c2	c5	c6

c7	c8	c9	END

.i	6

.0	11

.p	13

-011-0 01000000000

1--000 00100000000

-10100 01110000000

-11100 10110000000

---111 00000001000

-0-010 10000000100

-0-100 10010000000

---011 10001000000

-1-010 01100000100



---000 00000000001

---001 01000000010

---101 11001100000

---110 11100010000

.	e

(*)

Figure	5.17

Design	of	combinational	part	of	the	multiplier	control	unit	by	espresso:	(a)	input	data(excitation	table)	and	(b)	output	data	(optimized	SOP	specification).
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The	output	equations	are

c0-	c,	-	cu	-	D4

c7	=	D7cg	=	D2

END	=	D0

The	NAND	circuit	implied	by	these	equations	appears	in	Figure	5.19.

Despite	having	more	flip-flops,	the	one-hot	design	is	better	in	many	ways	than	theclassical	design.	The	one-hot	design	has	fewer	and	generally	smaller	gates	in	its	combi-

COUNT7

Figure	5.18

All-NAND	classical	design	for	the	multiplier	control	unit.

national	logic	because	entry	to	a	particular	state	depends	on	a	small	number	of	primaryand	secondary	(state)	input	variables—as	few	as	one	state	variable	in	several
cases.This	dependence	also	holds	for	the	output	functions,	since	most	of	the	primary	outputsignals	can	be	taken	directly	from	the	corresponding	hot-state	variable.
Another	pointworth	noting	is	that	the	one-hot	CU's	structure	closely	follows	that	of	its	state	behav-ior,	as	exemplified	by	the	flowchart	specification	(Figure	5.15).
Consequently,	the	one-hot	design	is	easier	to	understand	and	easier	to	modify	(should	that	be	necessary)	thanthe	classical	design.
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BEGIN

Q[0]

COUNT7

END

c9>	cio

c2'	c3'	c4

co.ci.cu



Figure	5.19

All-NAND	one-hot	design	for	the	multiplier	control	unit.
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Sequentialcircuit

Controlsignals

no	r~AR~i	i	pc	'i

Programcontrolunit	PCU

To	M	andIO	devices

A_

System	bus

DR

AC

rr	ti

Arithmetic-logic	unit

Data	processing	unit	DPU

(a)

HDL Assembly

Type format format Comment

Data	transfer AC	:=	M(X) LDX Load	X	from	M	into	AC

M(X)	:=	AC STX Store	contents	of	AC	in	M	as	X

DR	:=	AC MOV	DR, AC Copy	contents	of	AC	to	DR

AC	:=	DR MOV	AC, DR Copy	contents	of	DR	to	AC

Data AC =	AC	+	DR ADD Add	DR	to	AC

processing AC =	AC	-	DR SUB Subtract	DR	from	AC

AC =	AC	and	DR AND And	DR	to	AC

AC =	not	AC NOT Complement	contents	of	AC

Program PC	:=	M(adr) BRAadr Jump	to	instruction	with	address	adi

control
if	AC	=	0	then

PC	:=	M(adr)
BZadr Jump	to	instruction	adr	if	AC	=	0

(b)

Figure	5.20

An	accumulator-based	CPU:	(a)	organization	and	(b)	instruction	set.

CPU	control	unit.	The	design	of	the	CU	for	a	basic,	nonpipelined	CPU	differsmainly	in	degree—the	CPU	is	a	multifunction	unit	that	can	contain	hundreds	ofcontrol	lines—
but	not	in	kind	from	the	multiplier	control	unit.	Here	we	examine	afew	of	the	design	issues	involved,	using	an	accumulator-based	CPU	as	an	example.In	section	5.3.3	we
will	discuss	the	complex	control	problems	associated	with	pipe-lined	CPUs.

The	accumulator-based	CPU	introduced	in	section	3.1.1	has	the	overall	organi-	327zation	depicted	in	Figure	5.20a	(which	repeats	Figure	3.3).	This	CPU	consists	of
adatapath	unit	DPU	designed	to	execute	the	set	of	10	basic	single-address	instruc-tions	listed	in	Figure	5.20b.	The	instructions	are	assumed	to	be	of	fixed	length	andto	act
on	data	words	of	the	same	fixed	length,	say	32	bits.	The	program	control	unitPCU	is	responsible	for	managing	the	control	signals	linking	the	PCU	to	the	DPU,as	well	as	the
control	signals	between	the	CPU	and	the	external	memory	M.

To	design	the	PCU,	we	must	first	identify	the	relevant	control	actions	(micro-operations)	needed	to	process	the	given	instruction	set	using	the	hardware	fromFigure	5.20a.
A	flowchart	description	of	the	behavior	of	the	CPU	appears	in	Figure5.21,	which	is	similar	in	form	to	the	multiplier's	flowchart	(Figure	5.15).	Allinstructions	require	a
common	instruction-fetch	step,	followed	by	an	executionstep	that	varies	with	each	instruction	type.	The	fetch	step	copies	the	contents	of	theprogram	counter	PC	to	the
memory	address	register	AR.	A	memory-read	operationis	then	executed,	which	transfers	the	instruction	word	/	to	memory	data	registerDR;	this	is	expressed	by	DR	:=
M(AR).	/'s	opcode	is	transferred	to	the	instructionregister	IR,	where	it	is	decoded;	at	the	same	time	PC	is	incremented	to	point	to	thenext	consecutive	instruction	in	M.

The	subsequent	operations	depend	on	the	opcode	pattern.	For	example,	thestore	instruction	ST	X	is	executed	in	three	steps:	the	address	field	of	ST	X	is	trans-ferred	to	AR,
the	contents	of	the	accumulator	AC	are	transferred	to	DR,	and	finallythe	memory	write	operation	M(AR)	:=	DR	is	performed.	The	branch-on-zeroinstruction	BZ	adr	is
executed	by	first	testing	AC.	If	AC	*	0,	no	action	is	taken;	ifAC	=	0,	the	address	field	adr,	which	is	in	DR(ADR),	is	transferred	to	PC,	thuseffecting	the	branch	operation.
Figure	5.21	implies	that	instruction	fetching	takesthree	cycles,	while	instruction	execution	takes	from	one	to	three	cycles.	As	we	willsee	later,	RISC	processors	are	usually
designed	so	that	all	instruction	executiontimes	are	equalized	to	one	CPU	clock	period	Tc	in	length,	making	the	cycles	asso-ciated	with	the	register-transfer	operations	in
Figure	5.21	into	subcycles	of	Tc.

The	microoperations	appearing	in	the	flowchart	implicitly	determine	the	con-trol	signals	and	control	points	needed	by	the	CPU.	Figure	5.22b	lists	a	suitable	setof	control
signals	for	the	CPU	and	their	functions,	while	Figure	5.22a	shows	theapproximate	positions	of	the	corresponding	control	points	in	both	the	PCU	andDPU.	These	control
lines	can	be	placed	in	the	three	basic	groups	defined	earlier.

•	Function	select:	c2,	c9,	c10,	cM,	c12.

•	Storage	control:	c,,	c8.

•	Data	routing:	c0,	c3,	c4,	c5,	c6,	c7.

Here	storage	control	refers	to	the	external	memory	M.	Many	of	the	control	signalstransfer	information	between	the	CPU's	internal	data	and	control	registers.

Control	unit	design.	The	overall	organization	of	a	hardwired	control	unit	thatimplements	the	flowchart	of	Figure	5.21	appears	in	Figure	5.23.	It	is	assumed	that	theopcode
stored	in	the	instruction	register	IR	is	decoded	into	10	signals,	one	per	instruc-tion	type,	which	along	with	BEGIN	and	a	status	signal	(AC	=	0)	form	the	inputs	to	themain
sequential	circuit	FSM	that	generates	the	control	signals	c0:cn.	Hence	FSM	has12	primary	inputs	and	13	primary	outputs.	The	number	of	internal	states	can	be	esti-



mated	from	Figure	5.21.	If	each	distinct	action	box	is	assigned	to	a	different	state.
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Control	signal	Operation	controlled

Co AR =	PC

C| DR:=M(AR)

<2 PC:=PC+	1

c3 PC	:=	DR(ADR)

Q IR:=DR(OP)

c5 AR =	DR(	ADR)

c6 DR =	AC

Cj AC =	DR

Cg M(AR)	:=	DR

c9 AC =	AC	+	DR

CI0 AC =	AC	-	DR

cn AC =	AC	and	DR

c12 AC =	not	AC

(a)

Figure	5.22

(a)	Control	points	and	(b)	control	signal	definitions	for	the	accumulator-based	CPU.

(b)

Statussignals



BEGIN

(AC	=	0)

Finite-state

machine

FSM

*

i i	i v	i i

LD	ST

Decoder
BZ

it

Controlsignals

Instructionregister

IR

Figure	5.23

Organization	of	a	hardwired	control	unit	for	the	accumulator-based	CPU.
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then	there	are	13	states	S0:Sl2,	as	indicated	on	the	flowchart.	Implementing	the	result-ing	13-state	machine	via	the	classical	or	one-hot	methods	is	straightforward.

EXAMPLE	S.3	IMPLEMENTING	A	PROGRAM	CONTROL	UNIT.	The	circuit

FSM	of	Figure	5.23	issues	the	control	signals	governing	instruction	processing	in	the10-instruction	accumulator-based	CPU.	Its	behavior	is	defined	by	the	flowchart	in	Fig-
ure	5.21.	We	will	implement	FSM	using	a	minor	variant	of	our	earlier	one-hot	methodthat	reduces	the	number	of	flip-flops	needed,	while	maintaining	the	simplicity	of	a
one-hot	design.	Most	of	the	states	S4:S]2	identified	in	Figure	5.21	for	the	execution	phase	ofthe	instruction	can	be	distinguished	by	the	opcode-type	signals	LD,	ST,	and	so
on,which	are	primary	inputs	of	FSM.	If	we	do	not	require	FSM	to	be	a	Moore	machine,	wecan	coalesce	the	states	into	a	smaller	set	whose	output	actions	(the	control
signals	theyactivate)	are	determined	by	FSM's	primary	inputs	as	well	as	its	states.	Specifically,	wecan	replace	the	states	in	the	execution	phase	by	just	three	states
54*,55*,56*,	all	of	whichare	visited	in	sequence	by	the	load	and	store	instructions,	but	which	reduce	to	a	singlestate	54*	for	the	remaining	instructions.	We	can	also
reduce	the	instruction-fetch	phaseto	a	sequence	of	three	states	by	merging	50	and	Sl	into	one	state	Sx*	so	that,	whetheractive	or	inactive,	FSM	performs	the	operation	AR
:=	PC.

The	resulting	machine	has	the	state	behavior	depicted	by	a	Mealy-type	state	transi-tion	graph	in	Figure	5.24.	This	figure	follows	the	condensed	style	of	Figure	5.11
whereonly	the	signals	that	directly	affect	or	are	affected	by	each	state	are	shown.	For	exam-ple,	the	state	transition	graph	implies	that	when	in	state	S5*,	a	transition	is
made	to	56*with	output	cx	=	1	(the	only	active	output)	if	the	current	instruction	is	of	type	LD.	Thisevent	is	indicated	by	the	label	LD/c,	on	the	55*-to-56*	transition	arrow.
If	the	currentinstruction	is	ST,	however,	then	only	c6	becomes	1,	as	indicated	by	the	label	ST/c6.	Noother	instruction	types	allow	FSM	to	enter	state	S5*.	When	the
transition	from	state	5,	toSj	is	automatic,	that	is.	it	is	independent	of	the	primary	input	signals,	we	used	a	label	ofthe	form	0/0,.

Let	us	implement	FSM	using	six	D	flip-flops,	with	the	output	D,	of	the	ith	flip-flop	forming	the	hot	variable	for	state	5,	or	S*.	We	can	now	write	down	a	set	of	logicequations
directly	from	Figure	5.24	that	define	FSM.

BEGINIc0

MOVl/c6;

MOV2/c7;

ADD/c9;

SUB/c,0:

AND/c,,;

NOT/c12;

BRA/c3;

BZ	and	(AC	=	0)/c3

BZ	and	(AC	=	O)/0

(LD	or	ST)/c5

LD/c,;	ST/c6

Figure	5.24

State	transition	graph	for	theaccumulator-based	CPU.

D,+	=	D,	BEGIN	+	D4(M0V1	+	M0V2	+	ADD	+	SUB	+	AND

+	NOT	+	BRA	+	BZ)	+	D6D2+	=	DV	BEGIN
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D3+- -.D2

d;- :D3

D5+- =	D4-(LD	+	ST)

D6+- -.D5

UK >ns	also	follow	immedia

c0 =	D,

c2 =	c4-- :D3

c5 =	D4 (LD	+	ST)

cl =	D4 MOV2	+	D6LD

c9 =	D4 ADD

ci =	D2 +	DyLD

c3 =	D4 (BRA	+ BZ •(AC: =	0))

c6	= :D4 MOV1	+ »5 ST

c8: -D6 ST

c10: ■-D4 SUB

c12: --D4 NOT

These	equations	lead	to	the	logic	circuit	in	Figure	5.25.
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Figure	5.25

One-hot	implementation	of	the	CPU	state	transition	graph	of	Figure	5.24.
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5.2

MICROPROGRAMMED	CONTROL

We	turn	next	to	the	design	of	control	units	that	use	microprograms	to	select,	inter-pret,	and	execute	a	processor's	instruction	set.

5.2.1	Basic	Concepts

An	instruction	is	implemented	by	a	sequence	of	one	or	more	sets	of	concurrentmicrooperations.	Each	microoperation	is	associated	with	a	group	of	control	linesthat	must
be	activated	in	a	prescribed	sequence	to	trigger	the	microoperations.	Asthe	number	of	instructions	and	control	lines	can	be	in	the	hundreds,	a	hardwiredcontrol	unit	is
difficult	to	design	and	verify,	even	with	good	CAD	tool	support.Furthermore,	such	a	control	unit	is	inherently	inflexible	in	the	sense	that	changes,for	example,	to	correct
design	errors	or	update	the	instruction	set,	require	that	thecontrol	unit	be	redesigned.

Microprogramming	[Lynch	1993]	is	a	method	of	control-unit	design	in	whichthe	control	signal	selection	and	sequencing	information	is	stored	in	a	ROM	orRAM	called	a
control	memory	CM.	The	control	signals	to	be	activated	at	any	timeare	specified	by	a	microinstruction,	which	is	fetched	from	CM	in	much	the	sameway	an	instruction	is
fetched	from	main	memory.	Each	microinstruction	alsoexplicitly	or	implicitly	specifies	the	next	microinstruction	to	be	used,	thereby	pro-viding	the	necessary	information
for	microoperation	sequencing.	A	set	of	relatedmicroinstructions	forms	a	microprogram.	Microprograms	can	be	changed	rela-tively	easily	by	changing	the	contents	of	CM;
hence	microprogramming	yieldscontrol	units	that	are	more	flexible	than	their	hardwired	counterparts.	This	flexibil-ity	is	achieved	at	some	extra	hardware	cost	due	to	the
control	memory	and	itsaccess	circuitry.	There	is	also	a	performance	penalty	due	to	the	time	required	toaccess	the	microinstructions	from	CM.	These	disadvantages	have
discouraged	theuse	of	microprogramming	in	RISCs	and	other	high-speed	processors,	where	chiparea	and	circuit	delay	must	both	be	minimized.	Microprogramming
continues	to	beused	in	such	CISCs	as	the	Pentium	and	680X0.

In	a	microprogrammed	CPU,	each	machine	instruction	is	executed	by	amicroprogram	which	acts	as	a	real-time	interpreter	for	the	instruction.	The	set	ofmicroprograms
that	interpret	a	particular	instruction	set	or	machine	language	L	iscalled	an	emulator	for	L.	A	microprogrammed	computer	C,	can	be	made	to	executeprograms	written	in
the	machine	language	L2	of	another,	very	similar	computer	C2by	placing	an	emulator	for	L2	in	the	control	memory	of	Cj.	In	that	case	C,	is	said	tobe	able	to	emulate	C2.

As	a	design	activity,	microprogramming	can	be	compared	with	assembly-lan-guage	programming;	however,	the	microprogrammer	requires	a	more	detailedknowledge	of
the	processor	hardware	than	the	assembly-language	programmer.Symbolic	languages	similar	to	assembly	languages	are	used	to	write	micropro-grams:	these	are	called



microassembly	languages.	A	microassembler	is	necessaryto	translate	microprograms	into	executable	programs	that	can	be	stored	in	the	con-trol	memory.

Control	unit	organization.	In	its	simplest	form	a	microinstruction	has	twoparts:	a	set	of	control	fields	that	specify	the	control	signals	to	be	activated	and	an

address	field	that	contains	the	address	in	CM	of	the	next	microinstruction	to	beexecuted.	In	the	original	scheme	proposed	by	Maurice	V.	Wilkes,	the	inventor
ofmicroprogramming,	each	bit	ki	of	a	control	field	corresponds	to	a	distinct	controlline	c,	[Wilkes	1951].	When	kt	=	1	in	the	current	microinstruction,	c,	is
activated:otherwise	cl	remains	inactive.	Figure	5.26	shows	a	microprogrammed	control	unitdesigned	in	this	style.	The	control	memory	CM	is	implemented	by	a	ROM	of
thetype	discussed	in	section	2.2.2.	The	left	part	(AND	plane)	of	the	ROM	decodes	anaddress	obtained	from	the	control	memory	address	register	(CMAR).	Each
addressselects	a	particular	row	in	the	right	part	(OR	plane)	of	the	ROM	that	contains	amicroinstruction	composed	(in	this	small	example)	of	a	6-bit	control	field	and	a	3-bit
address	field.	When	the	top-most	row	in	Figure	5.26,	which	represents	themicroinstruction	with	address	000,	is	selected,	the	control	signals	c0,	c2,	and	c4	areactivated,
as	indicated	by	the	xs	in	the	control	field.	At	the	same	time,	the	contentsof	the	address	field	a2axaQ	=	001	are	sent	to	the	CMAR,	where	they	are	stored	andused	to
address	the	next	microinstruction	to	be	executed.

As	Figure	5.26	indicates,	the	CMAR	can	be	loaded	from	an	external	source	aswell	as	from	the	address	field	of	a	microinstruction.	The	external	source	typicallyprovides	the
starting	address	of	a	microprogram	in	the	CM.	A	specific	micropro-gram	prestored	in	CM	executes	(interprets)	each	instruction	of	a	microprogrammed
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External	condition

Control	memorvCM

o-

o

D-D-D-D-

Control	fieldc5	c,	c3	c2	c,	c0

-x	*-

Address	fielda2	fl|	oq

-x	x

o

D—T

^MaA	WWW	K?W

I	L_	Control	signals

CMAR

/	Mux	\

tt:

/	/

External	address

Figure	5.26

Basic	structure	of	a	microprogrammed	control	unit.
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CPU.	The	instruction's	opcode,	after	suitable'encoding,	provides	the	startingaddress	for	its	microprogram.

Every	program	control	unit	should	be	able	to	respond	to	external	signals	orconditions.	We	can	satisfy	this	requirement	by	introducing	some	form	of	switch	Scontrolled	by
an	external	condition	that	allows	the	current	microinstruction	toselect	one	of	two	possible	address	fields.	Thus	in	Figure	5.26,	the	third	micro-instruction	may	be	followed
by	the	microinstruction	with	address	100	or	101,	asdetermined	by	the	external	condition.	This	feature	makes	conditional	brancheswithin	a	microprogram	possible.

Many	modifications	to	the	preceding	design	have	been	proposed	over	theyears.	A	major	area	of	concern	is	the	microinstruction's	word	length,	since	itgreatly	influences
the	size	and	cost	of	the	CM.	Microinstruction	length	is	deter-mined	by	three	factors:

•	The	maximum	number	of	simultaneous	microoperations	that	must	be	specified,that	is,	the	degree	of	parallelism	required	at	the	microoperation	level.

•	The	way	in	which	the	control	information	is	represented	or	encoded.

•	The	way	in	which	the	next	microinstruction	address	is	specified.

Control	memories	are	usually	ROMs,	so	their	contents	cannot	be	altered	on-line.	Normally	there	is	no	need	to	change	the	CM	except	to	correct	design	errors	orto	make
minor	enhancements	to	the	system.	It	was	recognized	from	the	beginning,however,	that	the	CM	could	be	a	read-write	memory	or	RAM.	Wilkes	observedthat	such	a	device,
called	a	writable	control	memory	(WCM),	would	have	a	numberof	"fascinating	possibilities,"	but	doubted	that	its	cost	could	be	justified	[Wilkes1951].	Perhaps	the	most
interesting	feature	of	a	WCM	is	that	it	allows	us	to	changea	processor's	instruction	set	by	changing	the	microprograms	that	interpret	theinstruction	set.	Thus	we	can,	in
principle,	provide	the	same	machine	with	severaldifferent	instruction	sets	that	can	be	tailored	to	specific	applications.	A	processorwith	a	WCM	is	said	to	be	dynamically
microprogrammable	because	the	controlmemory	contents	can	be	altered	under	program	control.

Parallelism	in	microinstructions.	Microprogrammed	processors	are	frequentlycharacterized	by	the	maximum	number	of	microoperations	that	a	single	microin-struction
can	specify.	This	number	ranges	from	one	to	several	hundred.

Microinstructions	that	specify	a	single	microoperation	are	similar	to	conven-tional	machine	instructions.	They	are	relatively	short,	but	due	to	their	lack	of	paral-lelism,
more	microinstructions	are	needed	to	perform	a	given	operation.	Theformat	of	the	IBM	System/370	Model	145,	which	is	shown	in	Figure	5.27,	is	repre-sentative	of	this
type	of	microinstruction.	It	consists	of	4	bytes	(32	bits).	The	left-most	byte	(shaded)	is	an	opcode	that	specifies	the	microoperation	to	be	performed.The	next	2	bytes
specify	operands,	which,	in	most	cases,	are	the	addresses	of	CPUregisters.	The	right-most	byte	contains	information	used	to	construct	the	address	ofthe	next
microinstruction.

Microinstruction	formats	take	advantage	of	the	fact	that,	at	the	microprogram-ming	level,	many	operations	can	be	performed	in	parallel.	If	all	useful	combina-tions	of
parallel	microoperations	were	specified	by	a	single	opcode,	the	number	ofopcodes	would,	in	most	cases,	be	enormous.	Furthermore,	an	opcode	decoder	ofconsiderable
complexity	would	be	needed.	To	avoid	these	difficulties,	it	is	usual	to
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Control	field(opcode) Operand	1 Operand	2 CM	addressinginformation

Figure	5.27

Microinstruction	format	of	the	IBM	System/370	Model	145.

divide	the	microoperation	specification	part	of	a	microinstruction	into	k	disjointcontrol	fields.	Each	control	field	handles	a	limited	set	of	microoperations,	any	oneof	which
can	be	performed	simultaneously	with	the	microoperations	specified	bythe	remaining	control	fields.	A	control	field	often	specifies	the	control-line	valuesfor	a	single	device
such	as	an	adder,	a	register,	or	a	bus.	In	the	extreme	case	repre-sented	by	Figure	5.26,	there	is	a	1-bit	control	field	for	every	control	line	in	the	sys-tem.

Figure	5.28	shows	another	microinstruction	style,	that	of	the	IBM	System/360Model	50.	It	encompasses	90	bits,	which	are	partitioned	into	separate	fields	for	var-ious
purposes.	There	are	21	fields,	shown	shaded	in	Figure	5.28,	which	constitutethe	control	fields.	The	remaining	fields	are	used	to	generate	the	next	microinstruc-tion
address	and	to	detect	errors	by	means	of	parity	bits.	For	example,	the	3-bitcontrol	field	consisting	of	bits	65:67	controls	the	right	input	to	the	main	adder	ofthe	CPU	in
question.	This	field	indicates	which	of	several	possible	registers	shouldbe	connected	to	the	adder's	right	input.	Bits	68:71	identify	the	function	to	be	per-formed	by	the
adder;	the	possibilities	include	binary	addition	and	decimal	additionwith	various	ways	of	handling	input	and	output	carry	bits.

The	scheme	of	Figure	5.26	with	a	control	field	for	every	control	signal	iswasteful	of	control	memory	space	because	most	of	the	possible	combinations	ofcontrol	signals	are
never	used.	Consider,	for	instance,	the	register	R	of	Figure	5.29,
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Figure	5.28

Ninety-bit	microinstruction	format	of	the	IBM	System/360	Model	50	(shaded	areas	arecontrol	fields).
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which	can	be	loaded	from	any	of	four	independent	sources	under	the	control	of	thefour	separate	signals	c0,c{,c2,c3,	as	indicated	abstractly	in	Figure	5.29a.	A	straight-
forward	implementation	of	the	associated	control	points	using	an	encoder	and	amultiplexer	appears	in	Figure	5.29b.	Suppose	that	the	c,'s	are	derived	from
amicroinstruction	control	field	in	which	there	is	1	bit	for	each	control	signal.	Thisresults	in	the	4-bit	control	field	shown	in	Figure	5.30a.	Only	the	five	control-fieldpatterns
shown	in	Figure	5.30a	are	valid,	since	any	other	pattern	will	create	a	con-flict	by	attempting	to	load	R	from	two	or	more	independent	sources	simulta-neously.	These	five
patterns	can	be	also	encoded	into	a	field	K	=	kfjcxk2	of	width|~log25]	=	3	bits,	as	shown	in	Figure	5.306,	thus	reducing	the	width	of	the	controlfield	from	4	to	3	bits.	In
general,	any	n	independent	control	signals	or	microopera-tions	can	be	encoded	in	a	control	field	of	[log2(«	+	1)]	bits,	assuming	the	need	tospecify	a	no-operation	condition
when	no	control	signal	is	active.

The	unencoded	format	of	Figure	5.30a	has	the	advantage	that	all	the	controlsignals	are	individually	identified	in,	and	can	be	obtained	directly	from,	the	micro-instruction.
The	encoded	control	signals	k0,k{,k2	of	Figure	5.306	must	be	passedthrough	a	decoder	if	we	wish	to	extract	the	four	original	control	signals	c0,c1,c2,Cy

x0	xl	x2	x$

i	i	i	L

4-way	multiplexer

LOAD

Register	RI

m

Figure	5.29

A	register	that	can	be	loaded	from	four	independent	sources:	(a)	abstract	representation	and(b)	possible	implementation.



1 0 0 0 R:=X0

0 1 0 0 R:=X,

0 0 1 0 R:=X2

0 0 0 1 R:=X3

0 0 0 0 No	operation

(a)

*0	*1	*2

0 0 0 R:=X0

0 0 1 R:=X,

0 1 0 R:=X2

0 1 1 R:=X3

1 0 0 No	operation

(*)

Figure	5.30

Control	field	for	the	circuit	of	Figure	5.29:	(a)	unencoded	format	and	(b)	encoded	format.

Often	we	can	use	the	encoded	control	signals	directly	so	that	no	decoding	is	337needed.	For	example,	in	the	present	example,	we	can	connect	the	two	signals	kxk2of
Figure	5.306	directly	to	the	select	inputs	S	of	the	multiplexer	in	Figure	5.29b,thereby	eliminating	the	priority	encoder.	The	complemented	control	signal	ko	canthen	be
connected	directly	to	the	LOAD	input	of	the	register	R	to	complete	thedesign.

Horizontal	versus	vertical.	Microinstructions	are	commonly	divided	into	twotypes.	Horizontal	microinstructions	have	the	following	general	attributes:

•	Long	formats.

•	Ability	to	express	a	high	degree	of	parallelism.

•	Little	encoding	of	the	control	information.

Vertical	microinstructions,	on	the	other	hand,	are	characterized	by

•	Short	formats.

•	Limited	ability	to	express	parallel	microoperations.

•	Considerable	encoding	of	the	control	information.

The	format	of	the	IBM	System/360	Model	50	shown	in	Figure	5.28	is	represent-ative	of	horizontal	microinstructions,	while	that	of	the	System/370	Model	145shown	in
Figure	5.27	is	representative	of	vertical	microinstructions.

Other	definitions	of	horizontal	and	vertical	are	found	in	the	literature.	One	isbased	on	the	degree	of	encoding:	a	horizontal	microinstruction	format	allows	noencoding	of
control	information,	whereas	a	vertical	format	does.	An	alternativedefinition	is	based	on	the	degree	of	parallelism.	A	vertical	microinstruction	canspecify	only	one
microoperation	(no	parallelism),	while	a	horizontal	microinstruc-tion	can	specify	many	microoperations.	These	definitions	are	not	independent,since	a	large	amount	of
parallelism	implies	little	encoding,	and	vice	versa.	Forexample,	the	format	of	Figure	5.31a	is	horizontal	and	that	of	Figure	5.31c	is	verti-cal	under	both	of	the	preceding
definitions.

Vertical	microinstructions	are	broadly	similar	to	RISC	instructions,	both	in	thesmall	amount	of	parallelism	they	specify	and	in	their	single-cycle	execution	style.Computers
have	also	been	designed	with	long	and	highly	parallel	instruction	for-mats	that	resemble	horizontal	microinstructions;	see	problem	5.36.

Microinstruction	addressing.	Each	microinstruction	in	the	basic	design	ofFigure	5.26	contains	within	itself	the	address	of	the	next	microinstruction	to	beexecuted.	In	the
case	of	branch	microinstructions,	two	possible	next	addresses	areincluded.	This	explicit	address	specification	has	the	advantage	that	no	time	is	lostin	microinstruction
address	generation,	but	it	is	wasteful	of	control	memory	space.The	address	fields	can	be	eliminated	from	all	but	branch	instructions	by	using	amicroprogram	counter	|iPC
as	the	primary	source	of	microinstruction	addresses.Its	role	is	analogous	to	that	of	the	program	counter	PC	at	the	instruction	level.Since	only	instructions	have	to	be
fetched	from	the	control	memory,	|iPC	is	alsoused	as	the	control	memory	address	register	CMAR.

Conditional	branching	is	a	desirable	feature	in	microprograms	just	as	it	is	inprograms,	and	it	can	be	implemented	in	various	ways.	The	condition	to	be	tested	isoften	a
status	signal	generated	by	the	datapath	being	controlled.	If	several	such
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Figure	5.31

Control-field	formats:	(a)	no	encoding;	(b)	some	encoding;	(c)	complete	encoding.

conditions	exist,	a	condition-select	subfield	is	included	in	the	microinstruction	for-mat	to	specify	which	of	the	possible	conditions	is	to	be	tested.	The	branch	addresscan	be
in	the	microinstruction	itself,	in	which	case	it	is	loaded	into	CMAR	when	abranch	condition	is	satisfied.	Control	memory	space	can	be	conserved	by	not	stor-ing	a	complete
address	field	in	the	microinstruction,	but	by	storing	instead	somelow-order	bits	of	the	address.	This	technique	restricts	the	range	of	branch	instruc-tions	to	a	small	region
of	the	control	memory.

An	alternative	approach	to	conditional	branching	is	to	allow	the	condition	vari-ables	to	modify	the	contents	of	CMAR	directly,	thus	eliminating	wholly	or	in	partthe	need
for	branch	addresses	in	microinstructions.	For	example,	let	the	conditionvariable	OVF	indicate	an	overflow	condition	when	OVF	=	1,	and	the	normal	no-overflow	condition
when	OVF	=	0.	Suppose	we	want	to	execute	a	SKIP	ONOVERFLOW	microinstruction.	We	can	connect	OVF	to	the	count-enable	input	ofU.PC	at	an	appropriate	point	in	the
microinstruction	cycle,	thereby	allowing	theoverflow	condition	to	increment	U.PC	an	extra	time,	thus	performing	the	desiredskip	operation.

Microoperation	timing.	So	far	we	have	assumed	that	a	microinstruction	acti-vates	a	set	of	control	signals	for	an	unspecified	time	during	the	microinstruction'sexecution
cycle.	A	single	clock	signal	synchronizes	the	control	signals,	and	its

period	can	be	the	same	as	the	microinstruction	cycle	period.	This	mode	of	controlhas	been	termed	monophase.	The	number	of	microinstructions	to	specify	a	particu-lar
operation	can	be	reduced	by	dividing	the	microinstruction	cycle	into	severalsequential	subperiods	or	(clock)	phases.	A	control	signal	is	typically	active	duringonly	one	of
the	phases.	This	polyphase	mode	of	operation	permits	a	single	microin-struction	to	specify	a	short	sequence	of	microoperations	for	some	increase	in	thecomplexity	of	the
microinstruction	format.

Consider	a	microinstruction	that	controls	the	register-transfer	operation

R	:=yCR„	R2)

where	R	can	be	R,	or	R2.	This	operation	can	be	performed	in	several	phases;	thefollowing	four-phase	interpretation	is	representative.

•	Phase	Oj:	Fetch	the	next	microinstruction	from	the	control	memory	CM.

•	Phase	02:	Transfer	the	contents	of	registers	R,	and	R2	to	the	inputs	of	the/unit.

•	Phase	03:	Store	the	result	generated	by	the	/	unit	in	a	temporary	register	orlatch	L.

•	Phase	04:	Transfer	the	contents	of	L	to	the	destination	register	R.

Figure	5.32	shows	the	timing	signals	associated	with	these	four	phases.

We	have	also	assumed	that	the	influence	of	a	microinstruction	control	field	islimited	to	the	period	during	which	the	microinstruction	is	executed.	We	can	lift	thisrestriction
by	storing	the	control	field	in	a	register	that	continues	to	exercise	controluntil	a	subsequent	microinstruction	modifies	it.	This	technique	is	called	residualcontrol	and	is
particularly	useful	when	microinstructions	are	used	to	allocate	theresources	of	a	system.	For	example,	a	connection	between	two	units	can	be	estab-lished	by	a
microinstruction	and	maintained	for	an	arbitrarily	long	period	of	timevia	residual	control.
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Timing	diagram	for	a	four-phase	microinstruction.
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Typical	microprogrammed	controller:	(a)	microinstruction	format	and	(b)	controlunit	organization.

Control	unit	organization.	We	now	describe	the	design	of	a	typical	micropro-grammed	control	unit.	We	use	the	microinstruction	format	shown	in	Figure	5.33a,which	has
three	parts	arranged	as	follows:

•	A	condition-select	field	specifies	the	external	condition	to	be	tested	in	the	case	ofconditional	branch	microinstructions.

•	An	address	field	contains	the	next-address	field	to	be	used	when	a	branch	condi-tion	is	satisfied.	A	microprogram	counter	(IPC	provides	the	next	microinstruc-tion
address	when	no	branching	is	needed.

•	The	rest	of	the	microinstruction	specifies	in	encoded	or	unencoded	format	thecontrol	signals	that	are	activated	to	perform	the	desired	microoperations.

Figure	5.33b	depicts	a	control	unit	designed	around	this	microinstruction	for-	341mat.	The	counter	uPC	is	the	address	register	for	the	control	memory	CM.	The	con-tents
of	the	addressed	word	in	CM	are	transferred	to	the	microinstruction	registeruTR.	The	control	fields	are	decoded	if	necessary	and	produce	control	signals	for	thedata-
processing	unit;	[iPC	is	then	incremented.	If	a	branch	is	specified	by	themicroinstruction	in	|iIR,	the	contents	of	the	microinstruction's	address	field	areloaded	into	pPC.

In	the	scheme	of	Figure	5.33a,	the	condition-select	field	controls	a	multiplexerthat	activates	the	parallel-load	control	input	of	pPC	based	on	the	status	of	someexternal
condition	variables.	Suppose	that	two	condition	variables	vx,v2	must	betested.	A	condition-select	field	s0s]	of	2	bits	suffices,	with	the	following	interpreta-tion:

«0 *i Meaning

0 0 No	branching

0 1 Branch	if	v,	=	1

1 0 Branch	if	v2	=	1

1 1 Unconditional	branch

The	multiplexer	has	four	inputs	x0,	xu	x2,	x3,	where	xt	is	routed	to	the	multiplexer'soutput	when	SqS^	=	L	Hence	we	require	x0	=	0,	xx	=	vv	x2	=	v2,	and	a:3	=	1	to
controlthe	loading	of	microinstruction	branch	addresses	into	uPC	in	this	case.

Finally,	a	provision	is	made	for	loading	uPC	with	an	address	from	an	externalsource.	This	address	is	used	to	enter	the	starting	address	of	the	desired	micropro-gram	in
cases	where	CM	contains	more	than	one	microprogram.

EXAMPLE	5.4	THE	AMD	2909	BIT-SLICED	MICROPROGRAM	SEQUENCER

[MICK	AND	BRICK	1980;	ADVANCED	MICRO	DEVICES	1985].	Like	the	2901	4-

bit	ALU	slice	(Example	4.5),	the	2909	microprogram	sequencer	is	a	member	of	the2900	family	of	microprocessor	components,	now	found	mainly	in	VLSI	cell	libraries.It
generates	microinstruction	addresses	for	a	control	memory	CM	and	comprises	amicroprogram	counter	uPC	and	all	the	logic	needed	for	next-address	generation.Devices
of	this	type	are	termed	microprogram	sequencers.	The	2909	thus	replaces	uPCand	the	multiplexer	appearing	in	Figure	5.33;	it	also	adds	a	stack	to	implement	subrou-tine
calls	at	the	microprogram	level.	Figure	5.34	shows	the	internal	organization	of	the2909.	It	handles	addresses	that	are	only	4	bits	long,	thus	limiting	a	single	copy	of
the2909	to	controlling	a	16-word	CM.	However,	the	2909	is	bit	sliced,	so	k	copies	ofthe	2909	can	be	cascaded	to	make	a	microprogram	sequencer	for	4^-word
addresses.Three	copies	of	the	2909	connected	as	in	Figure	5.35	can	process	12-bit	addresses	andsupport	a	4096-word	control	memory.

The	function	of	a	microprogram	sequencer	is	to	transfer	an	address	from	one	ofseveral	internal	and	external	address	sources	to	an	output	bus—the	4-bit	bus	Y	in	the2909
case—that	is	connected	to	the	address	bus	of	CM.	The	2909	has	four	separateaddress	sources:	its	microprogram	counter	uPC,	an	external	bus	D,	a	register	R	that
isattached	to	a	second	external	bus,	and	a	four-word	internal	stack	ST.	uPC	is	actuallyimplemented	by	a	4-bit	register	of	the	same	name	and	by	a	separate	incrementer,
asshown	in	Figure	5.34.	In	every	clock	cycle	this	logic	circuit	performs	the	operation	__

cout.uPC:=Y	+	cin	(5.12)
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where	cin	and	cout	are	carry-in	and	carry-out	signals,	respectively.	By	connecting	thecoul	output	line	of	each	2909	in	an	array	of	k	2909s	to	the	cin	input	of	the	2909	to	its
left,the	operation	(5.12)	can	be	extended	to	addresses	of	arbitrary	length.

If	a	sequence	of	microinstructions	without	branches	is	being	executed,	then	(5.12)alone	suffices	for	microinstruction	sequencing.	Many^	microprograms,	however,involve
some	branching	to	nonconsecutive	addresses	in	CM.	A	branch	address	is	madeavailable	as	the	address	of	the	next	microinstruction	by	connecting	the	appropriateaddress
field	of	the	current	microinstruction	in	the	external	microinstruction	registerp.IR	to	the	2909's	D	or	R	bus	in	the	manner	of	Figure	5.33b.	The	stack	ST	serves	as	the
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Structure	of	the	2909	microprogram	sequencer.
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Figure	5.35

Bit-sliced	microprogram	sequencer	for	12-bit	addresses.

remaining	address	source.	ST	is	intended	to	support	subroutine	(procedure)	calls	withinmicroprograms.	CALL	X	is	implemented	by	pushing	the	contents	of	u,PC	into	ST
andtaking	the	next	address	X	from	the	D	or	R	source.	A	subsequent	return	from	the	micro-subroutine	requires	popping	ST	into	uPC.	Four	addresses	can	be	stored	in	ST,
whichallows	up	to	four	procedure	calls	to	be	nested	within	a	microprogram.

The	four	possible	address	sources—(J.PC,	D,	R,	and	ST—are	connected	to	a	multi-plexer	MUX	which,	as	shown	in	Figure	5.34,	is	controlled	by	the	two	external	selectlines
S.	These	lines	are	typically	driven	from	a	2-bit	condition-select	field	in	the	currentmicroinstruction;	they	can	also	connect	to	CPU	status	flags	or	interrupt	request
lines.The	2909	has	five	control	lines,	denoted	OR^ORj	and	ZERO,	that	permit	externalconditions	to	modify	the	address	selected	by	MUX.	For	example,	if	ZERO	is
activated(ZERO	=	0),	then	Y	becomes	0000.	This	line	is	typically	connected	to	a	reset	signal,which	forces	the	control	unit	to	begin	execution	of	a	microprogram	whose
startingaddress	is	all	0s.	The	OR,	lines	can	force	selected	bits	of	Y	to	1	to	implement	condi-tional	branches	relative	to	the	current	address,	for	instance,	to	skip	the	next
microin-struction.	The	stack	ST	is	enabled	by	the	FE	(file	enable)	line,	while	the	push-popselect	line	PUP	causes	a	push	(pop)	to	be	performed	when	PUP	=	1	(0).

Thus	microinstruction	sequencing	by	the	2909	is	controlled	by	signals	derivedfrom	a	combination	of	microinstruction	control	fields	and	external	conditions.	Forexample,
suppose	the	address	X	is	applied	to	the	2909's	input	bus	D.	The	following
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microinstruction	control	fields

S,FE,PUP,OR,ZERO	=	11,1,40000,1

(5.13)

implement	the	operation	go	to	X.	The	effect	of	(5.13)	is	to	disable	ST	and	the	OR-ANDaddress-modification	logic	while	routing	the	desired	branch	address	X	from	D	to
Y.The	microoperation	CALL	X,	where	X	is	stored	in	the	R	register,	is	specified	by

S,FE,PUP,OR,ZERO	=	01,0,1,0000,1while	RETURN	is	implemented	by

S,FE,PUP,OR,ZERO=	10,0,0,0000,1

5.2.2	Multiplier	Control	Unit

Several	hardwired	control	unit	designs	for	a	sequential	twos-complement	multipli-cation	circuit	were	presented	in	Example	5.2.	Now	we	examine	the	design	of
amicroprogrammed	control	unit	for	the	same	multiplier.	The	design	process	canbegin	with	either	the	flowchart	of	Figure	5.15	or	the	state	table	of	Figure	5.16,	bothof
which	define	the	flow	of	control	and	identify	the	control	signals	to	be	activated.An	HDL	description	like	that	of	Figure	4.13	may	be	more	appropriate,	however,since	it	is
essentially	the	required	microprogram	written	in	symbolic	form.	Figure5.36a	repeats	this	HDL	description	of	the	multiplier	in	a	format	in	which	everystatement
corresponds	to	a	distinct	microinstruction,	implying	that	a	microprogramof	10	microinstructions	is	sufficient.

Microprogram	structure.	As	a	first	attack,	we	use	the	microinstruction	formatof	Figure	5.33a,	which	has	three	parts:	a	condition-select	field,	a	branch	address,and	a	set	of
control	fields.	An	address	field	of	4	bits	can	address	up	to	16	microin-structions.	Initially,	no	encoding	of	control	signals	will	be	done,	so	that	there	arethirteen	1-bit	control
fields,	one	for	each	of	the	control	lines	cQ,cx,..	.,cn,END.	Thecontrol	unit	has	the	general	organization	of	Figure	5.33b,	which	has	a	micropro-gram	counter	|iPC	as	the
control	memory	address	register.	During	each	microin-struction	cycle,	|iPC	is	incremented	to	produce	the	address	of	the	nextmicroinstruction.	In	the	case	of	a	branch
microinstruction,	the	address	stored	in	thecurrent	microinstruction	is	the	branch	address.	We	eliminate	the	need	for	an	exter-nal	address	input	by	storing	the	first
microinstruction	in	address	0	of	CM	and	sim-ply	resetting	|iPC	to	0	at	the	start	of	multiplication.

Every	microinstruction	can	specify	a	branch	address	and	so	can	implement	aconditional	or	unconditional	branch.	The	condition-select	field	has	to	indicate	oneof	four
conditions:

•	No	branching

•	Branch	if	Q[0]	=	0

•	Branch	if	COUNT7	=	0

•	Unconditional	branch

Hence	a	2-bit	condition-select	field	is	needed.	We	conclude	that	a	19-bit	microin-struction	word	is	sufficient	when	a	full	horizontal	version	of	the	format	in	Figure5.33a	is
used.
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BEGIN:	A:=0,	COUNT	:=	0,	F	:=	0,	M:=INBUS;

INPUT:	Q	:=	INBUS;

TEST1:	if	Q[0]	=	0	then	go	to	RSHIFT:

ADD:	A[7:0]	:=	A[7:0]	+	M[7:0],	F	:=	(M[7]	and	Q[0])	or	F;

RSHIFT:	A[7]	:=	F,	A[6:0].Q	:=	A.Q[7:1],	COUNT	:=	COUNT	+	1,if	COUNT7	=	0	then	go	to	TEST1;

TEST2:	if	Q[0]	=	0	then	go	to	OUTPUT1;

SUBTRACT:	A[7:0]	:=	A[7:0]	-	M[7:0],	Q[0]	:=	0;

OUTPUT	1:	OUTBUS	:=	A;

OUTPUT2:	OUTBUS	:=	Q;

END:	Halt;

c2'	c3'	c4>	c5

END

(a)

Address	Condition	Branchin	CM	select



Control	fields

0000 00

0001 00

0010 01

0011 00

0100 10

0101 01

0110 00

0111 00

1000 00

1001 11

address Co cl c2 c3 c4 cs c6 Cn c% c9 c10 cll END

0000 0 0 0 0 0 0 0 0 0 1 1 0 0

0000 0 0 0 0 0 0 0 0 1 0 0 0 0

0100 0 0 0 0 0 0 0 0 0 0 0 0 0

0000 0 0 1 1 1 0 0 0 0 0 0 0 0

0010 1 1 0 0 0 0 0 0 0 0 0 1 0

0111 0 0 0 0 0 0 0 0 0 0 0 0 0

0000 0 0 1 1 1 1 0 0 0 0 0 0 0

0000 0 0 0 0 0 0 1 0 0 0 0 0 0

0000 0 0 0 0 0 0 0 1 0 0 0 0 0

1001 0 0 0 0 0 0 0 0 0 0 0 0 1

(b)

Figure	5.36

(a)	Symbolic	and	(b)	binary	microprogram	for	twos-complement	multiplication.
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It	is	now	easy	to	construct	a	binary	microprogram	that	implements	the	multi-plication	algorithm.	The	symbolic	microprogram	of	Figure	5.36a	is	converted	lineby	line	into
the	bit	patterns	shown	in	Figure	5.36b.	Consecutive	microinstructionsare	assigned	to	consecutive	addresses,	and	the	appropriate	condition-select	bits	areinserted	(00
denotes	no	branching;	the	remaining	condition	codes	are	easilydeduced).	When	multiplication	is	completed,	the	microprogram	enters	a	waiting(halt)	state	by	repeatedly
executing	the	no-operation	microinstruction	in	CM	loca-tion	1001.	It	remains	in	this	state	until	jiPC	is	reset	by	the	arrival	of	an	externalBEGIN	signal.	The	structure	of	the
resulting	control	unit	appears	in	Figure	5.37.
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BEGIN0
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COUNT7

1

Timinglogic

MUX

Conditionselect

Branchaddress

Increment

Load

uPC

Reset

Control

memory



(10	X	19	bits)

uIR

{c,},	END	*•

Figure	5.37

Microprogrammed	control	unit	for	the	twos-complement	multiplier.

Control-field	encoding.	Few	of	the	213	possible	control-field	patterns	allowedby	the	microinstruction	format	of	Figure	5.37	are	actually	useful	or	needed.	Figure5.36
shows	that	several	sets	of	control	signals	are	always	activated	simultaneously;hence	a	single	1-bit	control	field	suffices	for	each	such	set.	The	8	bits	reserved	forthe	3	sets
{c0,cucu},	{c2,c3,c4},	and	{c9,cw}	can	be	replaced	by	3	bits,	yielding	theshort,	horizontal	format	given	in	Figure	5.38.

The	number	of	control	bits	can	be	reduced	further	by	encoding	the	controlfields.	Since	there	are	only	10	distinct	microinstructions	in	the	multiplicationmicroprogram
(Figure	5.36),	we	can	encode	the	control	signals	in	a	single	4-bitcontrol	field,	yielding	a	purely	vertical	format.	However,	this	design	severely

1 I	1	1

Co c3 c5	c6	cl	CS
<9

c10

Conditionselect Branchaddress
E

ND

c sntro 1	fieli is

Figure	5.38

Horizontal	microinstruction	format	after	removing	redundantcontrol	fields.

limits	our	ability	to	subsequently	modify	the	microinstruction	set.	Suppose	that	the	347

microinstruction	format	we	are	designing	will	be	used	for	more	applications	than

the	control	of	multiplication—note	that	the	multiplier	has	most	of	the	components	control	Desi	n

of	a	sequential	ALU.	It	is	therefore	of	interest	to	encode	the	microinstructions	so

that	microinstructions	as	yet	unspecified	can	easily	be	added	later.

A	systematic	method	of	encoding	is	to	divide	the	control	signals	into	sets	thatare	compatible	in	the	sense	that	no	two	members	of	set,	called	a	compatibilityclass,	are	ever
active	at	the	same	time.	The	four	control	signals	Cq^^^	that	loadthe	same	register	R	in	Figure	5.33	are	examples	of	a	compatibility	class.	We	cannow	state	the	following
optimization	problem,	which	aims	to	minimize	the	totalsize	of	the	control	fields	needed	to	implement	a	particular	set	of	microinstructions:Find	a	collection	of	compatibility
classes	{C,}	of	control	signals	such	that

•	Every	control	signal	is	contained	in	at	least	one	{C,}.

•	The	function	W	=	Z["log2(|C,|	+	1	)~|	is	a	minimum,	where	lc,l	is	the	number	ofsignals	in	{C,}.

Here	W	represents	the	combined	width	of	all	the	microinstruction's	control	fields.A	solution	to	this	problem	minimizes	the	number	of	control	bits	while	keeping
themaximum	degree	of	parallelism	inherent	in	the	original	microinstruction	set.	Onlythe	control	fields	are	being	minimized;	the	next-address	and	condition-select	fieldsare
unaffected.

Many	general	solutions,	both	exact	and	heuristic,	to	the	foregoing	problem	arediscussed	in	the	literature	on	microprogramming	[Lynch	1993].	The	problem	iseasy	to	solve
in	the	case	of	the	twos-complement	multiplier,	where	we	have	10microinstructions	and,	after	eliminating	redundant	bits	from	the	control	field,	eightcontrol	signals
{c0,c2,c5,c6,c7,c8,c9,END};	see	Figure	5.38.	There	are	only	twoincompatible	microoperations,	namely	c2	and	c5,	which	are	activated	together	inthe	SUBTRACT
microinstruction.	Hence	the	two	largest	or	maximal	compatibilityclasses	(MCCs)	are	C0	=	{c0,c2,c6,c7,c8,c9,END}	and	C,	=	{cq,c5,c6,c-j,c&,c9,	END},so	a	format
containing	two	encoded	control	fields	suffices.	There	are	several	waysto	choose	subsets	of	C0	and	Cx	that	cover	all	control	signals	and	yield	a	value	offive	for	the	cost
function	W.	For	example,	we	can	set	C'0	=	{c0,c2,c6}	and	C\	={c5,c7,c8,c9,END}.	The	resulting	microinstruction	has	the	format	shown	in	Figure5.39	and	requires	a	pair
of	decoders	to	extract	the	control	signals.	The	fact	thatthere	are	only	two	control	fields	indicates	that	little	inherent	parallelism	exists	inthe	multiplication	algorithm.

Encoding	by	function.	A	drawback	of	the	minimum-width	control	format	ofFigure	5.39	is	that	functionally	unrelated	control	signals	are	combined	in	the	samecontrol	field,
while	related	signals	are	derived	from	different	control	fields.	Forexample,	both	C'0	and	C\	control	the	transfer	of	information	to	OUTBUS.	Thislack	of	functional
separation	makes	the	writing	of	microprograms	difficult,	sincethe	microprogrammer	must	associate	several	unrelated	opcodes	with	each	controlfield.	An	encoded	format
in	which	each	control	field	specifies	the	control	signalsfor	one	component	or	for	a	related	set	of	operations	is	preferred,	even	though	morecontrol	bits	may	be	needed.

On	examining	the	multiplier	circuit,	we	see	that	there	are	five	components	tobe	controlled:	the	adder,	the	A.Q	register-pair,	the	external	iteration	counterCOUNT,	and	the
two	data	buses	INBUS	and	OUTBUS.	Each	component	has	its
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Figure	5.39

Vertical	microinstruction	formatwith	maximum	parallelism	andminimum	control-field	width.

own	set	of	functions,	suggesting	the	encoding-by-function	format	of	Figure	5.40a.Possible	control-field	assignments	and	their	interpretation	appear	in	Figure	5.40&.Note
that	this	ad	hoc	encoding	has	combined	the	"incompatible"	control	signals	c2and	c5.	This	is	unlikely	to	be	of	concern,	however,	if	the	microinstruction	set	islater	enlarged
—there	is	no	obvious	functional	advantage	in	keeping	c2	and	c5	inseparate	fields.	The	assignment	of	a	separate	control	field	to	INBUS	is	of	question-able	wisdom.	It
prevents	INBUS	from	transferring	data	to	two	or	more	destina-tions,	such	as	Q	and	M,	simultaneously.	Such	a	transfer	could	be	useful,	forexample,	to	clear	both	registers
at	once.	It	might	be	better	to	associate	a	controlfield	with	each	register	that	is	a	potential	destination	of	INBUS	rather	than	withINBUS	itself.

Multiple	microinstruction	formats.	In	the	original	multiplication	micropro-gram,	several	microinstructions	are	used	only	for	next-address	generation	and	donot	activate
any	control	lines.	This	suggests	that	we	can	reduce	microinstructionsize	by	using	a	single	field	to	contain	either	control	information	or	addressinformation.	We	then	obtain



two	distinct	microinstruction	types—branch	micro-instructions,	which	specify	no	control	information,	and	action	or	operate	microin-structions,	which	activate	control	lines
but	have	no	branching	capability.	Notethat	this	approach	is	almost	always	used	at	the	instruction	level.	The	division	ofmicroinstructions	into	the	branch	and	operate	types
is	rather	natural,	since	thebranch	microinstructions	control	the	internal	operations	of	the	control	unit,	whilethe	operate	microinstructions	control	the	external	datapath.

Suppose	that	we	want	to	use	unencoded	control	fields	for	the	twos-comple-ment	multiplier,	which	requires	8	control	bits,	as	seen	from	Figure	5.38.	Now	wedefine	a
microinstruction	format	having	two	parts,	a	2-bit	condition-select	fieldwith	the	same	meaning	as	before,	and	an	8-bit	field	that	can	contain	either	a	branchaddress	or
control	information.	The	condition-select	code	00,	which	denotes	nobranching,	serves	to	identify	the	operate	microinstructions.	The	remaining	threeselect	field	codes
identify	conditional	and	unconditional	branches.	We	thus	obtainthe	two	10-bit	microinstruction	formats	of	Figure	5.41a.	Note	that	the	additionaladdress	bits	enable	us	to
write	microprograms	containing	up	to	28	=	256	instruc-

Control	fields
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Branchaddress

ADDER	SHIFT	COUNT	INBUS	OUTBUS

(a)

Controlfield

Bitsused

Code

Microoperationsspecified

Control	signalsactivated

ADDER 7.8 00 No	operation

01 A	:=	A	+	M,	set	F c2,c3,c4

10 A	:=	A	-	M,	Q[0]	:=	0 c2,c3,c4,c5

11 Unused

SHIFT 6 01 No	operationRight-shift	A.Q,	set	A[7] c0>cl

COUNT 5,4 00 No	operation

01 Clear	COUNT,	A,	F c10

10 COUNT	:=	COUNT	+	1 cll

11 Unused

EMBUS 3,2 00 No	operation

01 Q	:=	INBUS c8

10 M	:=	INBUS c9

11 Unused

OUTBUS 1,0 00 No	operation

01 OUTBUS	:=	A c6

10 OUTBUS	:=	Q c7

11 Unused

(b)

Figure	5.40

(a)	Microinstruction	format	with	control	fields	encoded	by	function	and	(b)	their	interpre-tation.

tions.	Because	we	have	destroyed	the	capability	of	every	microinstruction	toimplement	a	two-way	branch,	some	operations	need	more	microinstructions.

Figure	5.41b	shows	a	microprogram	for	twos-complement	multiplicationusing	the	formats	of	Figure	5.41a.	This	microprogram	is	somewhat	easier	to	derivefrom	the
flowchart	(Figure	5.15)	than	was	the	earlier	microprogram	(Figure	5.36)because	we	can	now	transform	decision	blocks	directly	into	branch	microinstruc-tions,	while
activity	boxes	are	transformed	into	operate	microinstructions.	The	con-trol	unit	of	Figure	5.37	is	easily	modified	to	handle	these	new	microinstructionformats:	The
condition-select	field	is	used	to	control	a	demultiplexer	that	routesbits	0:7	either	to	external	control	lines	(operate	microinstructions)	or	to	the	branchaddress	logic
(branch	microinstructions).

Multiplication	and	division	cannot	be	bit	sliced	in	the	same	way	as	addition,subtraction,	or	shifting.	However,	these	operations	can	be	implemented	in	a	bit-
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Microprogrammed

Control 0
0

I
i	i	I	I 1	1 I

i I	'	1	i	i	i	i

co c2	c$	c6	cl	c8 cg	END

Condition

select

0	1	Branch	if	Q[0]	=	0

1	0	Branch	if	COUNT7	=	0

1	1	Unconditional	branch

(a)

Condition

Address select9	8 Branch	address	or	control	bits

in	CM 7 6 5 4 3 2 1 0 Comment

0000 0 0 0 0 0 0 0 0 1 0 BEGIN

0001 0 0 0 0 0 0 0 1 0 0 INPUT

0010 0 1 0 0 0 0 0 1 0 0 TEST1

0011 0 0 0 1 0 0 0 0 0 0 ADD

0100 0 0 1 0 0 0 0 0 0 0 RSHIFT

0101 1 0 0 0 0 0 0 0 1 0 RSHIFT	BRANCH

0110 0 1 0 0 0 0 1 0 0 0 TEST2

0111 0 0 0 1 1 0 0 0 0 0 SUBTRACT

1000 0 0 0 0 0 1 0 0 0 0 OUTPUT1

1001 0 0 0 0 0 0 1 0 0 0 OUTPUT2

1010 0 0 0 0 0 0 0 0 0 1 END

1011 1 1 0 0 0 0 1 0 1 1 HALT

00

Figure	5.41

(a)	Multiple	microinstruction	formats	and	(b)	multiplication	microprogram	that	uses	theseformats.

sliced	ALU	under	the	control	of	a	microprogram	that	implements	one	of	the	shift-and-add/subtract	algorithms	described	in	section	4.1,	as	the	next	example	demon-strates.

EXAMPLE	5.5	TWOS-COMPLEMENT	MULTIPLICATION	IN	A	BIT-SLICED

alu	[mick	and	brick	1980).	The	AMD	2901	is	a	4-bit	ALU	slice,	which	isdescribed	in	Example	4.5.	A	set	of	k	copies	of	the	2901	can	easily	be	connected	to	per-form	the
basic	ALU	operations	(twos-complement	addition	and	subtraction,	as	well	asthe	standard	logical	operations)	on	4A:-bit	data	words.	We	now	explain	how	such	anarray	can
implement	twos-complement	multiplication	under	microprogram	control.

Figure	5.42	shows	a	four-slice	2901	circuit	that	is	configured	to	multiply	16-bittwos-complement	numbers	via	the	Robertson	algorithm.	The	roles	of	the	accumulatorA,	the
multiplicand	register	M,	and	the	multiplier	register	Q	are	assigned	to	the	290l'sR(B),	R(A),	and	Q	registers,	respectively.	R(A)	and	R(B)	are	in	the	2901's	register
file(referred	to	as	the	RAM	in	2900	literature),	while	Q	is	a	"'quotient"	register	intended	tosupport	sequential	multiplication	and	division	algorithms.	The	register
addresses	Aand	B	are	determined	by	external	signals	placed	on	the	corresponding	4-bit	RAMaddress	buses.	The	shift	lines	Q0	and	Q3	serve	to	link	the	Q	registers	in	the
four	2901s

to	form	a	16-bit	Q	register	that	can	be	right	shifted	via	the	2901's	Q	shifter	(Figure4.36).	In	the	same	fashion	the	RAM0	and	RAM3	shift	lines	effectively	link	the	slices
ofR(B),	allowing	it	to	serve	as	the	16-bit	accumulator.	A	connection	from	RAM0	on	theright-most	(least	significant)	slice	to	Q3	on	the	left-most	(most	significant)	slice
linksthe	16-bit	R(B)	and	Q	registers	to	form	the	32-bit	shift	register—A.Q	in	the	originaldesign—where	the	product	will	eventually	be	stored.	Finally,	as	the	contents	of
theA.Q	register-pair	are	right	shifted	by	the	2901's	RAM	shifter,	the	sign	bit	of	the	partialproduct	should	be	entered	into	the	most	significant	bit	position	of	A.Q,	that	is,
A[15].
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Figure	5.42

A	four-slice	2901	array	configured	for	16-bit	multiplication:	(a)	slice	interconnections	and(b)	register	assignments.
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In	our	previous	implementations	of	Robertson's	algorithm,	for	example,	in	the	micro-programs	of	Figures	5.36	and	5.41,	this	bit	was	computed	via	the	formula

(5.14)

¥	:=(M[n-I]	and	Q[0])	or	F

It	can	be	shown	that	(5.14)	is	equivalent	to	«

F:=F[«-l]jcorOVF	(5.15)

where	¥[n	-	1]	is	the	sign	bit	F3	of	the	result	generated	by	the	most	significant	2901slice	and	OVF	is	the	overflow	signal	(based	on	twos-complement	addition)	producedby
that	same	slice.	Equation	(5.15)	is	implemented	by	the	XOR	gate	appearing	in	Fig-ure	5.42a.

The	microoperations	performed	by	the	2901	are	specified	by	the	set	of	control	sig-nals	I	=	IS,IF,ID	listed	in	Figure	4.38;	these	are	typically	used	as	microinstruction	con-
trol	fields	of	the	encoding-by-function	type	illustrated	by	Figure	5.40.	The	design	ofthe	2901	control	fields	makes	it	possible	to	implement	conditional	microinstructions
inclever	ways.	In	particular,	if	the	bits	of	the	IF	function-select	field	are	treated	as	condi-tion	variables,	then	the	selected	operation	varies	with	the	condition	values.
Forinstance,	IF	=	000	specifies	add	with	carry;	if	the	middle	bit	of	IF	is	a	condition	variableand	is	changed	to	1,	we	get	IF=	010,	which	specifies	subtract	with	borrow.

The	central	operation	in	binary	multiplication,	which	is	a	conditional	add	followedby	a	right	shift,	where	the	condition	variable	is	the	current	multiplier	bit	x;	stored	inQ[0],
can	be	implemented	by	a	single,	carefully	constructed	2901	microinstruction.This	operation	is	expressed	as	follows	in	HDL	format:

if	Q[0]	=	1	then	R(B)	:=	R(B)	+	R(A);	R(B).Q	:=	R(B).Q/2;

(5.16)

Let	Q[0]	be	applied	as	a	condition	variable	to	the	middle	line	of	the	290l's	input	sourcecontrol	field	Is.	Then	(5.16)	is	realized	by	the	following	microinstruction:

IS,IF,ID	=	0	Q[0]	1,000,100



(5.17)

IF	=	000	specifies	the	add-with-carry	operation	whose	source	and	destination	operandsare	determined	by	Is	and	ID,	respectively.	Changing	Is	from	001	to	011	changes
theoperation	defined	by	(5.17)	from	Y	:=	R(A)	+	R(B)	to	Y	:=	0	+	R(B),	effectively	skip-ping	the	add	step.	ID	=	100	causes	the	result	F	to	be	right	shifted	before	loading
intoR(B);	it	also	right	shifts	Q	as	required	by	(5.16).

Since	we	also	need	to	make	Is	a	constant	at	other	times,	we	would	implement(5.17)	by	connecting	the	middle	bit	of	the	Is	control	field	and	Q[0]	to	the	data	inputs	ofa	two-
way	1-bit	multiplexer	MUXQ.	The	output	of	MUXQ	would	be	the	final	controlsignal	c.	Another	1-bit	control	field	CQ	would	be	added	to	the	microinstruction	formatto	drive
the	select	input	of	MUXQ	and	thus	determine	whether	c	=	Q[0]	or	the	currentvalue	in	the	Is	field.

Sixteen-bit	multiplication	requires	(5.16)	to	be	executed	15	times	and	be	followedby	a	subtraction	step	that	is	again	conditional	on	the	value	of	Q[0].	A	complete	micro-
program	along	these	lines	appears	in	Figure	5.43.	It	implements	the	same	basic	algo-rithm	we	have	used	earlier,	with	various	modifications	geared	to	the	particular
featuresof	the	2900	series,	and	is	designed	to	produce	a	very	short	multiplication	micropro-gram.	It	must	be	possible	to	configure	the	2901	ALU	as	in	Figure	5.42	under
control	ofa	microprogram	sequencer	such	as	the	AMD	2909	(Example	5.4)	or	2910.	The	latterincludes	a	counter	that	can	be	automatically	decremented	in	every	clock
cycle	and	socan	serve	as	the	multiplier's	iteration	counter	COUNT.	On	setting	the	2910	to	a	specialrepeat	mode,	the	microprogram	sequencer	will	continue	to	output	the
address	of	thecurrent	microinstruction,	and	so	repeatedly	execute	that	microinstruction,	untilCOUNT	becomes	zero.

Microoperations

Comment

Q:=0orR(A)

R(B):=0a/u/R(B)

COUNT	:=	15;	whUe	COUNT	*	0	do

begin	A	:=	A	x	Q[0]	+	M;	right-shift	A.Q;COUNT	:=	COUNT	-	1	end

A	:=	A	x	Q[0]	-	M

R(B)	:=0	or	Q

Move	multiplier	X	to	Q	from	R(A)

Clear	accumulator	A	=	R(B)

Conditional	add	and	shift	repeated15	times

Conditional	subtract.	Product	=	A.QMove	low	half-product	from	Q	to	R(B)

(a)

COUNT	A

If	It

CONFIG	REPEAT	Comment

...ddddd	0000	dddd	100	011	000	d

...ddddd	dddd	0011	011	100	011	d

...01111	0001	0011	040	000	100	0

...ddddd	0001	0011	0^0	001	100	1

...ddddd	dddd	0010	010	011	010	d

0 0 Move	multiplier	X	to	Qfrom	R[0]

0 0 Clear	accumulator	R[3]

1 1 Conditional	add	and	shiftrepeated	15	times

1 0 Conditional	subtract.Product	=	R[3].Q

0 0 Move	low	half-product	fromQ	to	R[2]

(b)

Figure	5.43

(a)	Symbolic	and	(b)	binary	microprogram	for	twos-complementmultiplication	in	the	2901-based	processor.
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Figure	5.43	gives	in	both	symbolic	(HDL)	and	binary	form	a	multiplication	micro-program	containing	only	five	microinstructions.	The	first	two	microinstructions	initial-ize
the	multiplication,	assuming	that	the	multiplicand	M	is	already	stored	in	registerR[l].	The	third	microinstruction	implements	(5.17)	and	is	executed	15	times.	Thefourth
microinstruction	implements	the	conditional	subtraction	(correction	step)needed	to	accommodate	a	negative	X.	while	the	last	instruction	transfers	the	contents	ofthe	Q
register	to	the	register	file;	at	the	end	the	data	is	stored	as	follows:	R[0]	=	multi-plier,	R[l]	=	multiplicand,	and	R[3].R[2]	=	product.

Most	of	the	control	fields	appearing	in	Figure	5.43fc	specify	control	signalsapplied	to	the	2901	ALU.	The	CONFIG	field	is	intended	to	produce	the	special	multi-plication
configuration	of	Figure	5.42.	which	requires	various	control	points	(not	allshown)	to	establish	links	such	as	that	from	the	output	of	the	XOR	gate	to	the	RAM,input	of	the
left-most	slice,	from	Q[0]	to	the	middle	signal	derived	from	Is.	and	so	on.An	address	field	called	REPEAT	is	also	defined,	with	REPEAT	=	0	meaning	that	thenext
microinstruction,	whose	address	is	generated	by	the	microprogram	counter	(iPC.immediately	follows	the	current	microinstruction.	REPEAT	=	1	means	that	the
currentmicroinstruction	is	to	be	repeated	until	the	automatically	decremented	COUNT	registerreaches	zero.
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This	section	considers	the	design	of	the	microprogrammed	control	units	and	micro-programs	for	use	in	the	CPU	of	nonpipelined,	general-purpose	computers.

Basic	emulator.	First	we	reexamine	the	accumulator-based	CPU	for	whichwe	developed	a	hardwired	program	control	unit	in	section	5.1.3.	The	organizationof	this	CPU	and
its	10-member	instruction	set	appear	in	Figure	5.20.	The	13	con-trol	signals	listed	in	Figure	5.22	define	the	basic	microoperations	that	are	availableto	the
microprogrammer.	(We	will	later	extend	this	to	a	more	realistic	set.)	To	sim-plify	the	presentation,	we	will	give	the	microinstructions	only	in	symbolic	formusing	our	HDL.

Suppose	that	you	want	to	write	an	emulator	for	the	target	instruction	set	whosemembers,	which	are	defined	in	Figures	5.20	and	5.21,	are	LD,	ST,	MOV1,	MOV2,ADD,
SUB,	AND,	NOT,	BRA,	and	BZ.	The	microoperations	that	implement	thevarious	instructions	appear	in	Figure	5.22,	from	which	the	required	microprogramsare	easily
deduced.	The	microprogram	selected	to	emulate	each	instruction	is	iden-tified	by	the	instruction's	opcode;	hence	the	contents	of	the	instruction	register	IRdetermine	the
microprogram's	starting	address.	We	will	use	the	unmodified	con-tents	of	IR	as	the	microprogram	address	for	the	current	instruction.	We	will	furtherassume	that	each
microinstruction	can	specify	a	branch	condition,	a	branch	addressthat	is	used	only	if	the	branch	condition	is	satisfied,	and	a	set	of	control	fieldsdefining	the



microoperations	to	be	performed.	These	microinstruction	fields	caneasily	be	adapted	to	a	variety	of	formats	(horizontal,	vertical,	encode-by-function,and	so	on)	as
discussed	earlier.

Figure	5.44	lists	a	complete	emulator	for	the	given	instruction	set	in	symbolicform;	the	conversion	of	each	microinstruction	to	binary	code	is	straightforward.

FETCH:

LD:

ST:

MOV1:

MOV2:

ADD:

SUB:

AND:

NOT:

BRA:

BZ:

AR	:=	PC;DR	:=	M(AR);PC:=PC+	l.IR:=DR(OP):go	to	IR:

ARDRAC

ARDR

DR(ADR);=	M(AR);=	DR.	go	to	FETCH;

=	DR(ADR);=	AC;

M(AR)	:=	DR,	go	to	FETCH;

DR	:=	AC.	go	to	FETCH:

AC:=DR,	go	to	FETCH:

AC	:=	AC	+	DR,	go	to	FETCH;

AC	:=	AC	-	DR.	go	to	FETCH;

AC	:=	AC	and	DR.	go	to	FETCH;

AC	:=	not	AC,	go	to	FETCH;

PC	:=	DR(ADR),	go	to	FETCH;

if	AC	=	0	then	PC	:=	DR(ADR).	go	to	FETCH;

Figure	5.44

A	microprogrammed	emulatorfor	a	small	instruction	set.
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This	emulator	contains	a	distinct	microprogram	for	each	of	the	ten	possible	355instruction	execution	cycles	and	another	microprogram	called	FETCH—note	howthe	name
of	the	microprogram	corresponds	to	its	address	in	the	emulator	code—which	controls	the	instruction	fetch	cycle.	The	go	to	IR	microoperation	is	imple-	Designmented	by
(i.PC	:=	IR,	which	transfers	control	to	the	first	microinstruction	in	themicroprogram	that	interprets	the	current	instruction.	Depending	on	the	micro-instruction	format
chosen,	either	such	branch	operations	can	be	included	in	a	gen-eral	operate-with-branching	format	or	separate	branch	microinstructions	can	bedefined.	Figure	5.44
assumes	that	\iPC	is	the	default	address	source	for	microin-structions	and	is	incremented	automatically	in	every	clock	cycle.

Suppose	that	because	of	a	design	error,	or	because	of	a	late	modification	to	thespecifications	of	the	instruction	set,	we	need	to	introduce	a	new	instruction	calledCLEAR
whose	function	is	to	reset	all	bits	of	the	accumulator	AC	to	0.	Although	nocontrol	line	to	clear	AC	was	included	in	the	CPU,	we	can	still	write	a	micropro-gram	to
implement	the	CLEAR	instruction	using	only	the	preexisting	microopera-tions.

CLEAR:	DR	:=	AC;

AC	:=	not	AC;

AC	:=	AC	and	DR,	go	to	FETCH;

By	storing	this	new	microprogram	in	the	control	memory,	CLEAR	can	be	added	tothe	instruction	set	with	either	no	changes,	or	very	minor	ones,	to	the	CPU	hard-ware.
Such	flexibility	is	a	key	advantage	of	microprogramming	over	hardwiredcontrol.

Extensions.	We	will	now	add	to	the	CPU	structure	of	Figure	5.22	the	circuitsto	implement	fixed-point	multiplication	and	division	using	sequential	algorithms	ofthe	type
discussed	in	Chapter	4.	Two	major	new	registers	are	required—a	multiplier-quotient	register	MQ	and	a	counter	called	COUNT,	which	counts	the	number	of	iter-ations
(add/subtract	and	shift	steps)	used	during	multiplication	or	division.	Thememory	data	register	DR	will	be	assigned	the	role	of	multiplicand	or	divisor	registerMD	when
appropriate.

Figure	5.45a	shows	the	modified	CPU;	the	number	of	control	signals	has	morethan	doubled	to	29.	These	signals	are	denoted	c0:c2&	and	defined	in	Figure	5.45b:c0:c12
correspond	to	the	control	signals	of	the	original	CPU	in	Figure	5.22.	Severalof	the	control	signals	listed	in	Figure	5.45b	implicitly	cause	flag	(status)	bits	to	beset	or	reset.
For	example,	if	overflow	occurs	during	addition	or	subtraction,	whichare	controlled	by	c9	and	c,0,	respectively,	then	OVR	is	set	to	1;	otherwise	OVR	isreset	to	0.	The	three
flag	bits	FLAGS,	the	least	significant	bit	MQ[0J	of	the	multi-plier-quotient	register,	and	the	signal	COUNT	=	n	-	1	all	serve	as	branch	condi-tions	that	the
microprogrammed	control	unit	can	test.

Figure	5.46	lists	a	symbolic	microprogram	for	this	CPU	that	implements	theRobertson	multiplication	algorithm	for	twos-complement	numbers	first	introducedin	Example
4.2.	A	special-purpose	microprogrammed	controller	for	this	type	ofmultiplication	was	developed	in	section	5.2.2.	The	microprogram	2Cmult	givenhere	is	essentially	the
same	as	the	one	defined	previously	for	the	stand-alone	multi-plier	(refer	to	Figure	5.42a).	In	this	symbolic	form,	the	microprogram	is	also	simi-lar	to	the	original	HDL
description	of	the	Robertson	algorithm	(Figure	4.13).	We
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assume	that	before	2Cmult	is	executed,	the	multiplier	operand	X	is	placed	in	MQand	the	multiplicand	Y	is	in	DR.	Each	statement	in	Figure	5.46	represents	a
singlemicroinstruction.

The	general	three-part	microinstruction	format	comprising	a	condition-selectfield,	a	branch-address	field,	and	a	set	of	control	fielcfs	will	be	used	for	2Cmult.Five
conditions	to	be	tested	are	identified	in	Figure	5.45a:	AC	=	0,	AC	<	0,	MQ[0],COUNT	=•**	—	1,	and	OVR.	the	overflow	indicator.	Adding	the	possibilities	of
anunconditional	branch	and	no	branching,	we	obtain	seven	branch-condition	codesthat	can	be	represented	by	a	3-bit	condition-select	field.

Various	control	signals	can	be	grouped	together	in	common	encoded	fields	toreduce	the	microinstruction	size.	We	can	identify	many	of	these	fields	from	thelist	of	control
signals	without	reference	to	the	actual	microinstructions	that	are	tobe	implemented.	For	example,	three	control	signals	cv	c6,	and	c-,0	transfer	data	toDR.	Since	they	are
mutually	exclusive	(compatible),	we	can	encode	them	in	a

co	ci

C2S

it	-	T



<23c25

Microprogrammed

control

unit

COUNT	=	n	-	1

OVR

COUNT

AC	=	0

AC<0

MQ[0]

GO	I~ar—i	\~K3-c2

C4-Q

M	and10	devices

DR(OP)

VT

DR(ADR)

SystemBus

DR

c6:c7-c,:c,2-

c17:c20-c26:c27-

]	|	AC	HJ)-r~MQ

rTTT	Tl

c21c22

y

Arithmetic-logicunit

FLAGS

c28

Controlsignal

c2c3

c5c6<7c8c9c10

c\\

Cft

c13C{4

Cl5^16

cn

cn

Cl9c20

H\

C22C23C24^25<^26C27c28

Operationcontrolled

AR	:=	PC

DR	:=	M(AR)

PC	:=	PC	+	1

PC	:=	DR(ADR)

IR	:=	DR(OP)

AR	:=	DR(ADR)

DR	:=	AC

AC	:=	DR

M(AR)	:=	DR

AC	:=	AC	+	DR

AC	:=	AC	-	DR

AC	:=	AC	and	DR

AC	:=	not	AC

RSHIFT	AC

LSHIFT	AC

RSHIFT	AC.MQ

LSHIFT	AC.MQ

AC:=0

AC[n-l]:=F

MQ	:=	DR



DR	:=	MQ

MQ[0]	:=	1

MQ[0]	:=	0

COUNT	:=	COUNT	+	1

uPC	:=	IR

COUNT	:=	0

F:=0

F:=l

FLAGS	:=	0

(a)

Figure	5.45

(a)	Control	points	and	(b)	control	signal	definitions	for	die	extended	CPU.

(*)
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BEGIN:	A	:=	0,	COUNT	:=	0,	F	:=	0;	Control

TEST1:	if	MQ[0]	=	0	then	go	to	RSHIFT:	Design

ADD:	AC	:=	AC	+	DR,	F	:=	(DR[«-1]	and	MQ[0])	or	F;

RSHIFT:	AC	[n-\	]	:=	F,	AC.MQ	:=	RSHIFT(	AC.MQ),	COUNT	:=	COUNT	+	1,

if	COUNT	*	n-\	then	go	to	TEST1;

TEST2:	if	MQ[0]	=	0	then	go	to	FETCH;

SUBTRACT:	AC	:=	AC	-	DR,	MQ[0]	:=	0,	go	to	FETCH;

Figure	5.46

Twos-complement	multiplication	microprogram	2Cmult	for	the	extended	CPU.

2-bit	field.	Note	that	one	more	bit	pattern	must	be	reserved	for	the	no-operationcase.	Similarly,	we	can	combine	the	many	control	signals	that	alter	the	contentsof	AC.

Suppose	that	we	have	decided	not	to	encode	the	control	signals.	This	decisionimplies	that	the	condition-select	and	control	fields	occupy	32	bits	of	each	microin-struction.
Suppose	further	that	an	8-bit	branch	address	denoting	a	complete	CMaddress	is	included	in	each	microinstruction;	a	CM	storing	up	to	256	forty-bitwords	is	therefore
supported.	Figure	5.47	shows	a	possible	organization	for	theCPU	control	unit	with	the	foregoing	design	assumptions.	As	in	our	previousdesigns,	external	conditions
control	the	loading	of	branch	addresses	into	the	(IPC.In	addition,	the	(IPC	can	be	loaded	from	the	instruction	register	IR	via	a	logic	cir-cuit	K	(typically	a	ROM	or	PLA),
which	maps	instruction	opcodes	onto	microin-struction	addresses.

Microprogram	sequencers.	It	is	possible	to	place	all	the	circuitry	required	togenerate	microinstruction	addresses	in	a	single	IC	or	cell	called	a	microprogramsequencer,	a
simple	example	of	which,	the	AMD	2909,	was	discussed	earlier(Example	5.4).	A	microprogram	sequencer	is	a	general-purpose	building	block	formicroprogrammed	control
units.	It	contains	a	microprogram	counter	[IPC,	as	wellas	the	logic	needed	for	conditional	branching	and	transferring	control	betweenmicroprograms.	A	control	unit	can
be	constructed	from	three	components:	a	RAMor	ROM	used	as	the	control	memory,	a	microinstruction	register,	and	a	micropro-gram	sequencer.	Figure	5.48	shows	a
microprogrammed	CU	designed	in	this	way.The	microinstruction	register	can	be	implemented	as	a	two-stage	pipeline	to	allowmicroinstruction	fetching	and	execution	to
be	overlapped.

Microprogram	sequencers	are	mainly	found	in	standard-cell	families	like	the2900	series	intended	for	the	design	of	both	general-purpose	and	application-
specificprocessors.	They	are	also	used	in	CISC	CPUs	such	as	the	Motorola	680X0.	Becauseof	IC	component	density	and	pin	restrictions,	early	microprogram	sequencers
likethe	2909	were	relatively	simple	and	had	to	be	bit	sliced	to	allow	control	units	ofpractical	size	to	be	constructed	from	them.	Subsequent	advances	in	VLSI	technol-ogy
have	enabled	more	powerful	and	self-contained	control	units	of	this	kind	to	bebuilt.
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Control

AC	=	0

AC<0

MQ[0]

COUNT	=	n-	1

OVR

MUX

Conditionselect

3	>'

Instructionregister

1R

Opcode

K,

Branch	address

Load	branchaddress

u

uPC

IncrementReset

Control

memory

(256x40	bits)



40

U.IR

>29Control	signals

Figure	5.47

Microprogrammed	control	unit	for	the	extended	CPU.

Control

memory

CM

CM	address

Microprogramsequencer

Micro-

instruction

ulR

Branch	address

IR	••

Datapath

unit

Opcode

To	main	memory	andIO	devices

Figure	5.48

Microprogrammed	CPU	employing	a	microprogram	sequencer.

EXAMPLE	5.6	THE	TEXAS	INSTRUMENTS	890	MICROPROGRAM	SEQUENCER	[TEXAS

instruments	1985.	lackzo	et	al.	1986].	This	circuit,	whose	full	designation	is	theSN74AS890,	is	a	member	of	the	Texas	Instruments	88X	microprocessor	componentfamily,
which	was	introduced	in	the	mid-1980s	aimed	at	the	design	of	general-purposeCPUs.	It	can	be	considered	a	natural	evolution	of	the	2909-class	microprogramsequencers
to	accommodate	larger	address	sizes	(and	hence	larger	control	memories),more	address	sources,	and	more-flexible	operating	modes.	Packaged	in	a	single	70-pinIC,	the
890	has	a	number	of	features	intended	to	simplify	the	development	of	micropro-grams.	The	address	size	is	14	bits,	enabling	a	single	890	to	manage	a	control	unit	con-
taining	a	16K-word	CM	for	the	storage	of	microprograms;	consequently,	it	is	not	bitsliced.	The	corresponding	datapath	member	of	the	88X	series	is	the	888
(SN74AS888),an	8-bit	ALU	slice.	The	architecture	of	the	888	is	almost	identical	to	that	of	the	29014-bit	ALU	considered	earlier	(Examples	4.5	and	5.5)	except	for	its	larger
word	size.

Figure	5.49	depicts	the	internal	organization	of	the	890.	Like	the	2909	(Figure5.34),	the	CM	address	sources	are	a	small	set	of	external	buses	and	internal
registers,including	a	microprogram	counter	uPC	and	a	LIFO	stack.	The	(J.PC	is	implemented	as
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IO	bus	DRA

14

IO	bus	DRB

RAOEOSEL

Mux	\

Register/counter	A

t	L_

Register	3

.	—^—*control

Address	^

modifyB3:B0

MUX2:0	*-

CC

14

14

B>

Register/counter	B~I	1

9	x	14-bitstack	STK

RBOE

ZERO

Stack

■*	y-	operations

S2:S0

-*-	Stack	status

/	Mux	\

INT

'14,

I



Microprogramcounter	U.PC

Interruptreturn	register

Y	outputmultiplexer

Incrementer

YOE

V

INC

IO	bus	Y

Figure	5.49

Structure	of	the	Texas	Instruments	890	microprogram	sequencer.
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a	14-bit	register	with	a	separate	incrementer,	as	in	the	2909,	and	is	the	usual	source	ofmicroinstruction	addresses.	There	are	two	main	external	sources	of	branch
addresses,the	buses	DRA	and	DRB,	while	the	Y	bus	serves	as	the	main	output	address	bus.	Allthree	buses	are	14	bits	wide	and,	for	added	flexibility,	all	are	bidirectional.
DRA,	DRB,and	Y	may	be	compared	with	the	2909's	D,	R,	and	Y	buses,	respectively.	The	4-bit	B(branch)	bus	replaces	the	four	least	significant	bits	of	addresses	on	the	DRA
and	DRBbuses	to	implement	conditional	32-way	branches:	the	B3:B0	lines	therefore	correspondroughly	to	the	ORjiORg	and	ZERO	lines	used	for	address	modification	in
the	2909.The	DRA	and	DRB	buses	also	have	registers/counters	A	and	B,	respectively,	associ-ated	with	them.	A	and	B	can	serve	either	as	independent	address	sources	or
else	as	iter-ation	counters	when	executing	a	loop	in	a	microprogram.

The	890	has	a	nine-word	stack	STK	to	implement	subroutine	calls	and	interrupts.Three	control	lines	S2:S0	allow	various	stack	operations	including	push,	pop,	reset,and
hold	to	be	specified	by	microinstruction	control	fields.	A	push	operation	(withINT	=	0)	places	the	contents	of	|iPC	at	the	top	of	the	stack;	a	pop	operation	transfersthe
address	at	the	top	of	the	stack	to	the	Y	bus	via	the	Y	multiplexer.	In	addition	to	theusual	stack	pointer	SP	for	automatically	tracking	the	top	of	the	stack,	a	second
pointerregister,	the	read	pointer	RP.	reads	out	the	contents	of	the	stack	word	by	word	to	the890's	DRA	port.	This	readout	process,	which	does	not	alter	the	contents	of	the
stack	orSP,	can	be	used	to	backtrack	through	a	sequence	of	subroutine	calls	or	interrupts	toidentify	the	cause	(for	instance,	overflow)	and	the	location	in	CM	of	a	problem
occur-ring	during	microprogram	execution.

In	summary,	the	890	can	output	to	the	Y	bus	a	14-bit	microinstruction	addressderived	from	four	sources:	the	microprogram	counter	|iPC,	the	stack	STK,	the	DRAbus,	or
the	DRB	bus.	The	addresses	on	the	DRA	and	DRB	buses	can	be	obtained	eitherexternally	or	from	the	890's	internal	A	and	B	registers.	The	DRA/DRB	addresses	canalso	be
modified	by	the	B3:B0	lines,	which,	in	conjunction	with	the	control	inputsMUX2:MUX0	and	CC	of	the	Y	multiplexer,	support	the	implementation	of	manykinds	of
conditional	and	unconditional	branching.	The	"condition	code"	bit	CC	isdesigned	to	add	a	simple	two-way	branch	option	to	most	microinstructions.

Consider	the	execution	in	cycle	i	of	a	microinstruction	/(ADR)	stored	at	controlmemory	address	ADR.	If	no	branching	is	specified,	then	during	clock	cycle	/,	uPCwrites	the
address	ADR	to	the	Y	bus;	at	the	same	time	it	reads	in	the	next	addressADR	+	1	from	the	incrementer.	In	this	way	the	890	is	ready	to	execute	the	instruction/(ADR	+	1)	in
cycle	/	+	1.	Sometimes	it	is	desirable	to	allow	a	status	signal	/-"from	thedatapath	unit	to	control	the	operation	of	the	incrementer	so	that	under	certain	condi-tions
(illustrated	later)	no	incrementing	occurs:	in	such	a	case	the	execution	of/(ADR)is	repeated	in	cycle	i	+	\.	The	action	(the	execution	of	some	microinstruction)	that	setsup
the	relevant	value	of	F	to	block	the	increment	in	cycle	;	must	therefore	occur	incycle	i	-	1	or	earlier.

Figure	5.50	presents	a	few	examples	of	the	huge	number	of	possible	branch	micro-operations	that	the	890	can	implement	(along	with	a	full	range	of	datapath
operationsthat	we	do	not	consider	here).	We	show	only	the	principal	control	fields	associatedwith	program	control	in	microinstructions.	The	first	"continue"	or	"no
operation"(NOP)	microinstruction	is	intended	merely	to	replace	the	current	contents	of	U.PC	byU.PC	+	1;	that	is.

p.1,:	uPC:=uPC	+	l;

{Continue}

The	condition	code	CC	and	increment	bit	INC	must_be	set	to	1	at	least	one	cycle	ear-lier.	The	control	signal	combination	MUX2:MUX0,CC	=1001	selects	U.PC	as	the
datainput	of	the	Y	multiplexer	and	applies	it	to	the	incrementer,	which	then	outputs	|iPC	+INC	to	|iPC.	The	control	field	values	S2:S0	=	111	and	OSEL	=	0	are	needed	to
inacti-vate	stack	operations.	The	remaining	control	bits	denoted	by	d	are	don't	cares.	The	sec-
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Instruction address MUX0 S2:S0 R2:R0 OSEL	CC INC	1 DRA DRB CHAPTER	5

(Setup) ddd ddd ddd d 1 ! ..ddd ..ddd Control

Continue	(NOP) ....0001 100 111 ddd 0 d d ..ddd ..ddd Design

(Setup) ddd ddd ddd d 1 d ..ddd ..ddd

Branch	to	5 ....0001 000 111 ddd 0 d d ..0101 ..ddd

(Setup) ddd ddd ddd d 1 1 ..ddd ..ddd

Branch	to	5	if	CC=	1 ....0001 110 111 000 0 d d ..0101 ..ddd

(Setup) ddd ddd ddd d 1 1 ..ddd ..ddd

Loop	until	A	=	0 ....0001 110 100 ddd 0 1 1 ..ddd ..ddd

....0010 110 111 010 0 0 1 ..ddd ..ddd

....0011 000 010 000 1 1 1 ..ddd ..ddd

(Setup) ddd ddd ddd d 1 1 ..ddd ..ddd

Call	subroutine	(at	5) ....0001 000 110 ddd d d d ..0101 ..ddd

(Setup) ddd ddd ddd d 0 d ..ddd ..ddd

Return	from	subroutine ....0001 010 011 000 d 0 d ..ddd ..ddd

Figure	5.50

Sample	branch	microinstructions	for	the	890	microprogram	sequencer.



ond	example	in	Figure	5.50	is	a	simple	unconditional	branch	to	the	address	on	the	DRAbus;	the	combination	MUX2:MUX0,CC	=	0000	makes	Y	=	DRA.
ChangingMUX2:MUX0	to	110	as	is	done	for	the	third	microinstruction	"branch	to	5	if	CC	=	1,'"ensures	that	the	branch	occurs	only	if	CC	=	0;	that	is,

\ily	if	CC	=	0	then	Y	=	DRA	else	uPC	:=	uPC	+	1;

The	fourth	example	employs	a	sequence	(microprogram)	of	three	microinstructions|!l4	,:ij.I4	3	to	implement	"loop	until	A	=	0"	as	follows:

Hl4J:	uPC:=uPC	+	1,	STK(SP)	:=	uPC,	SP	:=	SP	+	1:	{Continue,	push	uPC}

1^4.2

uPC	:=	uPC	+	1,	A	:=	DRA;	{Continue,	load	register	A}

(5.18)

ILII43:	A:=A-	1,	if	A*0then	Y	=	STK(SP)

else	(IPC	:=	uPC	+	1.	SP	:=	SP	-	1:	{Decrement	A.	branch	to	stack	if

A	=	0.	pop}

The	call	and	return	microinstructions	have	similar	interpretations.

Normally	|iPC	contains	the	address	whose	value	is	one	plus	the	address	ADR	ofthe	currently	executing	microinstruction.	The	interrupt	return	register	IRR	is	designedto
operate	in	parallel	with	uPC	but	contains	the	current	address	ADR	rather	thanADR	+	1.	This	feature	permits	an	interrupt	to	be	implemented	in	the	following	waythat	has
zero	latency.	The	interrupting	device	disables	the	890's	Y	bus	by	setting	YOEto	one.	It	then	places	a	new	address	ADR1	(the	interrupt	vector)	on	Y,	forcing	a	trans-fer	to
CM	address	ADR1,	which	is	the	start	address	of	the	interrupt-servicing	routine	P.The	microinstruction	at	address	ADR1	must	be	designed	to	push	IRR	into	the	stack(which
requires	INT	=	1).	thus	saving	the	return	address	of	the	interrupted	program.

Nanoprogramming.	In	most	microprogrammed	processors,	an	instructionfetched	from	memory	is	interpreted	by	a	microprogram	stored	in	a	single	control
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Microprogrammed

Control

memory	CM.	In	a	few	machines,	however,	the	microinstructions	do	not	directlyissue	the	signals	that	control	the	hardware.	Instead,	they	are	used	to	access	a
secondcontrol	memory	called	a	nanocontrol	memory	nCM	that	directly	controls	the	hard-ware.	In	such	cases	there	are	two	levels	of	control	memories,	a	higher-level
onetermed	a	microcontrol	memory	pCM	whose	contents	are	microinstructions	and	thelower-level	nCM	that	stores	nanoinstructions—see	Figure	5.51.	The	nanoprogram-
ming	concept	was	first	used	in	the	QM-1	computer	designed	around	1970	by	Nano-data	Corp.	It	is	also	employed	in	the	Motorola	680X0	microprocessors	series[Stritter
and	Tredennick	1978].

Consider	a	nanoprogrammed	computer	in	which	U.CM	and	nCM	have	dimen-sions	Hm	x	Wm	and	Hn	x	Wn,	respectively.	The	advantage	of	this	two-level	controldesign
technique	is	that	it	can	reduce	the	total	size	S2=	Hmx	Wm	+	HnxWn	of	thecontrol	memories,	which	translates	to	smaller	chip	area	in	the	case	of	a	one-chipCPU	like	the
680X0.	Typically,	the	microprograms	are	encoded	in	a	narrow	verti-cal	format	so	that	although	Hm	is	large,	Wm	is	small.	Nanoinstructions,	on	the	otherhand,	usually	have
a	highly	parallel	horizontal	format	making	Wn	large.	If	onenanoprogram	can	interpret	many	microinstructions,	then	H„	can	be	kept	relativelysmall	so	that	S2	<	5,	=	Hm	x
Wn,	which	is	roughly	the	size	of	a	comparable	single-level	control	unit.	The	potential	for	reducing	the	total	size	of	the	control	memoriesis	the	main	reason	for	the	use	of
nanoprogramming	in	the	680X0	series.	Anotheradvantage	is	the	greater	design	flexibility	that	results	from	loosening	the	bondsbetween	instructions	and	hardware	with
two	intermediate	levels	of	control	ratherthan	one.	These	advantages	motivated	the	QM-1,	which	had	the	goal	of	efficientlyemulating	the	instruction	sets	of	a	wide	variety
of	different	computers.	The	maindisadvantages	of	the	two-level	approach	are	a	loss	of	speed	due	to	the	extra	mem-ory	access	for	nCM	and	a	more	complex	control-unit
organization.

From	instructionregister	IR

UPC

Microcontrol

memory

uCM

Microinstruction	reg.	(ilR

1	I

nPC

Nanocontrol

memory

nCM

w

Nanoinstruction	reg.	nlR

Control	signals

Figure	5.51

Two-level	control	store	organization	for	nanoprogramming.

To	see	the	savings	in	control-memory	size	that	can	result	from	the	use	of	nano-programming,	consider	the	analysis	carried	out	by	the	designers	of	the
68000microprocessor	[Stritter	and	Tredennick	1978].	Suppose	that	one-	and	two-levelcontrol	stores	are	characterized	by	the	parameters	shown	in	Figure	5.52.	A	one-level
conventional	CM	is	assumed	to	store	Hm	horizontal	microinstructions	eachwith	a	format	consisting	of	N	control	bits	and	|~log2//m~|	next-address	bits.	Thesize	of	this
memory	is	therefore

S,	=	//m(/V+riog2//ml)	(5.19)

In	the	two-level	organization	(Figure	5.52b),	the	microcontrol	memory	uCM	againstores	Hm	microinstructions,	but	the	TV-bit	control	fields	are	transferred	to	nCM.
Inplace	of	the	latter,	each	microinstruction	in	pCM	contains	a	[log2	Hn~\-b\l	addressto	specify	any	nanoinstruction	location	in	nCM.	It	is	assumed	that	little	or
nobranching	takes	place	among	nanoinstructions,	so	no	explicit	address	bits	areincluded	in	the	model	of	nCM.	Thus	the	size	of	the	two-level	control	store	is

S2	=	Hm([\og2	Hm~\	+	[log2	Hn-}	+	NH„

(5.20)

Suppose	that	all	the	control-bit	patterns	in	nCM	are	different	so	that	each	repre-sents	a	unique	control	state	associated	with	the	given	instruction	set.	We	can	writeHn	=
rHm,	where	r	is	the	ratio	of	the	number	of	unique	control	states	to	the	totalnumber	Hn	of	control	states	needed	to	implement	all	instructions.	Substituting	into(5.20)	yields

S1	=	Hm(\\og2Hm\	+	\\og2rHn-\+rN)=	Hm{2\\og2Hm-\	+	\\og2r^+	rN)
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Figure	5.52

Control	memory	models:	(a)	one	level	and	(b)	two	level.
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364	The	following	parameters	are	cited	for	the	68000	design:	TV	=	70,	Hm	=	650,

section	5	3	and	r	=	0.4	so	that	Hn	=	260.	Substituting	into	(5.20)	and	(5.21),	we	obtain	5,	=

Pipeline	Control	52,450	and	S2	=	30,550.	Consequently,	the	use	of	nanoprogramming	saves	a	total

of	52,450	-	30,550	=	21,850	bits	of	control	storage	(42	percent	of	S{).	In	general,

two	levels	of	control	memory	require	less	memory	sp^ce	if	52	<	S,.	Hence	from

(5.19)	and	(5.21),	we	conclude	that	the	inequality

^>riog2//m]+ri°g2''i+^

must	be	satisfied.

5.3

PIPELINE	CONTROL

Pipelining	provides	a	basic	way	to	speed	up	arithmetic	operations,	as	we	saw	inChapter	4.	It	is	also	used	to	implement	the	entire	instruction-processing	behavior	ofhigh-
performance	CPUs,	a	topic	we	examine	in	this	section.

5.3.1	Instruction	Pipelines

During	program	execution,	instructions	pass	through	a	sequence	of	processingsteps	that	lend	themselves	naturally	to	pipelining.	Consequently,	a	CPU	can	beorganized	as
one	or	more	pipelines,	whose	various	stages	fetch	opcodes	and	oper-ands,	execute	instructions,	and	store	results	in	local	registers	or	external	memory.In	general,	an
instruction	pipeline	is	a	multifunction,	reconfigurable	pipelinedesigned	to	speed	up	a	computer's	performance	by	efficiently	overlapping	the	pro-cessing	of	instructions.
Such	pipelines	are	contrasted	with	arithmetic	pipelines	ofthe	type	covered	in	section	4.3.2,	which	can,	however,	be	built	into	instructionpipelines	to	implement	the
execution	stages.	An	instruction	pipeline	is	normallyinvisible	to	programmers	and	managed	automatically	by	program	compilers	and	bythe	CPU's	internal	program-control
unit.	Instruction	pipelines	were	first	used	in	theIBM	7030	(also	known	as	Stretch)	and	a	few	other	computers	of	the	1960s.	Theyreemerged	in	the	1980s	as	key
contributors	to	the	high	performance	achieved	byRISCs.	Instruction	pipelining	has	also	been	successfully	incorporated	into	CISCssuch	as	the	80X86/Pentium	series,
beginning	with	the	80486	microprocessor	in1989.

Pipeline	structure.	The	general	structure	of	a	pipeline	of	m	stages	Sl,S2,...,Smappears	in	Figure	5.53	(which	repeats	Figure	4.47).	When	S,	has	computed	itsresults,	it
passes	them,	along	with	any	unprocessed	input	operands,	to	5,+	1	for	fur-ther	processing,	and	S,	receives	a	new	set	of	operands	from	$,-_,.	Thus	the	pipelinecan	contain
up	to	m	independent	data	sets,	all	in	different	stages	of	computation.Buffer	registers	and	other	synchronization	logic	are	placed	between	stages	so	thatthe	stages	do	not
interfere	with	one	another.	The	performance	speedup	of	aninstruction	pipeline	derives	from	the	fact	that	up	to	m	independent	instructions	canbe	in	progress
simultaneously	in	the	m	stages.

The	simplest	instruction	pipeline	breaks	instruction	processing	into	two	parts:a	fetch	stage	5,	and	an	execute	stage	52.	Thus	a	two-stage	pipeline	increases

Data

Control	unit

" " V \i \1 If

Ri —*- C- R2 —►- C- H.	...	-> R,., —► c

i m

Dataout

Stage	Sx

Figure	5.53

Structure	of	an	m-stage	pipeline.

Stage	S2

Stage	Sn
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throughput	by	overlapping	instruction	fetching	and	instruction	execution.	Whileinstruction	/,	with	address	A,	is	being	executed	by	stage	S2,	the	instruction	Ij+l	withthe



next	consecutive	address	Ai+l	is	fetched	from	memory	by	stage	5,.	If	on	execut-ing	/,	in	S2	it	is	determined	that	a	branch	must	be	made	to	a	nonconsecutive
addressAj*Ai+l,	then	the	prefetched	instruction	/,+1	in	5,	has	to	be	discarded.	As	we	willsee	later,	techniques	exist	to	minimize	the	negative	effect	of	branch	instructions
onpipeline	performance.

Figure	5.54	shows	an	implementation	of	a	two-stage	instruction	pipeline	that	iscommon	in	microprogrammed	CPUs.	It	is	the	generic	microprogrammed	controlunit	of
Figure	5.47	repackaged	into	two	sequential	stages.	The	fetch	stage	S,	con-sists	of	the	microprogram	counter	(IPC,	which	is	the	source	for	microinstructionaddresses,	and
the	control	memory	CM,	which	stores	the	microinstructions.	(CM	issometimes	considered	to	lie	outside	the	pipeline	proper,	with	the	task	of	feedingmicroinstructions
"into"	the	pipeline.)	Observe	how	p:PC	is	appropriately	posi-tioned	to	be	the	buffer	register	for	Sv	It	is	only	necessary	to	increment	(IPC	toobtain	the	next	consecutive
microinstruction	address,	which	is	then	fetched	whilethe	current	microinstruction	is	being	executed	in	stage	52.	The	execution	stage	S2contains	the	microinstruction
register	|iIR,	the	decoders	that	extract	control	signalsfrom	the	microinstructions	in	filR,	and	the	logic	for	choosing	branch	addresses.Another	preexisting	register,	this	time
|iIR,	acts	as	the	buffer	register	for	stage	52.Microinstruction	execution	is	much	simpler	than	the	corresponding	task	at	theinstruction	level.	It	involves	decoding	the
control	and	condition-select	fields	of	thecurrent	microinstruction	|il	stored	in	(J.IR,	as	well	as	distributing	the	resulting	con-trol	signals.	If	fil	specifies	branching,	the
branch	address	is	obtained	directly	fromfil	itself	and	fed	back	to	Sv	There	the	branch	address	is	loaded	into	|iPC,	replacing(IPC's	previous	contents	and	causing	any
ongoing	fetch	operation	in	5,	to	beaborted.

Multistage	pipelines.	An	m-stage	instruction	pipeline	can	overlap	the	pro-cessing	of	up	to	m	instructions,	so	it	is	desirable	to	use	more	than	two	stages	tomaximize
instruction	throughput.	The	value	of	m	depends	on	the	maximum	num-ber	of	stages	into	which	instruction	processing	can	be	efficiently	broken.	Thisnumber	in	turn
depends	on	the	complexity	of	the	instruction	set.	the	organization
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Control	signals

Figure	5.54

Two-stage	pipelined	microprogram	control

unit.

of	the	external	memory	M,	and	the	way	in	which	the	CPU's	datapath	is	imple-mented.	In	practice,	the	number	of	pipeline	stages	ranges	from	three	(in	the	case	ofthe
ARM6)	to	a	dozen	or	more.	Pipeline	structure	is	complicated	by	the	provisionof	alternative	(parallel)	stages,	feedback	paths,	and	feedforward	(bypass)	features.Figure
5.55	shows	a	CPU	organization	that	implements	a	four-stage	instruc-tion	pipeline.	We	assume	that	the	CPU	is	directly	connected	to	a	cache	memory,which	is	split	into
instruction	and	data	parts,	called	the	I-cache	and	D-cache,respectively.	This	splitting	of	the	cache	permits	both	an	instruction	word	and	amemory	data	word	to	be	accessed
in	the	same	clock	cycle.	Each	stage	makes	use	ofcertain	common	resources	such	as	the	cache	and	the	register	file	RF,	which	can	beregarded	as	external	to	the	pipeline
proper.	The	four	stages	5,:54	of	Figure	5.55perform	the	following	functions:

1.	IF:	instruction	fetching	and	decoding	using	the	I-cache.

2.	OL:	operand	loading	from	the	D-cache	to	RF.

Mainmemory

Instructions

I-cache

Fetch	anddecode

-	PC

-	IR

5[!	instructionfetch	(IF)

Mainmemory

L	Data

ii

D-cache

ii

u



Data	readlogic ALU
Data	writelogic

if 1 y n

RegisterfileRF

52:	operandload	(OL) 53:	ALU	op-eration	(EX) S4:	operandstore	(OS)

i A ' '
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Figure	5.55

Organization	of	a	CPU	incorporating	a	four-stage	instruction	pipeline.

3.	EX:	data	processing	using	the	ALU	and	RF.

4.	OS:	operand	storing	to	the	D-cache	from	RF.

Stages	S2	and	54	implement	memory	load	and	store	operations,	respectively,	andare	tailored	to	a	load-store	architecture.	Stages	S2,	S3,	and	S4	share	the	CPU's
localregisters	in	RF;	these	registers	act	as	interstage	buffer	registers.	The	CPU's	ALU	isin	stage	53	and	implements	data-transfer	and	data-processing	operations	of	the
reg-ister-to-register	type.	If	each	stage	completes	its	operation	in	a	single	CPU	clockcycle	of	period	Tc,	the	pipeline	and	the	CPU	as	a	whole	can	be	clocked	at	a	fre-quency
of/=	\ITC.	At	its	maximum	execution	rate,	which	implies	that	no	delaysoccur	due	to	instruction	branching,	cache	misses,	or	other	causes,	an	ideal	perfor-mance	level	of	1
clock	cycle	per	instruction,	or	a	CPI	of	1,	can	be	achieved.

We	can	vary	the	organization	shown	in	Figure	5.55	in	many	ways	to	tradehardware	cost	for	performance.	For	example,	a	less	expensive	D-cache	cannot	per-form	loads	and
stores	simultaneously,	in	which	case	we	can	implement	D-cacheaccesses	in	a	single	stage,	thus	merging	S2	and	54	into	a	single	load-store	stage.Memory	or	register-file
accesses	are	complicated	by	addressing	modes	such	asindexing,	which	require	an	ALU	to	calculate	a	memory	address	before	the	accessoperation	proper	can	be	initiated.
In	such	cases	it	may	be	desirable	to	add	a	stage,that	is,	a	separate	clock	cycle,	for	operand	address	calculation.	Instructions	such	asthe	more	complicated	arithmetic
operations	require	multiple	clock	cycles	for	theirexecution;	hence	they	require	multiple	cycles	through	the	execution	stage	of	apipelined	CPU.	Such	considerations,	and
the	hardware/performance	trade-offs	they
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entail,	give	rise	to	the	many	different	instruction	pipeline	organizations	in	contem-porary	computers.

EXAMPLE	5.7	PIPELINE	ORGANIZATION	OF	THE	MIPS	R2/3000	[KANE

and	heinrich	1992].	The	R2000	and	R3000	are.early	members	of	the	MIPSRX0O0	series	of	RISC	microprocessors,	which	we	discussed	in	Examples	3.5	and	3.7.They
implement	the	same	MIPS-I	instruction-set	architecture	and	have	nearly	identicalCPU	organizations,	so	we	will	treat	them	as	a	single	machine	denoted	by	R2/3000.Later
members	of	the	same	series	have	numerous	architectural	extensions	and	far	morecomplex	instruction	pipelines.

The	R2/30O0	employs	a	five-stage	instruction	pipeline	whose	stages	have	the	fol-lowing	functions	designed	to	meet	the	goal	of	completing	one	instruction	per	clockcycle:

1.	IF:	instruction	fetching	using	the	I-cache.

2.	RD:	operand	loading	(reading)	from	the	register	fde	RF	while	decoding	the	fetchedinstruction.

3.	EX:	data	processing	using	the	ALU	and	RF	as	needed.

4.	MA:	operand	accessing	(load	or	store)	using	the	D-cache.

5.	WB:	operand	storing	(writing	back)	to	RF.

Comparing	this	pipeline	organization	with	that	of	Figure	5.55,	we	see	that	the	first	andthird	stages	are	roughly	the	same.	The	R2/3000's	instruction-fetch	(IF)	stage	is
compli-cated	by	the	use	of	virtual	memory,	which	requires	that	the	(virtual)	addresses	appear-ing	in	the	input	instruction	stream	be	translated	on	the	fly	into	physical
addressescorresponding	to	the	available	main	memory.	Consequently,	instruction	decoding	isdeferred	to	the	second	stage	of	the	pipeline.	This	operand-read	(RD)	stage
also	trans-fers	any	needed	input	operands	from	the	CPU's	32-word	register	file	RF	in	preparationfor	execution	in	stage	3	(EX).	All	memory	data	accesses	(D-cache	loads
and	stores)	usestage	4	(MA),	which	transfers	a	data	word	between	the	CPU	and	the	D-cache.	The	fifthor	"write	back"	(WB)	stage	is	used	by	load	instructions	to	write	a
word	fetched	fromthe	data	cache	into	RF.	The	result	of	an	ALU	operation	is	also	stored	in	RF	during	theWB	stage.

Like	other	RISCs,	the	R2/3000	aims	at	single-cycle	execution	of	its	instructions.Figure	5.56	shows	the	ideal	situation	when,	after	a	start-up	phase	during	which	it	fillsup,
the	instruction	pipeline	is	fully	utilized	and	outputs	a	new	result	every	clock	cycle.
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'i h h h h h h h

Stage h h h h h k h

h h h h h h

h h h h h

Instruction	fetch	(I	cache)Read	from	register	fileExecute	ALU	operationMemory	access	(D	cache)Write	back	to	register	file

1	23456789

Time	(clock	cycle)

Figure	5.56

Maximum-rate	instruction	execution	in	the	R2/3000	instruction	pipeline.
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If,	in	this	"streaming"	mode	of	operation,	an	instruction	computes	a	new	result	in	369clock	cycle	i	during	the	instruction's	EX	phase,	that	result	can	be	used	by



anotherinstruction	in	cycle	i	+	1.	In	some	cases,	notably	load	and	branch	instructions,	this	isnot	true,	and	delays	occur	due	to	the	effects	of	an	instruction	on	a	subsequent
one.	Forexample,	suppose	that	an	instruction	that	loads	a	data	word	X	into	a	register	is	immedi-	esign

ately	followed	by	an	instruction	that	uses	X	in	its	EX	stage.	Then,	as	illustrated	in	Fig-ure	5.57a,	a	one-cycle	gap	or	delay	slot	occurs	in	the	instruction	stream	because	an
LD(load)	instruction's	data	is	not	available	until	after	its	MA	cycle.

Several	actions	can	be	taken	to	deal	with	this	situation:

•	The	pipeline	can	be	temporarily	halted	or	stalled	whenever	a	load	or	branch	instruc-tion	is	executed.	This	action,	however,	complicates	control	of	the	pipeline	and
thesynchronization	of	CPU	operation	and	causes	a	loss	in	performance.

•	A	NOP	(no	operation)	instruction	can	be	inserted	as	shown	in	Figure	5.57i>,	whichhas	the	effect	of	synchronizing	the	issuing	and	execution	of	all	instructions,	none
ofwhich	now	needs	to	be	delayed.	This	action	does	not	improve	the	pipeline's	perfor-mance,	however.

•	A	nearby	instruction	that	does	not	depend	on	X	can	be	taken	and	repositioned	in	theinstruction	stream—which	requires	a	smart	compiler—immediately	after	the
LDinstruction.	This	approach	is	illustrated	in	Figure	5.57c,	where	the	SUB	instructionhas	been	moved	to	fill	LD's	delay	slot.	Restructuring	of	this	type	is	valid	only	if	itdoes
not	alter	the	program's	final	results;	for	example,	it	requires	that	SUB	not	usethe	data	fetched	by	LD	as	an	input	operand.	The	net	effect	is	to	make	the	pipelineoperate	at
its	maximum	rate	and	to	complete	the	four	indicated	instructions	using	onecycle	fewer	than	before.

A	similar	delay	problem	arises	in	the	case	of	branch	instructions.	The	branchaddress	computed	by	an	R2/3000	branch	instruction	/	does	not	become	available	foruse	until
fs	third	(EX)	stage,	which	creates	a	delay	slot	in	Fs	second	(RD)	stage.Another	instruction	falling	into	this	delay	slot	is	executed,	regardless	of	whether	thebranch	is	taken
or	not.	Consequently,	a	compiler	inserts	a	NOP	into	this	slot	unless,	asin	Figure	5.57c,	the	delay	slot	can	be	filled	in	some	useful	way	that	does	not	change	theprogram's
overall	behavior.

Figure	5.58	summarizes	the	structure	of	another	multistage	instruction	pipe-line,	that	of	the	Amdahl	470V/7,	a	1978-vintage	machine	designed	to	be	compati-ble	with	the
IBM	System/370	series	of	mainframe	computers	[Amdahl	1978].	The470V/7's	memory	system	comprises	a	main	memory	and	a	single	or	unified	cache(termed	the	high-
speed	buffer	in	Amdahl	literature)	intended	for	both	instructionand	data	storage.	The	CPU	is	partitioned	into	a	12-stage	pipeline,	whose	stageshave	the	roles	listed	in
Figure	5.58.	These	perform	the	same	four	functions	as	thegeneric	pipeline	of	Figure	5.55,	namely,	instruction	fetching	and	decoding	(IF),operand	loading	(OL),	instruction
execution	(EX),	and,	finally,	operand	storage(OS).	Because	of	the	many	addressing	modes	and	instruction	types	needed	to	sup-port	the	470V/7's	CISC	architecture,	each	of
the	preceding	functions	is	subdividedinto	several	pipeline	stages.	The	first	two	stages	S{	and	S2	communicate	with	amemory	control	unit	that	is	responsible	for	all
accesses	to	main	memory	and	thecache.	These	stages	transfer	instructions	or	data	operands	between	the	pipeline	andthe	cache.	All	results	are	checked	for	errors	in	stage
Su	using	parity-check	codes	inmost	cases.	If	an	error	is	detected,	the	instruction	in	question	is	automatically	re-executed,	an	error-recovery	technique	called	instruction
retry.
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IF LD ADD ST SUB
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RD LD NOP ADD ST SUB
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IF LD SUB ADD ST

RD LD SUB ADD ST

Stage	EX LD SUB ADD ST

MA LD SUB ADD ST

WB LD SUB ADD ST
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Time	(clock	cycle)

(c)

Figure	5.57

(a)	R2/3000	pipeline	delay	slot	caused	by	load	instruction	LD;

(b)	use	of	NOP	instruction	to	fill	the	delay	slot;	(c)	use	of	SUBinstruction	to	eliminate	the	delay	slot.
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instruction	EX •^10 Execute	2
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Read	address	(base	and	index)	registersCompute	address	of	current	memory'	operandInitiate	cache	to	read	memory	operandRead	operands	from	cache	and	register	file

Pass	data	to	E-unit	and	begin	instruction	executionComplete	instruction	execution

Perform	code-based	error	check	on	resultStore	result

Figure	5.58

The	stages	of	the	Amdahl	470V/7	instruction	pipeline.

In	recent	years	the	large	number	of	pipeline	stages	illustrated	by	the	470V/7have	become	common,	because	such	fine-grained	stages	enable	a	pipeline	tooperate	at	higher
clock	frequencies.	Multiple-instruction	pipelines	are	also	com-mon,	especially	in	superscalar	processors,	which	can	issue	(dispatch)	two	ormore	instructions
simultaneously.	For	example,	each	of	the	three	functional	units(E-units)	of	the	PowerPC	601	microprocessor	(Example	1.7)	is	implemented	as	adistinct	pipeline;	the
structure	and	relationship	of	these	pipelines	are	outlined	inFigure	5.59	[Becker	et	al.	1993].	The	601	has	an	instruction	buffer	or	queue	thatstores	up	to	eight	instructions
which	are	prefetched	from	the	single	(unified)cache	memory.	In	each	clock	cycle	this	buffer	can	send	a	separate	instruction	toeach	of	the	pipelined	E-units.	The	two-stage
branch-processing	unit	fetches	andprocesses	branch	instructions.	The	five-stage	fixed-point	unit	processes	fixed-point	ALU	operations	and	also	handles	cache	data
accesses	both	for	itself	and	forthe	floating-point	unit.	Some	operations,	such	as	multiply	and	divide,	circulaterepeatedly	through	the	execute	stage.	The	floating-point	unit
supports	a	fullrange	of	floating-point	instructions,	including	a	compound	multiply-and-addinstruction.
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5.3.2	Pipeline	Performance

The	goal	in	controlling	a	pipelined	CPU	is	to	maximize	its	performance	withrespect	to	target	workloads.	After	reviewing	the	performance	measures	applicableto
instruction	pipelines,	we	consider	the	factors	that	reduce	performance	and	howthey	can	be	overcome.

Performance	measures.	A	pipeline's	performance	can	be	measured	by	itsthroughput	in	terms	of	millions	of	instructions	executed	per	second	or	MIPS.Another	popular
measure	of	performance	is	the	number	of	clock	cycles	per

372

SECTION	5.3Pipeline	Control

instruction	or	CPI.	These	quantities	are	related	by	the	equation

CPI=f/MIPS	(5.22)

where	/is	the	pipeline's	clock	frequency	in	MHz.	and	the	values	of	CPI	and	MIPSare	average	figures	that	can	be	determined	experimentally	by	processing	suites
ofrepresentative	programs	(benchmarks).	The	maximum	value	of	CPI	for	a	singlepipeline	is	one,	making	the	pipeline's	maximum	possible	throughput	equal	to/.This
throughput	is	attained	only	when	the	pipeline	is	supplied	with	a	continuousstream	of	instructions	that	keep	all	its	stages	busy.	Superscalar	machines	reduceCPI	below	one
by	executing	several	instruction	streams	simultaneously	using	mul-tiple	pipelines.

Figures	5.56	and	5.57	illustrate	a	useful	way	to	visualize	pipeline	behaviorcalled	a	space-time	diagram,	which	shows	the	utilization	of	each	pipeline	stage	asa	function	of
time.	In	general,	a	space-time	diagram	for	an	/n-stage	pipeline	hasthe	form	of	an	m	x	n	grid,	where	n	is	the	number	of	clock	cycles	to	complete	theprocessing	of	some
sequence	of	N	instructions	of	interest.	Figure	5.60	shows	aspace-time	diagram	for	the	four-stage	arithmetic	pipeline	of	Example	4.8.	which	isexecuting	a	complex	vector
summation	instruction	denoted	/.	An	unshaded	box	inthese	figures	marks	a	busy	stage	5,,	and	the	box's	entry	denotes	the	particularinstruction	being	processed	by	5,.	As
the	shading	shows,	some	stages	are	not	uti-lized	at	the	beginning	and	end	of	the	instruction	sequence,	when	the	pipeline	mustbe	filled	and	emptied	(flushed),	respectively.
The	stages	are	also	underutilized	ifoperands	are	not	available	when	needed.	The	ratio	of	the	unshaded	(busy)	area	to

Instructionfetch

(branchinstruc-tions)

Decode

andexecute

Cache	(unified)

Cache	(unified)

Figure	5.59



Instruction	pipelining	in	the	PowerPC	601.

the	total	(shaded	and	unshaded)	area	of	a	space-time	diagram	for	an	m-stage	pipe-line	is	defined	as	the	efficiency	or	utilization	E{m)	of	the	pipeline.	In	other	words,E(m)
is	the	fraction	of	time	the	pipeline	is	busy.	In	the	case	of	Figure	5.60,	theefficiency	is	E(4)	=	44/76	-	0.58.	Note	how	the	instruction	reordering	shown	inFigure	5.57c
improves	the	pipeline's	efficiency	by	eliminating	the	delay	slot.

Another	general	measure	of	pipeline	performance	is	the	speedup	S(m)	definedby
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S(m)	=

7X0T{m)

(5.23)

where	T(m)	is	the	execution	time	for	some	target	workload	on	an	wi-stage	pipelineand	7"(1)	is	the	execution	time	for	the	same	workload	on	a	similar,
nonpipelinedprocessor.	It	is	reasonable	to	assume	that	T{\)	<mT(m),	in	which	case	S(m)	<	m.	Apipeline's	efficiency	and	speedup	are	related	as	follows:

S(m)	=	m	x	E(m)

(5.24)

Hence	for	the	example	in	Figure	5.60	where	m	=	4	and	£(4)	=	0.58,	the	speedup5(4)	=	4	x	0.58	=	2.32	and	cannot	exceed	4.	In	general,	speedup	and	efficiency	pro-vide
rough	performance	estimates	which	should	be	used	with	caution,	since	theydepend	on	the	programs	being	run.	Their	values	can	change	drastically	from	pro-gram	to
program,	or	from	one	part	of	a	program	to	another.

Optimizing	m.	Equation	(5.24)	suggests	that	an	easy	way	to	improve	a	pipe-line's	performance	is	to	increase	the	number	of	stages	m.	This	assumes	that	thepipeline's
processing	tasks	can	be	subdivided	in	a	useful	way	and	that	the	cost	ofdoing	so	is	acceptable.	Each	new	stage	S,	introduces	some	new	hardware	cost	anddelay	due	to	its
buffer	register	Ri	and	associated	control	logic.	We	now	analyze	thetrade-offs	involved	in	doing	this	[Kogge	1981;	Hwang	1993].	In	particular,	we	willdetermine	the
pipeline's	performance/cost	ratio	PCR	defined	as

PCR-L

where/is	the	pipeline's	clock	frequency	and	K	is	its	hardware	cost.

(5.25)
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Figure	5.60

Space-time	diagram	for	a	four-stage	pipeline.

374	Suppose	the	pipeline	P	has	m	stages	and	implements	a	particular	set	of	opera-

section	5	3	tions	(instructions)	SI.	Let	a	be	the	delay	(latency)	of	an	efficient,	nonpipelined

Pipeline	Control	processor	that	also	implements	SI.	It	is	reasonable	to	assume	that	each	stage	5,	of	P

has	delay	a/m—that	is,	m	times	less	than	the	corresponding	nonpipelined	proces-sor—plus	some	extra	delay	b	due	to	5,'s	buffer	register	/?,-.	Hence	if	Tc	=	l//is	P'sclock
period,	we	can	write

Tc	=	a/m	+	b	(5.26)

The	pipeline's	hardware	cost	can	be	estimated	by

K=cm	+	d	(5.27)

where	c	is	the	buffer-register	cost	per	stage	and	d	is	the	cost	of	the	pipeline's	(com-binational)	data-processing	logic.	Hence	from	(5.25),	(5.26),	and	(5.27)	we	havePCITl=
TCK	=	{aim	+	b){cm	+	d),	so

PCR	=	m/[bcm2	+	(ac	+	bd)m	+	ad]	(5.28)

To	maximize	PCR	with	respect	to	the	number	of	stages	m,	we	differentiate	(5.28)with	respect	to	m	and	equate	the	result	to	zero.	Using	the	standard	differentiation-by-
parts	formula

we	obtain

d	ru\	\du	u	dvd~x\y)	vdx	v^dx

-j^PCR)	=	1/v	-	m(2bcm	+	ac	+	bd)/^	(5.29)

where	u-m	and	v	=	bcm2	+	(ac	+	bd)m	+	ad.	On	equating	(5.29)	to	zero,	we	getv	=	m(2acm	+	ad	+	be).	Substituting	for	v	and	solving	for	m	yields	the	value	m	t	ofm	that
maximizes	PCR,	namely,

ladmoPt	=	Jfc	(5-30)

The	optimum	number	of	stages	is	the	integer	closest	to	m0	t.	Figure	5.61	plots	PCRagainst	m	according	to	(5.28)	for	a	=	d	=	5	and	b	=	c	=	1.	The	optimum	value	of	mis
five,	as	predicted	by	(5.30).	Hence	in	this	instance,	the	maximum	throughput	perunit	of	hardware	cost	or,	equivalently,	the	minimum	cost	per	instruction	processed,occurs
when	the	pipeline	has	five	stages.

Collisions.	As	discussed	in	section	4.3.2	pipelines	can	have	feedback	pathsthat	enable	a	stage	to	be	used	repeatedly	while	processing	a	single	instruction.	InFigure	5.60,
for	example,	each	stage	is	used	many	times	while	processing	theinstruction	/	(vector	summation).	A	new	instruction	of	the	same	kind	cannot	bestarted	until	clock	cycle	17,
after	/	uses	stage	Sx	for	the	last	time.	If	a	secondinstruction	is	initiated	at	the	wrong	time—at	t	=	9,	for	instance—then	both	instruc-tions	will	attempt	to	use	stage	5,	at	r	=
10,	a	situation	termed	a	collision.	However,a	simple	add	instruction	of	the	kind	in	Figure	5.57	could	be	initiated	at	t	=	9,	11,	13,14,	or	15	without	colliding	with	the	sum
instruction	/.	Thus	up	to	five	add	instruc-tions,	if	available	for	execution	at	the	right	times,	could	be	interleaved	with	theeight-element	sum	operation,	thereby	increasing
the	pipeline's	overall	efficiency.

Performance/costratio	PCR

0.06

0.05



0.04

0.03

0.02
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13	5	7	9

Number	of	pipeline	stages	m

Figure	5.61

Performance/cost	ratio	PCR	for	an/n-stage	pipeline.
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In	general,	pipeline	collisions	of	the	foregoing	type	are	avoided	by	carefullyscheduling	the	times	at	which	new	pipeline	operations	are	initiated.	We	present	apipeline
control	strategy	to	avoid	collisions	and	maximize	performance	in	a	pipe-line	with	feedback	or	feedforward	connections	[Kogge	1981;	Stone	1993].	Let	P	besuch	a	pipeline
that	consists	of	m	stages	S],S2,...,Sm	and	executes	an	instruction	oftype	/.	(Later	we	will	consider	the	problem	of	scheduling	different	types	of	instruc-tions	in	the	same
pipeline.)	We	can	represent	/'s	usage	of	the	pipeline	with	a	space-time	diagram	(refer	to	Figure	5.60),	which	indicates	stage	usage	in	every	clockcycle	while	/	is	being
executed.	We	will	also	represent	the	same	information	in	aslightly	different	form	R	called	a	reservation	table.	The	m	rows	of	R	represent	thestages	of	P,	while	the	columns
represent	the	sequence	of	clock	cycles	required	forone	complete	execution	of	/	by	P.	An	x	is	placed	at	the	intersection	of	row	S,	andcolumn	Cj	if	stage	S,	is	used	by	/	in
clock	cycle	/	=7'.	Figure	5.62a	shows	the	reser-vation	table	corresponding	to	Figures	4.52	and	5.60.	If	the	method	of	Figure	4.52	isused	to	sum	the	pair	of	numbers	bx,b2,
then	the	small	reservation	table	of	Figure5.62b	results.

Two	operations	of	type	/	that	are	initiated	k	clock	cycles	apart	collide	at	stage5,	of	P,	if	row	i	of	the	corresponding	reservation	table	R	contains	two	xs	that	areseparated	by
a	horizontal	distance	of	k.	In	the	case	of	Figure	5.62b,	a	collisionoccurs	at	every	stage	if	k	=	1,	4,	or	5,	as	is	easily	verified.	For	example,	if	the	firstinstruction	is	initiated	at
/	=	1	and	the	second	at	t	=	5,	in	which	case	k	=	4,	then	bothinstructions	will	attempt	to	use	all	four	stages	and	collide	at	t	=	6.	Let	F	be	the	setof	numbers,	called	the
forbidden	list	of	R,	whose	entries	are	the	distances,	that	is,the	numbers	of	clock	cycles	between	all	distinct	pairs	of	xs	in	every	row	of	R.	Thecollision	conditions	for	R	are
characterized	by	the	following	easily	proven	result:Two	pipeline	instructions	initiated	k	clock	cycles	apart	collide	if	and	only	if	A:	is	inthe	forbidden	list	F	of	R.	Thus	we	can
easily	meet	the	fundamental	requirement	ofavoiding	collisions	by	delaying	new	instructions	by	time	periods	not	appearing	inthe	forbidden	list.	Much	less	obvious	is	how	to
schedule	initiation	times	that	maxi-mize	the	pipeline's	performance.

The	maximum	number	of	collision-free	operations	that	can	be	initiated	per	unittime	under	steady-state	conditions	corresponds	to	the	pipeline's	throughput	defined
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TimerStage	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19

5[	xxxxxxxx	x	x	x
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53	XXXXXXXX	X	X	X

54	XXXXXXXX	X	X	X

(a)

Timef

Stage

5,	xx

52	xx

53	x54

Figure	5.62

Pipeline	reservation	tables	for	yV-element	vector	summation:	(a)	N	=	8	corresponding	toFigure	5.60	and	(b)	N	=	2.

by	Equation	(5.22).	The	delay	occurring	between	the	start	of	two	successive,	colli-sion-free	pipeline	instructions	is	called	the	initiation	latency,	or	simply	the	latencyL	in
this	context.	Under	steady-state	operating	conditions,	L	corresponds	to	thepipeline's	CPI	and	is	measured	in	clock	cycles.	We	now	turn	to	the	problem	ofdevising	control
strategies	that	maximize	the	performance	of	a	basic,	single-func-tion	pipeline	by	determining	the	best	values	of	L	to	use	for	collision-free	operation.We	denote	the
minimum	value	of	the	initiation	latency	L,	that	is,	the	minimumaverage	latency	by	L^.	A	simpler	goal	is	to	achieve	the	minimum	constantlatency,	defined	as	the	smallest
fixed	value	Lcmin	of	L	such	that	any	number	ofinstructions	can	be	initiated	L	clock	cycles	apart	without	causing	collisions.Clearly,	Lmin	<	Lcrmn.	The	number	Lcmin	can
be	calculated	from	the	forbidden	list	Fusing	the	fact	that	Lcmin	is	the	smallest	integer	L	such	that	hL	is	not	in	F	for	anyinteger	h	>	1.	The	forbidden	lists	for	the
reservation	tables	of	Figures	5.62a	and5.626	are	{1,2,	3,4,	5,	6,7,	8,	9,	10,	11,	12,	13,14,	15}	and	{1,	4,	5},	respectively.Thus,	as	observed	earlier,	successive	sum
instructions	with	the	reservation	table	ofFigure	5.62a	must	be	initiated	at	least	16	clock	cycles	apart,	since	the	latencies	Lminand	Lcmin	are	both	16.	In	the	case	of	Figure
5.62b,	new	instructions	can	be	initiatedas	few	as	two	cycles	apart.	However,	the	minimum	constant	latency	Lcmia	*	2,because	2	x	2	=	4	is	in	F;	in	this	case	Lcmin	=	3.	If
instructions	are	initiated	at	t	=	1and	3,	a	third	instruction	cannot	be	initiated	until	t	=	9,	as	demonstrated	by	thespace-time	diagram	of	Figure	5.63a.	The	average
initiation	latency	for	the	pipelinescheduling	scheme	defined	by	Figure	5.636	is	four,	because	two	new	instructions

Stage

5, 1 1 2 2 1 2 3 3 4 4 3 4 5

Si 1 1 9 2 1 2 3 3 4 4 3 4

*3 1 1 2 2 1 2 3 3 4 4 3

54 1 1 2 2 1 2 3 3 4 4 3

3	4	5	6	7	8	9	10	11	12	13	14	15	16	17Time	(clock	cycle)	t

(a)

5,	11	22133244355466



52	11	2213324435546

53	1;	221332443554

54	11	22133244355

Stage

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17Time	(clock	cycle)	t

(b)

Figure	5.63

Pipeline	scheduling	strategies	for	the	reservation	table	of	Figure	5.62ft:	(a)	nonoptimal	and(ft)	optimal.
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are	initiated	every	eight	clock	cycles.	The	minimum	average	latency	is	achievedfor	this	example	when	new	operations	are	initiated	L^	=	3	clock	cycles	apart,	as	inFigure
5.63ft.	Observe	that	in	the	latter	case	the	steady-state	efficiency	of	the	pipe-line	is	100	percent.

Control	scheme.	An	elegant	way	to	control	a	pipeline	for	collision-free	oper-ation	is	by	computing	collision	vectors.	A	collision	vector	CV	for	a	reservationtable	R	at	time	t
is	a	binary	vector	cxc2	cM_]cM,	where	the	ith	bit	c,	is	1	if	initiat-ing	a	pipeline	instruction	at	t	+	i	results	in	a	collision;	c,	is	0	otherwise.	An	initialcollision	vector	CV0	is
obtained	from	the	forbidden	list	F	of	R	as	follows.	ElementCj	of	CV0	is	set	to	1	if	i	is	in	F,	and	c,	is	set	to	0	otherwise,	for	i	=	1,2,...,M,	whereM	is	the	maximum	element	in
F.	A	convenient	way	to	store	CV	is	in	a	shift	regis-ter	CR	=	CR,:CRM	called	a	collision	register.	By	inspecting	CR,	at	time	/,	we	candetermine	whether	issuing	a	new
instruction	in	the	next	clock	cycle	t	+	1	willresult	in	a	collision.	A	simple	left	shift	of	CR,	with	the	right-most	bit	CRM	set	to	0prepares	CR,	for	inspection	in	the	next	clock
cycle.	If	we	decide	to	initiate	a	newinstruction	at	t	+	1,	then	CR	is	left	shifted	and	its	contents	are	replaced	by	CR	orCV0,	where	CV0	is	the	initial	collision	vector	obtained
from	F	as	specified	"above
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and	or	denotes	the	bitwise	OR	operation.	These	actions	ensure	that	CR	defines	allthe	collision	possibilities	due	either	to	ongoing	pipeline	operations	or	to	the
newlyinitiated	one.

To	illustrate	the	foregoing	concepts,	consider	again	the	reservation	table	inFigure	5.62b.	Since	F	=	{1,4,	5},M	=	5	and	the	corresponding	initial	collision	vec-tor	CV0	is
10011.	The	collision	register	CR	is	initialized	to	00000.	When	it	isdecided,	say,	at	t	=	0,	to	start	the	first	pipeline	instruction	at	t	=	1,	CR	is	left	shiftedand	ORed	with	CV0,
resulting	in	CR	=	00000	or	10011	=	10011	=	CV0.	At	t	=	1	thenew	pipeline	instruction	is	initiated,	and	CR	is	again	inspected.	Since	CR,	=	1,	weconclude	that	a	new
instruction	must	be	delayed;	CR	is	merely	shifted	during	thiscycle,	changing	its	contents	to	00110.	At	t	=	2,	CR	contains	00110	with	CR,	=0,allowing	a	new	instruction	to
start	at	t	=	3.	If	a	second	pipeline	operation	is	initiatedin	the	next	cycle,	CR	is	shifted	and	ORed	with	CV0,	therefore	becoming	01100	or10011	=	11111	at	t	=	3.	Five
subsequent	shifts	are	needed	before	CR,	againbecomes	zero	at	t	=	8.	A	third	instruction	cannot	therefore	begin	until	/	=	9,	asshown	by	Figure	5.63a.	If	no	new	task	is
started	at	t	=	3,	CR	is	01100,	indicatingthat	a	new	instruction	can	begin	at	t	=	4.	If	a	new	instruction	is	then	initiated	at	/	=4,	CR	becomes	successively	11000	and	11000
or	10011	=	11011,	implying	that	athird	instruction	can	begin	at	/	=	7;	Figure	5.63ft	depicts	this	situation.	Observe	thatat	t	=	6.	CR	becomes	01100,	repeating	the	pattern
encountered	at	t	=	3.

Task-initiation	diagram.	We	can	derive	an	optimal	collision-free	schedulefor	initiating	pipeline	operations	from	the	state	behavior	of	the	collision	registerCR.	For	this
purpose	we	construct	a	condensed	state-transition	graph	for	CR	calleda	task-initiation	diagram	(TID).	The	states	of	the	TID	are	all	the	collision	vectors{CV,}	formed	by	the
operation	CR	or	CV0,	when	new	pipeline	operations	can	beinitiated.	(The	other	states	of	CR	are	formed	by	shifting	these	vectors	and	areexcluded	from	the	TID.)	An	arrow
from	CV,	to	CV	indicates	that	there	is	asequence	of	state	transitions	that	changes	CR"s	state	from	CV,	to	CV;;	the	arrow	islabeled	with	the	minimum	number	of	state
transitions	nVj	required.	Thus	n^	denotesthe	minimum	latency	between	the	initiations	represented	by	the	TID	states	CV,	and

CV0=	10011

CV,	=	11011

CV,	=	11111

Figure	5.64

Task-initiation	diagram	(TID)for	Figure	5.63ft.

CV-.	A	closed	path	or	loop	in	the	TID	corresponds	to	the	task	initiation	schedule	379for	the	pipeline	that	can	be	sustained	indefinitely	without	collisions.	Let	s	be	thesum	of
the	«,-,■	labels	along	the	arrows	forming	the	loop	divided	by	the	number	of	„	.arrows	in	the	loop.	Clearly,	s	is	the	average	latency	of	the	corresponding	schedule	Designof
pipeline	task	initiations.	Therefore,	the	average	latency	of	the	pipeline	is	mini-mized	by	choosing	a	task	sequence	corresponding	to	a	loop	of	the	TID	with	a	min-imum
value	of	s,	which	is	then	the	minimum	average	initiation	latency	Lmin	[Kogge1981].

Figure	5.64	shows	the	TID	derived	from	the	reservation	table	of	Figure	5.62b,where	the	initial	collision	vector	CV0	=	10011.	This	TID	is	obtained	in	straight-forward
fashion	by	examining	all	the	possible	states	and	state	transitions	of	thecorresponding	CR	as	described	earlier.	The	states	included	in	the	TID	are	allthose	loaded	into	SR
when	new	operations	can	be	initiated,	namely,	the	threestates	CV0	=	10011,	CV,	=	11011,	and	CV2	=11111	identified	above.	For	exam-ple,	the	self-loop	labeled	3	on	state
CV!	is	a	consequence	of	the	followingsequence	of	state	transitions	involving	CR:

Clock

cycle	State	of	CR	Actions	taken

Initiate	new	instruction.	Left	shift	CR.

Left	shift	CR.

Select	new	instruction	to	initiate.	Left	shift	CR.	CR	:=	CR	orCV0=	11000	or	10011.

Initiate	new	instruction.	Left	shift	CR.

The	TID	of	Figure	5.64	contains	several	loops	corresponding	to	pipeline	controlstrategies	with	different	average	initiation	latencies.	For	example,	the	loopformed	by	the
two	arrows	linking	CV0	and	CV,	has	an	average	initiation	latencyof	(2	+	6)/2	=	4	cycles	and	corresponds	to	the	space-time	diagram	of	Figure5.63a.	The	self-loop	of	state
CV,	has	the	minimum	average	latency	Lmin	=	3	andtherefore	maximizes	pipeline	performance;	using	this	loop	for	pipeline	controlyields	the	space-time	diagram	of	Figure
5.63b.	The	analysis	confirms	our	previousobservation	that	the	optimum	scheduling	strategy	for	this	example	is	to	initiate	anew	instruction	three	cycles	after	the	previous
instruction.	Hence	a	simple	logiccircuit	based	on	a	modulo-3	counter	suffices	to	control	this	particular	pipeline.

The	progress	of	an	instruction	stream	through	a	pipeline	can	be	delayed	by	var-ious	unfavorable	dependency	relationships	among	instructions	and	their	data	oper-ands,
which	are	collectively	referred	to	as	hazards.	We	now	define	the	main	typesof	pipeline	hazards	and	discuss	some	general	ways	to	detect	them	and	reduce	theirimpact	on
performance.

Control	dependencies.	Conditional	and	unconditional	jumps,	subroutinecalls,	and	other	program-control	instructions	that	involve	branching	can	adverselyaffect	the
performance	of	an	instruction	pipeline.	In	these	cases	the	address	of	thenext	instruction	is	not	known	with	certainty	until	after	the	program-control	instruc-tion	/	has	been
executed.	Hence	the	question	arises:	Which	instructions	should	be

t 11011	=cv.

t+l 10110

t	+	2 01100



t'+3 11011	=cv

380	entered	into	the	pipeline	immediately	after	/?	If	these	happen	to	be	the	wrong

instructions,	that	is,	/	causes	a	jump	to	a	distant	part	of	the	program,	then	provision

Pi	line	Control	must	^e	mac^e	t0	cancel	tne	effects	of	the	partially	executed	instructions.	This	pro-

cess	is	sometimes	termed	flushing	the	pipeline	and	clearly	reduces	its	throughput.In	the	case	of	a	two-way	branch,	it	is	sometimes	worthwhile	for	the	compiler	or
thepipeline's	control	logic	to	"guess"	the	direction	of	the	branch,	that	is,	to	anticipatethe	outcome	of	the	branch	condition	test,	and	enter	the	instruction	at	/'s	more
likelytarget	address	into	the	pipeline	immediately	after	/.	This	process	is	known	as	spec-ulative	execution.	Pipeline	flushing	is	then	needed	only	when	the	wrong	guess
hasbeen	made.

We	can	estimate	the	influence	of	branch	instructions	on	the	performance	of	aninstruction	pipeline	as	follows.	Suppose	that	the	pipeline	has	m	stages	and	that
eachinstruction	requires	m	clock	cycles,	corresponding	to	one	complete	pass	throughthe	pipeline.	If	there	are	no	branch	instructions	in	the	instruction	streams	being	pro-
cessed,	then	an	ideal	throughput	of	one	instruction	per	clock	cycle	is	achieved;	thatis,	CPI	=	1.	Let	p	be	the	probability	of	encountering	a	branch	instruction,	and	let	qbe
the	probability	that	execution	of	a	branch	instruction	/	causes	a	jump	to	a	non-consecutive	address.	Assume	that	each	such	jump	requires	the	pipeline	to	beflushed,
destroying	all	ongoing	instruction	processing,	when	/	emerges	from	thelast	stage	(a	pessimistic	assumption).

Now	consider	an	instruction	sequence	of	length	r	that	is	streaming	through	thepipeline.	The	number	of	instructions	causing	branches	to	take	place	is	pqr,	andthese
instructions	are	executed	at	a	rate	of	Mm	instructions	per	cycle.	The	remain-ing	(1	-	pq)r	nonbranching	instructions	are	processed	at	the	maximum	rate	of	oneinstruction
per	cycle.	Hence	the	total	number	of	cycles	nc	needed	to	process	all	rinstructions	is

nc	=	pqrm	+	(1	-	pq)r

This	implies	that	the	average	CPI	of	the	pipeline,	which	by	definition	is	njr,	isgiven	by

CPI	=	1	+	pq{m	-	1)	(5.31)

with	the	optimum	value	CPI	=	1	occurring	when	q	=	0,	that	is,	when	no	branchingoccurs	during	program	execution.	Note	that	a	comparable	nonpipelined
instructionprocessor	has	CPI	=	m.	If	p	=	0.2,	q	=	0.4,	and	m	=	5,	which	are	typical	values	forinstruction	pipelines,	then	(5.31)	implies	that	CPI	=	1.32.	Hence,	in	this	case,
pipe-lining	reduces	the	number	of	cycles	per	instruction	from	5	to	1.32,	an	improvementby	a	factor	of	about	four.	The	improvement	is	less	for	longer	pipelines,	since
eachbranch	to	a	nonconsecutive	instruction	address	causes	more	partially	processedinstructions	to	be	discarded.	A	compiler	or	programmer	can	increase	throughput
byemploying	fewer	branch	instructions	(to	reduce	p)	and	by	constructing	conditionalbranch	instructions	so	that	the	more	probable	results	of	the	condition	tests	cause
nobranching	(to	reduce	q).

Pipelined	computers	employ	various	hardware	techniques	to	minimize	the	per-formance	degradation	due	to	branching.	The	Amdahl	470V/7,	for	example,	hasspecial
branch-resolution	logic	to	send	the	result	of	a	branch	condition	test	from	theE-unit	to	the	I-unit	before	the	conditional	branch	instruction	has	been	completelyprocessed.
This	logic	allows	the	I-unit	to	initiate	processing	of	the	correct	next
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instruction	with	a	loss	of	data	in	only	3	of	its	12	pipeline	stages.	A	different	381approach	is	taken	by	the	IBM	3033.	Its	cache	is	divided	into	three	separate	instruc-tion
buffer	areas:	One	holds	a	normal	sequence	of	consecutive	instructionsprefetched	under	the	assumption	that	no	branches	will	occur;	the	other	two	buffers	Designhold
prefetched	instruction	sequences	starting	at	up	to	two	branch	addresses	speci-fied	by	previously	decoded	branch	instructions.	Thus	when	the	3033's	CPUdecodes	an
unconditional	branch	instruction	of	the	form	go	to	A-,	and	has	aninstruction	buffer	with	available	space,	it	proceeds	to	prefetch	and	process	instruc-tions	starting	at
location	Aj.	In	the	case	of	a	two-way	conditional	branch	instructionwith	two	target	branch	addresses	Aj	and	Ak,	the	CPU	selects	one	branch	address	forprefetching.	If,
when	the	conditional	branch	instruction	is	subsequently	executed,	itturns	out	that	the	wrong	selection	was	made	by	the	CPU,	then	time	is	lost	while	thecorrect	instruction
is	fetched.	If	the	CPU	has	anticipated	the	outcome	of	the	condi-tion	test	correctly,	then	the	required	next	instruction	is	either	already	in	the	instruc-tion	pipeline	or	is
stored	in	an	instruction	buffer.

RISC	machines	rely	on	instruction	pipelines	that	overlap	instruction	fetch	andexecute	to	achieve	single-cycle	execution	for	most	instructions.	As	we	saw	in	thecase	of	the
MIPS	R2/3000	(Example	5.7),	special	measures	are	taken	to	nullify	thedelay	slots	associated	with	load	and	branch	instructions.	A	closely	related	techniquecalled	delayed
branching	is	used	in	some	RISCs	to	reduce	the	penalty	due	to	pipelineflushes	on	program	branching.	A	delayed	branch	instruction	/,	causes	the	instructionI2	immediately
following	Ix	to	be	executed	while	the	instruction	/'	at	the	targetaddress	specified	by	Ix	is	still	being	fetched.	The	execution	of/'	then	follows	that	ofI2	rather	than	following
that	of	Ix,	as	would	normally	be	the	case.	For	example,	theIBM	801,	the	prototype	RISC	processor,	has	an	alternative	branch-with-executeform	of	every	normal	branch
instruction	[Radin	1983].	Thus	the	instructionsequence

LOAD	Rl,	A	(532)

BNZ	L

for	the	801	containing	the	normal	conditional	branch	instruction	BNZ	(branch	ifnonzero)	idles	the	CPU	while	the	instruction	at	the	branch	address	L	is	beingfetched.
Suppose	that	BNZ	is	replaced	by	the	corresponding	branch-and-executeinstruction	BNZX	and	the	instruction	order	is	reversed	as	follows:

BNZX	L	(5.33)

LOAD	R1,A

The	modified	code	(5.33)	has	the	same	meaning	as	(5.32),	but	now	the	LOADinstruction	is	executed	while	the	instruction	specified	by	BNZX	is	being	fetched.The	compiler
of	the	801	is	able	to	translate	about	60	percent	of	program	branchesinto	the	more	efficient	branch-with-execute	form.

Data	dependencies.	An	m-stage	pipeline	operates	at	its	maximum	perfor-mance	level	when	it	contains	m	different	instructions,	each	in	a	different	stage	ofcomputation.	As
we	have	seen,	problems	can	occur	if	the	decision	to	execute	a	par-ticular	instruction	depends	on	the	outcome	of	an	earlier	branch	instruction.	Thisproblem	is	due	to	the
program's	flow	of	control	and	so	is	called	a	control	depen-dency.	Other,	more	subtle	data	dependencies	can	exist	among	the	operands	being

382	processed	by	different	instructions	and	can	also	reduce	the	pipeline's	throughput.

sfction	s	3	^or	examPle'	suppose	that	instruction	/,	changes	the	contents	of	register	R	and	that

p	r	c	ntroi	^	ls	reac^	^y	a	SUDsecluent	instruction	/,	in	the	generic	instruction	pipeline	of	Figure

5.55.	If	I2	is	in	stage	S2	(operand	read)	while	/,	is	in	stage	53	(execute),	then	I2	willread	an	old.	and	possibly	erroneous	value	of	R.	since	(,	does	not	write	its	result	toR
until	it	reaches	stage	54.	Thus	although	the	instructions	have	been	dispatched	inthe	proper	order	required	by	the	program,	their	read	and	write	steps	can	be	pro-cessed	in
a	logically	incorrect	order	within	the	pipeline.	This	data	dependencyproblem	is	known	as	a	read-after-write	(RAW)	hazard.	It	is	solved	by	requiring	/,to	complete	its
execution	before	I2	enters	the	operand	read	stage,	which	may	meanreducing	the	throughput	of	the	pipeline.

To	identify	hazards	of	the	foregoing	type,	we	consider	the	sets	of	input	andoutput	operands	(registers	or	memory	locations)	associated	with	each	instruction	/entering	the
pipeline.	The	set	of	input	operands	of	/;	is	defined	as	the	domain	of	Land	is	denoted	by	/)(/•);	the	set	of	output	operands	of	/	is	its	range	and	is	denotedby	R(Ij).	For
example,	the	instruction	/	for	the	MIPS	R2/3000

ADD	R1,R2,R3

which	denotes	the	32-bit	addition	Rl	:=	R2	+	R3,	has	the	domain	D{I)	=	{R2,R3}and	the	range	R(f)	=	{Rl}.	If	I2	follows	lx	in	program	order,	then	a	RAW	hazardindicating
a	potential	error	situation	exists	if	/?(/,)	and	D(I2)	contain	a	commonoperand.	This	condition	is	expressed	formally	as

R{IX)	n	D(/2)	*	0	(RAW	hazard)	(5.34)

where	n	denotes	set	intersection	and	0	denotes	the	empty	set.

A	similar	problem	called	a	write-after-read	(WAR)	hazard	is	present	if	thecondition

D(IX)	n	R(I2)	*	0	(WAR	hazard)	(5.35)

holds.	In	this	case	an	error	occurs	if	the	second	instruction	I2	modifies	an	operandbefore	it	can	be	read	by	the	first	instruction	/,.	Unlike	the	RAW	hazard,	a	WARhazard
cannot	occur	in	a	pipeline	such	as	that	of	the	R2/3000	(Figure	5.56)	becauseof	the	relative	positions	of	the	read	and	the	write	stages.	The	only	stage	that	readsfrom
registers	is	S2	(RD),	which	precedes	the	only	stage	S5	(WB)	that	writes	to	reg-isters,	so	by	the	time	I2	reaches	the	write	stage,	/,	has	left	the	pipeline.	Only	onestage	S4
(MA)	controls	memory	reads	and	writes,	and	Ix	always	reaches	this	stagebefore	I2.

A	third	type	of	data-dependency	hazard	is	defined	by

W(/i)	n	W(I2)	*	0	(WAW	hazard)	(5.36)

and	is	known	as	a	write-after-write	(WAW)	hazard.	It	is	present	if	the	pipelineallows	/2	to	modify	an	operand	before	the	same	operand	is	modified	by	/,.	TheRAW,	WAR,	and



WAW	hazards	are	also	known	as	true,	anti,	and	output	datadependencies,	respectively.	Clearly,	data-dependent	hazards	depend	on	both	thestructure	of	the	instruction
pipeline	and	the	order	of	the	instructions	that	accesscommon	registers	or	memory	locations.

A	pipeline	hazard	due	to	a	data	dependency	can	be	detected	by	checking	forthe	necessary	conditions	given	by	(5.34),	(5.35),	and	(5.36),	either	during	compila-

tion	(static	hazard	detection)	or	at	run	time	(dynamic	hazard	detection).	Such	ahazard	can	be	avoided	by	preventing	the	second	member	I2	of	a	hazardous	instruc-tion	pair
(I\J2)	from	entering	a	read	or	write	stage	until	the	first	instruction	Ix	hasexited	from	the	subsequent	read	or	write	stage	associated	with	the	hazard.	As	in	thecase	of	the
control	(branch	instruction)	hazards	discussed	earlier,	we	can	avoid	thehazard	by	delaying	I2	either	by	stalling	it,	preceding	it	by	one	or	more	NOPs,	or—most	efficiently—
reordering	the	instruction	stream	so	that	useful	instructions,which	neither	slow	down	the	instruction	stream	nor	alter	program	behavior,	areplaced	between	Ix	and	I2.

Another	way	to	reduce	the	delays	due	to	hazards	is	to	build	into	the	pipelineextra	operand-transfer	paths	that	permit	faster	exchange	of	shared	informationamong
interacting	instructions.	Consider,	for	example,	a	five-stage	pipeline	likethat	of	the	MIPS	R2/3000.	A	result	R	computed	by	the	ALU	in	stage	53	(EX)	is	notwritten	into	the
register	file	until	stage	S5	(WB)	two	cycles	later.	By	adding	anoperand-transfer	"forwarding"	path	Pa	from	the	output	S4	to	the	input	of	S2	(RD),the	result	X	computed	by	/,
can	be	made	available	to	I2	one	cycle	earlier	thanbefore.	As	shown	in	Figure	5.65,	we	can	even	forward	X	from	the	output	of	53	tothe	input	of	the	same	stage	via	another
path	Pb	so	that	X	is	supplied	with	no	delaypenalty	to	an	ALU	instruction	I2	that	immediately	follows	/,.	While	forwardingpaths	of	this	type	reduce	the	delay	penalties
associated	with	hazard	avoidance,	theyalso	add	considerable	complexity	to	the	pipeline's	control	logic.
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Figure	5.65

Pipeline	with	forwarding	paths	to	reduce	hazard-causeddelays.
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Pipeline	Control	Microprocessors	such	as	the	PowerPC	(Figure	5.59)	reach	performance	levels

greater	than	one	instruction	per	cycle—that	is,	a	CPI	figure	less	than	one—byfetching,	decoding,	and	executing	several	instructions	.concurrently.	This	mode	ofoperation	is
called	superscalar.	A	superscalar	computer	has	a	single	CPU	thatattempts	to	exploit	the	parallelism	that	is	implicit	in	ordinary	(sequential)	computerprograms.	It	is
contrasted	with	a	parallel	computer,	which	can	have	more	than	oneCPU	and	is	designed	to	execute	programs	whose	parallelism	is	explicit	at	a	high,application	level;	we
discuss	parallel	computers	in	section	7.3.

Characteristics.	Superscalar	operation	requires	a	processor	to	detect	andexploit	instruction-level	parallelism	hidden	in	the	programs	it	executes.	A	super-scalar	CPU	has
multiple	execution	units	(E-units),	each	of	which	is	usually	pipe-lined,	so	that	they	constitute	a	set	of	independent	instruction	pipelines.	The	CPU'sprogram	control	unit
PCU	is	designed	to	fetch	and	decode	several	instructionsconcurrently.	It	can	issue	or	dispatch	up	to	k	instructions	simultaneously	to	thevarious	E-units	where	k,	the
instruction-issue	degree,	can	be	six	or	more	usingcurrent	technology.	The	need	to	process	so	many	instructions	simultaneouslywithout	performance-degrading	conflicts
greatly	complicates	the	design	of	thePCU.	Figure	5.66	shows	in	idealized	form	the	differences	in	instruction-process-ing	abilities	between	three	CPU	organizations:	a
sequential	(nonpipelined)	proces-sor,	a	basic	pipelined	processor,	and	a	superscalar	processor,	all	of	which	areexecuting	the	same	instruction	stream	/,,/2,/3,...	Assuming
that	each	instructionrequires	a	total	of	five	cycles,	we	see	that	a	single	five-stage	instruction	pipeline(k	=	1)	offers	a	speedup	of	5,	while	the	two-issue	(k	=	2)	superscalar
design	has	apotential	speedup	of	10.	Observe	that	at	the	start	of	cycle	15,	the	sequential	CPUhas	completed	only	two	instructions,	whereas	the	pipelined	and
superscalarmachines	have	completed	10	and	20	instructions,	respectively;	moreover,	thesuperscalar	CPU	has	already	started	processing	instructions	721	through	730.

As	Figure	5.66	illustrates,	the	presence	of	k	independent	m-stage	pipelined	E-units	enables	a	superscalar	CPU	to	achieve	speedup	factors	approaching	k	x	m,compared	to
a	CPU	that	has	no	instruction-level	parallelism.	Keeping	k	pipelinesbusy	requires	the	CPU	to	fetch	at	least	k	instructions	per	clock	cycle;	hence	super-scalar	designs	place
heavy	demands	on	the	instruction-fetch	logic.	The	resultinghigh	volume	of	instruction	traffic	from	the	program	memory	to	the	CPU	requiresthe	system	to	have	a	large,	fast
cache,	often	in	the	form	of	an	instruction-only	cache(I-cache)	for	program	storage,	complemented	by	a	data-only	D-cache	for	operandstorage.	Instruction	fetching	is
supported	by	an	instruction	buffer	or	queue,	a	stor-age	unit	within	the	CPU	that	serves	as	a	staging	area	for	prefetched	and	(partially)decoded	instructions.	The	PCU
dispatches	the	instructions	from	its	instructionbuffer	to	the	various	E-units	for	execution.

The	PCU	of	a	superscalar	machine	is	responsible	for	determining	when	eachinstruction	can	be	executed	and	for	providing	it	with	access	to	the	resources	itneeds,	such	as
memory	operands,	E-units,	and	CPU	registers,	in	a	prompt	and	effi-cient	manner.	To	do	so,	it	must	take	the	following	factors	into	account:

•	Instruction	type:	For	example,	a	floating-point	add	instruction	has	to	be	issued	toa	floating-point	E-unit	and	not	to	an	integer	E-unit.

Time	/	(clock	cycles):

1 2 3 4 5	6 7	8	9	10 n 12 13	14	15

1*. |	ID. |0L, |ex, |OS,	||	IF, id-,|ol,|ex,|os,| |lF3 ID, |ol3|ex3|os3|

Instruction	I,

Instruction	/2(a)

Instruction	/3
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Figure	5.66

Maximum	parallelism	in	(a)	a	sequential	CPU;	(b)	a	CPU	with	a	five-stage	instruction	pipe-line;	(c)	a	superscalar	CPU	with	two	five-stage	instruction	pipelines.

•	E-unit	availability:	An	instruction	can	be	issued	to	a	pipelined	E-unit	only	if	nocollisions	will	result,	as	determined	by	the	pipeline's	reservation	table.

•	Data	dependencies:	To	avoid	conflicting	use	of	registers,	data-dependency	con-straints	among	the	operands	of	the	active	instructions	must	be	satisfied.

•	Control	dependencies:	To	maintain	high	performance	levels,	techniques	areneeded	to	reduce	the	impact	of	branch	instructions	on	pipeline	efficiency.

•	Program	order:	Instructions	must	eventually	produce	results	in	the	order	speci-fied	by	the	program	being	executed.	The	results	may,	however,	be	computed	out-of-order
internally	to	improve	the	CPU's	performance.

Delaying	a	problematic	instruction	before	it	enters	an	instruction	pipeline	can	pre-vent	conflicts.	Such	static	scheduling	of	instructions	can	occur	during
programcompilation,	for	example,	by	implementing	the	collision-avoidance	technique

386	discussed	in	section	5.3.1.	We	can	improve	throughput,	however,	by	issuing	all

sfction	instructions	as	rapidly	as	possible	and	resolving	any	subsequent	conflicts	on	the

p	..	c	'	!	fly.	We	next	discuss	two	control	techniques	that	address	these	issues:	dynamic

instruction	scheduling	and	the	branch	prediction.

Dynamic	instruction	scheduling.	Sophisticated	resource	scheduling	tech-niques	were	implemented	in	some	high-performance	computers	of	the	1960s,	nota-bly	Control
Data	Corp.'s	CDC	6600	and	IBM's	System/360	Model	91	[Smith1989].	We	outline	a	method	known	as	Tomasulo's	algorithm,	after	its	inventor	R.M.	Tomasulo,	who
developed	it	to	schedule	floating-point	instructions	in	theModel	91	[Tomasulo	1967].	This	method	is	used	in	several	variations	for	dynamicinstruction	scheduling	in	recent
superscalar	microprocessors.

Tomasulo's	approach	provides	each	shared	E-unit	F,	with	a	set	of	reservationstations	whose	purpose	is	to	receive	instructions	that	use	/"",,	keep	track	of	theseinstructions*
operands,	and	when	all	the	operand	values	needed	by	a	waitinginstruction	L	become	available,	initiate	execution	of	Ij	by	Fr	A	reservation	stationcan	thus	be	seen	as
implementing	a	virtual	E-unit	of	type	Ft	to	which	an	instructioncan	be	sent	immediately	on	decoding	it;	however,	the	instruction	may	not	actuallybe	executed	until	some
later	time.	While	one	instruction	/	is	delayed	at	a	reserva-tion	station	waiting	for	operands,	another	instruction	Ik	waiting	at	the	same	E-unitwhose	operands	become
available	sooner	can	be	executed	first,	even	if	Ik	follows	Lin	the	program	order.

To	handle	data	dependencies,	operand	values	can	be	reassigned	to	temporary(virtual)	registers	at	the	reservation	station,	a	technique	referred	to	as	registerrenaming.	A



large	set	of	temporary	registers	is	typically	needed	to	support	thescheduling	of	many	instructions.	Several	such	registers	at	different	reservation	sta-tions	can	be	assigned
to	the	same	program	variable	such	as	a	register	operand	R[i],which	allows	several	values	of	R[i]	to	be	maintained	concurrently	without	con-flicts.	A	temporary	register	is
marked	by	a	"tag"	to	indicate	whether	the	operandvalue	it	contains	is	valid	(to	prevent	an	instruction	from	reading	an	obsolete	value)and	whether	there	are	uncompleted
instructions	that	need	that	particular	value	(toprevent	premature	overwriting	of	a	valid	value).	A	reservation	station	keeps	countof	the	number	of	instructions	waiting	for	a
data	value	to	appear	in	its	result	registerR[/];	it	does	not	mark	R[/]	as	free	to	be	updated	until	all	the	instructions	waiting	forR[/]*s	new	value	have	received	it.	The	Model
91	employed	a	special	bus,	called	thecommon	data	bus,	to	automatically	route	operand	values	as	they	became	availableto	the	reservation	stations	of	the	waiting
instructions.

Consider,	for	example,	the	following	three-instruction	sequence:

R[l]R[2]R[3]

=	ALPHA	Instruction	/,	(load)

=	R[1]	+	R[2]	Instruction	U	(add)=	R[4]	+	R[5]	Instruction	73	(add)

A	superscalar	CPU	can	fetch	and	decode	all	three	instructions	simultaneously,	ornearly	simultaneously.	If	the	current	value	of	the	operand	ALPHA	in	the	firstinstruction	/,
is	in	main	memory,	but	not	in	the	D-cache	(a	cache	miss),	the	execu-tion	of	/j	is	delayed	by	several	cycles.	In	that	case	/,	is	sent	to	a	reservation	stationin	the	memory
control	logic—which	is	treated	as	an	E-unit	for	scheduling	pur-poses—and	/j's	R[l]	operand	is	assigned	to	a	temporary	register	there,	say,	TR[3].
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Execution	of	/,	then	stalls	until	ALPHA	arrives	and	TR[3]	is	tagged	as	unavailable.	387(The	current	value	of	R[l]	is	in	some	temporary	register,	which	can	contain	a
valuethat	is	valid	for	some	earlier	instructions	still	in	process	elsewhere	in	the	CPU.)The	second	instruction	72	is	sent	to	an	add	unit	where	it	is	delayed	by	the	fact	that
Designits	R[l]	operand,	which	the	PCU	points	to	as	being	assigned	to	TR[3],	is	unavail-able;	thus	72	is	placed	in	a	reservation	station	at	the	adder.	In	the	meantime,	if
allthe	operand	values	needed	by	the	third	instruction	73	are	available,	I3	can	be	exe-cuted—out	of	order—by	the	add	unit.	When	ALPHA	eventually	arrives	in	theCPU,	/,	is
executed	by	loading	ALPHA	into	TR[3],	whose	tag	is	then	changed	toindicate	that	a	valid	result	is	now	available.	At	that	point	72	can	also	be	executed	inthe	next	available
cycle	of	the	add	unit.

Branch	prediction.	A	two-way	conditional	branch	instruction	of	the	form

if	C	then	Ix	else	72	(5.37)

can	cause	control-dependency	delays	in	an	instruction	pipeline	because	thebranch's	target	address,	which	is	the	address	of	either	7,	or	72,	is	not	known	untilthe	condition
C	has	been	computed	and	checked.	The	delayed-branching	methoddescribed	in	section	5.3.2	is	one	way	to	mask	such	delays	and	has	been	imple-mented	in	many	RISC
microprocessors.	Another	increasingly	popular	and	morepowerful	technique	is	to	predict	the	value	of	C,	which	implies	branching	to	/.-,	andthen	proceed	to	execute	the
instructions	7,7+1,7+2,...	along	the	expected	pathbefore	C's	value	is	known.	If	the	prediction	is	correct,	then	a	performance	gain	hasbeen	made;	if	the	prediction	is
wrong,	then	any	instructions	executed	along	themispredicted	path	are	cancelled.	Because	of	its	tentative	nature,	the	execution	ofinstructions	before	the	correct	path	has
been	identified	is	termed	speculative.Branch	prediction	and	speculative	execution	require	extensive	instruction-levelparallelism	in	the	form	of	multiple	E-units,	temporary
data	registers,	and	so	forth,which,	as	we	have	just	seen,	are	also	needed	for	dynamic	instruction	scheduling.Like	dynamic	scheduling,	branch	prediction	techniques	were
not	widely	used	untilthe	1990s.

Computer	programs	have	certain	characteristics	that	make	it	possible	to	predictinstruction	addresses.	The	normal	fetching	of	instructions	from	consecutive	mem-ory
addresses	depends	on	an	implicit	prediction	that	consecutively	executedinstructions	have	consecutive	addresses.	This	simple	prediction	fails	in	the	case	ofbranch
instructions.	However,	branch	instructions	often	contain	two-way	(true-false)	conditions	of	the	following	form:	If	the	"usual"	condition	is	present,	execute/|5	execute	72
only	when	an	exceptional	condition,	for	example,	the	end	of	a	pro-gram	loop	or	an	erroneous	data	value,	is	encountered.	In	such	cases	we	can	reason-ably	predict	that	the
program	will	branch	to	the	7,	path	most	of	the	time.

A	superscalar	machine	can	benefit	from	the	simple	fixed	prediction	that	thefirst	(second)	branch	address	is	the	usual	one;	therefore,	it	always	follows	the
pathcorresponding	to	the	condition	being	true	(false).	This	technique	has	an	accuracyof	about	50	percent	and	costs	very	little	to	implement;	it	is	used	in	such	processorsas
Sun	Microsystem's	SuperSparc.	Clearly,	a	greater	improvement	in	CPU	perfor-mance	is	possible	if	branch	addresses	are	predicted	correctly	most	of	the	time.Accurate
predictions	can	be	made	by	having	the	CPU	dynamically	monitor	condi-tional	branches	as	they	are	processed	and	maintain	a	record	of	the	paths	usually
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followed,	for	example,	paths	around	a	program	loop.	Such	schemes	involve	trade-offs	between	prediction	accuracy	and	control-hardware	cost	[Uht.	Sindagi,
andSomanathan	1997].	We	will	now	describe	the	simplest	such	method,	l-bit	dynamic-branch	prediction,	which	is	implemented	in	the	Digital	Alpha	21064
superscalarmicroprocessor,	where	it	is	reported	to	produce	a	branch-prediction	accuracy	closeto	80	percent.

The	idea	behind	1-bit	branch	prediction	is	to	assign	a	control	bit	p	to	a	branchinstruction	/	like	(5.37)	when	it	is	first	executed;	the	CPU	then	uses	the	value	of/?to	predict
/'s	branching	behavior	in	the	future.	The	prediction	rule	of	this	method	isthat	/	will	branch	to	the	same	instruction	as	it	did	the	last	time	it	was	executed.Thus	when
iterating	through	a	loop	controlled	by	/,	once	the	loop	execution	path	isentered,	p	predicts	that	the	same	loop	path	will	be	followed	each	time	/	is	encoun-tered.	Of	course,
a	misprediction	eventually	results	when	the	loop	is	exited,	but	pcan	be	expected	to	be	right	most	of	the	time.	The	two	states	of/?	have	the	followinginterpretation	for
(5.37):	p	=	1	predicts	that	next	instruction	will	be	/(—that	is,	Cwill	be	1;	p	=	0	predicts	that	next	instruction	will	be	I2—that	is,	C	will	be	0.	Figure5.67	illustrates	the	state
behavior	of	p.	The	eventual	outcome	of	each	condition	testdetermines	p's	next	state:	p	remains	unchanged	if	C's	value	agrees	with	the	latestprediction	made	by	p\
otherwise,	p	is	changed.

Methods	that	record	more	detailed	information	about	a	branch	instruction'shistory	can	replace	the	1-bit	prediction	scheme;	see	problem	5.37.	It	is	convenientto	store	the
branching	statistics	(p	in	the	above	case)	in	a	table—the	branch	historytable—along	with	the	address	of	/	and	that	of	the	instruction	to	which	/	currentlybranches.	For
rapid	access,	we	can	place	the	branch	history	table	in	a	cachelikememory	in	the	CPU	called	a	branch	target	buffer	(BTB);	see	Figure	5.68.	The	BTBis	used	as	follows:
Instruction	requests	are	sent	simultaneously	to	the	I-cache	andthe	BTB.	If	a	match	is	found	in	the	BTB,	the	accompanying,	predicted	branch	tar-get	address	is	read	out.
Execution	proceeds	along	the	instruction	path	defined	bythe	branch	target	address,	with	all	results	considered	speculative	until	the	outcomeof	the	branch	condition	test
becomes	available.	When	execution	of	the	branchinstruction	is	completed,	its	target	address	is	updated	in	the	BTB,	which	permitsmispredicted	targets	to	be	replaced;	the
branch	instruction's	prediction	statistics	arealso	updated.

We	conclude	with	an	example	of	a	microprocessor	that	implements	all	themethods	discussed	so	far	for	exploiting	instruction-level	parallelism.

Figure	5.67

State	behavior	of	1-bit	dynamic	branch	prediction	method.
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Figure	5.68

Organization	of	a	branch	target	buffer	(BTB).
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EXAMPLE	5.8	THE	MIPS	R10000	SUPERSCALAR	MICROPROCESSOR	[YEA-

ger	1996].	This	member	of	the	MIPS	RX000	microprocessor	family	was	deliveredin	1996.	It	employs	the	64-bit	MIPS-IV	architecture,	which	is	backward	compatiblewith
that	of	the	32-bit	R2/3000	(Example	5.7).	The	R10000	is	a	single-chip,	supersca-lar	microprocessor	that	can	issue	four	instructions	per	clock	cycle.	At	a	clock	fre-quency	of
200	MHz,	it	can	therefore	operate	at	a	CPI	of	0.25	clock	cycles	perinstruction,	which	is	equivalent	to	a	peak	MIPS	throughput	of	800	million	instructionsper	second.	The
initial	version	of	the	R10000	contains	some	6.8	million	transistors.

The	RIOOOO's	overall	organization	appears	in	Figure	5.69.	This	microprocessor'shigh	performance	is	due	mainly	to	its	fast	clock	and	to	the	presence	of	five
independentand	pipelined	E-units:	two	for	executing	fixed-point	instructions	(the	integer	E-units).two	for	floating-point	instructions	(the	floating-point	E-units),	and	one	for
load	andstore	instructions	(the	load/store	unit,	which	handles	address	calculations).	The	lengthof	these	execution	pipelines	varies	from	three	to	five	stages,	and	each	is
preceded	by	acommon	two-stage	pipeline	for	fetching	and	decoding	instructions.	Consequently,	aninstruction	can	pass	through	as	many	as	seven	consecutive	pipeline
stages;	see	Figure5.70.	The	fixed-point	pipelines	employ	two	64-bit	integer	ALUs	and	a	64-word	registerfile.	The	fixed-point	pipelines	are	designed	for	64-bit	floating-point
numbers	using	theIEEE	754	format;	they	are	supported	by	another	64-word	register	file.	To	keep	thepipelines	as	full	as	possible	requires	an	interface	to	external	memory
that	has	very	highbandwidth.	The	R10000	contains	a	primary	(level	1)	cache	composed	of	a	32KB	I-cache	and	a	32KB	D-cache.	The	primary	cache	can	be	backed	up	by	a
much	larger	sec-ondary	(level	2)	cache	that	is	off-chip	and	is	linked	to	the	CPU	by	a	dedicated	bus.

In	searching	for	parallelism	that	it	can	exploit,	the	CPU	prefetches	and	examinesup	to	32	consecutive	instructions,	representing	a	large	block	(window)	of	instructionsfrom
the	program	being	executed.	Four	consecutive	instructions	are	fetched	simulta-neously	from	the	I-cache.	They	are	usually	decoded	in	the	next	clock	cycle	andplaced	in
three	queues	for	execution	by	the	various	pipelines.	The	queues,	whichcombine	the	functions	of	instruction	buffers	and	reservation	stations,	dispatch	instruc-tions	to	E-
units	where	they	can	be	executed	out	of	order.	Each	queue's	control	logicperforms	dynamic	scheduling	to	determine	when	the	operands	and	executionresources	needed
by	its	instructions	become	available.	Various	methods,	including	aregister	renaming	scheme	that	exploits	the	RIOOOO's	large	register	files,	resolve	data
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Figure	5.69

Organization	of	the	MIPS	R10000	microprocessor.

and	control	dependencies.	Branch	prediction	is	implemented	by	a	512-entry	branch-history	table,	which	permits	up	to	four	branch	paths	to	be	executed	speculatively	atthe
same	time.

5.4SUMMARY

A	digital	system	such	as	a	CPU	is	usually	partitioned	into	control	and	data-processing	units.	The	function	of	the	control	unit	is	to	issue	to	the	data-processingunit	control
signals	that	select	and	sequence	the	data-processing	operations.	There
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Figure	5.70

Instruction	pipelining	in	the	R10000.
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are	two	general	types	of	complex	controllers:	hardwired	and	microprogrammed.	Ahardwired	control	unit	employs	fixed	logic	circuits	to	generate	the	control	signals.A
microprogrammed	control	unit	stores	the	control	signals	in	sequences	of	micro-instructions	(microprograms)	in	a	control	memory.	Microprogramming	provides
asystematic	and	flexible	method	for	control-unit	design,	since	the	control	functionscan	easily	be	changed	by	changing	the	stored	microprograms.	On	the	other
hand,microprogrammed	control	units	are	generally	larger	and	slower	than	the	corre-sponding	hardwired	units.

We	have	considered	two	general	approaches	to	hardwired	control	design	thatare	suitable	for	fairly	small	control	units.	The	main	design	steps	are	state	tablespecification,
state	code	assignment,	and	design	of	the	combinational	logic	thatimplements	the	next-state	and	output	functions.	The	so-called	classical	methodminimizes	the	number	of
flip-flops	used	to	encode	and	store	the	state	information,requiring	only	[log-,/?]	flip-flops	for	an	n-state	controller.	The	one-hot	method	pro-duces	a	circuit	that	contains	n
flip-flops	but	is	easier	to	design	and	debug.	Eachstate	is	assigned	an	/?-bit	binary	code	containing	a	single	1.	This	state-encodingscheme	permits	the	next-state	and	output
functions	to	be	directly	specified	in	a	reg-ular	and	easily	implemented	form.

A	microprogrammed	control	unit's	state	information	is	centered	in	the	con-trol	memory	CM.	The	control	unit	also	contains	logic	to	generate	microinstruc-tion	addresses
and	to	fetch	and	decode	the	microinstructions	from	CM.	Themethods	used	for	program	control	at	the	instruction	level,	for	example,	subrou-tine	calls,	can	also	be
implemented	at	the	microinstruction	level.	Microinstruc-tion	formats	fall	into	two	groups:	horizontal	and	vertical.	Horizontal	micro-instructions	are	characterized	by	long
formats,	little	encoding	of	the	controlfields,	and	the	ability	to	control	many	microoperations	in	parallel.	Vertical	micro-instructions	have	short	formats,	considerable
control-field	encoding,	and	limited
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parallelism.	A	few	processors	use	two	levels	of	microprogramming	for	addedflexibility:	microinstructions	are	interpreted	by	nanoinstructions	that	directly	con-trol	the
hardware.

We	can	improve	the	performance	of	a	CPU	by	structuring	its	program-controland	execution	logic	in	the	form	of	one	or	more	pipelines.	An	m-stage	instructionpipeline
overlaps	the	execution	of	up	to	m	separate	instructions,	allowing	the	per-formance	level	of	one	cycle	per	instruction	(CPI)	to	be	achieved.	The	simplesttwo-stage	pipeline
overlaps	(micro)	instruction	fetching	and	execution;	a	typicalinstruction	pipeline	has	five	or	more	stages.	Proper	operation	of	a	pipeline	requiresthe	avoidance	of
collisions,	which	occur	when	two	instructions	attempt	to	use	thesame	stage	simultaneously,	and	hazards	due	to	various	data	and	control	dependen-cies	among
instructions.	Superscalar	processors	achieve	CPI	levels	less	than	oneby	executing	several	instructions	in	parallel	using	multiple	instruction	pipelines.Complex	control
methods	such	as	dynamic	instruction	scheduling	and	branch	pre-diction	are	required	for	efficient	superscalar	computation.

5.5PROBLEMS

5.1.	Construct	a	state	table	corresponding	to	the	state	transition	graph	of	Figure	5.71.	Is	thisa	Mealy	or	a	Moore	machine?

5.2.	(a)	Using	the	notation	of	Figure	5.4,	devise	a	general	procedure	to	convert	a	Mealystate	table	into	an	equivalent	Moore	state	table.	[Hint:	Since	the	Mealy	table	can
haveseveral	outputs	associated	with	each	current	state	5,,	consider	"splitting"	S,	into	a	set	ofstates,	each	of	which	represents	5,	for	some	fixed	output	combination.]	(£>)
Constructthe	usual	two-state	Mealy	table	for	a	serial	adder,	and	apply	your	conversion	procedureto	obtain	an	equivalent	Moore	state	table.

5.3.	Construct	a	Moore	state	table	that	is	equivalent	to	the	Mealy	state	table	for	the	4-bit-stream	serial	adder	appearing	in	Figure	2.12.

5.4.	Figure	5.72	shows	the	logic	circuit	of	a	DRAM	interface	controller	intended	for	usewith	a	certain	microprocessor.	(Some	output	circuitry	has	been	omitted	for



simplicity.)This	10-state	finite-state	machine	is	implemented	with	10	flip-flops	and	is	referred	toas	"one-hot	encoded."	However,	while	9	of	the	10	states	have	the	normal
one-hot	state

0/00

RESET

Figure	5.710/00	State	transition	graph	of	a	five-statesequential	circuit.

5.5.	Modify	the	procedure	given	in	the	text	for	designing	one-hot	Moore	machines	to	applyto	Mealy	machines.

encoding	(exactly	one	flip-flop	output	is	1),	the	reset	state	50	is	encoded	as	3930000000000,	rather	than	as	1000000000.	(a)	Suggest	a	reason	for	using	the	all-0	codefor
S0.	(b)	Construct	a	complete	state	diagram	(state	transition	graph)	for	this	controller.
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5.6.	Use	the	classical	method	to	design	the	DMA	controller	of	Example	5.1	with	a	mini-mum	number	of	D	flip-flops.	Use	NAND	gates	to	implement	the	combinational	logic.

5.7.	A	tennis-scoring	device	TS	is	to	be	constructed	that	determines	the	winner	in	a	two-person	game	of	tennis.	TS	has	inputs	x]jc2	and	outputs	c,,c->.	Input	a,	is	set	to	1
when-ever	player	i	scores	a	point	and	is	set	to	0	otherwise.	Input	~,	is	set	to	1	whenever	playeri	wins	a	game;	it	is	0	otherwise.	The	rules	of	tennis	can	be	stated	succinctly
as	follows:To	win	a	game,	a	player	must	win	at	least	four	points	and	must	be	at	least	two	pointsahead	of	the	other	player,	(a)	Construct	a	state	table	that	defines	the
behavior	of	TS.(b)	Estimate	as	accurately	as	you	can	the	minimum	number	of	flip-flops	needed	to	im-plement	TS	using	the	classical	and	one-hot	design	methods.

5.8.	Close	scrutiny	of	the	multiplier	behavior	defined	by	Figure	5.15	shows	that	certainstates	can	be	merged.	Consider	states	S2	(load	register	Q)	and	56	(output	register
Q).To	enter	state	S2	requires	COUNT	=	0	and	therefore	the	control	signal	COUNT7	=	0,whereas	S6	is	entered	only	after	COUNT7	becomes	1.	Hence	we	can	merge	52
and	56to	form	a	single	state	S26	if	when	entering	S26	with	COUNT7	=	0,	we	match	5-,'s	next-state	and	output	behavior,	but	when	entering	S?6	with	COUNT7	=	1.	we
match	56'sbehavior.	In	the	first	case	the	next	state	is	53	or	54	depending	on	Q[0],	and	the	activeoutput	is	cg;	in	the	second	case	the	next	state	is	S7,	and	the	active	output
is	c7.	Notethat	since	the	outputs	associated	with	S26	will	depend	on	the	primary	inputs,	we	willhave	Mealy-type	behavior.	(<•)	Identify	a	second	pair	of	states	from	Figure
5.15	thatcan	be	merged	in	this	manner	and	explain	their	relationship,	(b)	Construct	a	state	tablein	the	style	of	Figure	5.16	for	a	reduced,	six-state	control	unit.

5.9.	Some	early	computers	had	small	instruction	sets,	but	did	not	restrict	memory	access	toload	and	store	instructions	(load/store	architecture),	and	so	needed	fewer	CPU
regis-ters	than	a	modern	RISC.	Figure	5.73	shows	the	instruction	set	for	a	CPU	of	this	type
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Figure	5.72

A	10-state	control	unit	with	modified	one-hot	state	encoding.
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Type

HDL

format

Assemblyformat

Comment

Data	transfer AC =	M(X) LDX Load	X	from	M	into	AC

M(X)	:=	AC STX Store	contents	of	AC	in	M	as	X

Data AC	:=	AC	+	M(X) ADDX Add	X	to	AC

processing AC =	AC	-	M(X) SUBX Subtract	X	from	AC

AC =	AC	and	M(X) ANDX And	X	to	AC

AC =	not	AC NOT Complement	contents	of	AC

Program PC	:=	M(adr) BRAadr Jump	to	instruction	with	address	adr

control
if	AC	=	0	then

PC	:=	U(adr)
BZadr Jump	to	instruction	adr	if	AC	=	0

Figure	5.73

Modified	instruction	set	for	an	accumulator-based	CPU.

derived	from	that	of	Figure	5.20.	The	data-processing	instructions	now	reference	mainmemory	M,	and	the	data	register	DR	is	no	longer	visible	to	a	program.	(It	is	still
usedinternally	for	memory	access	operations,	however.)	Construct	a	flowchart	in	the	styleof	Figure	5.21	for	the	modified	CPU.

5.10.	Suppose	that	the	accumulator-based	CPU	of	Figures	5.20	through	5.24	is	enlarged	toinclude	the	following	instructions:	(1)	A	left-shift	instruction	LSH	that
implementsAC	:=	AC[/?	-	2:0].0;	(2)	an	add-with-carry	instruction	ADC	that	computes	AC	+	DR	+CY,	where	CY	is	a	new	carry	flag	that	is	set	(reset)	whenever	an
arithmetic	instructioncauses	(does	not	cause)	AC	to	overflow;	(3)	a	skip-on-carry	instruction	SKC	that	caus-es	the	CPU	to	skip	the	next	consecutive	instruction	if	and	only
if	CY	=	I.	(a)	Show	thechanges	that	need	to	be	made	to	the	flowchart	of	Figure	5.21	to	incorporate	the	newinstructions,	(b)	Specify	a	minimal	set	of	new	control	signals
that	should	be	added	tothe	list	of	Figure	5.22b	to	support	the	three	new	instructions.

5.11.	Consider	the	design	of	the	control	circuit	FSM	for	the	accumulator-based	CPU	definedby	Figures	5.20	through	5.24.	Assume	that	it	must	have	the	13	internal	states
50:5:2de-fined	by	Figure	5.21	and	is	to	be	implemented	as	a	Moore	machine	using	the	one-hotmethod	with	D	flip-flops	and	NAND	gates.	Assign	the	hot	variable	Di	to	state
5,	andobtain	a	complete	set	of	next-state	and	output	equations	for	FSM	in	sum-of-productsform.	Estimate	the	number	of	NAND	gates	(including	inverters)	needed	to
constructFSM	in	this	way,	assuming	a	D	flip-flop	is	equivalent	to	five	NANDs.

5.12.	Answer	the	following	questions	concerning	the	microprogrammed	control	unitshown	in	Figure	5.26.	(a)	What	control	signals	are	activated	by	the	microinstruction/5
with	address	a2a^a0	=	101?	(b)	What	microinstruction	is	loaded	into	CMAR	after/5?	(c)	Suppose	that	all	the	control	functions	performed	by	the	top	two	microinstruc-tions
/0	and	/,	can	be	carried	out	simultaneously.	Devise	a	single	microinstructionthat	can	replace	both	/0	and	/,.

5.13.	A	certain	processor	has	a	microinstruction	format	containing	10	separate	control	fieldsC0:C9.	Each	C,	can	activate	any	one	of	n,	distinct	control	lines,	where	«,	is
specified	asfollows:

i	=	0

n.-	=	4

5	616	7

8	98	22

What	is	the	minimum	number	of	control	bits	needed	to	represent	the	10	control	fields?	395What	is	the	maximum	number	of	control	bits	needed	if	a	purely	horizontal
format	isused	for	all	the	control	information?	CHAPTER	5
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5.14.	Draw	a	logic	diagram	showing	how	to	construct	a	microprogram	sequencer	for	(a)	a	Design64	x	12-bit	control	memory	and	(b)	a	12	x	64-bit	control	memory,	using
one	or	more

copies	of	the	AMD	2909.

5.15.	Using	the	format	of	Equation	(5.14),	specify	the	control	signals	needed	to	performthe	following	microoperations	in	a	2909-based	microprogram	sequencer:	(a)
CALLX,	where	X	is	the	address	on	the	D	bus;	(b)	go	to	0	if	external	condition	C,	=1;	and(c)	repeat	the	last	microinstruction.

5.16.	Describe	the	changes	that	must	be	made	to	the	hardware	and	the	microprogram	for	the16-bit	twos-complement	multiplier	described	in	Example	5.5	in	order	to	do
the	follow-ing:	(a)	12-bit	twos-complement	multiplication;	(b)	16-bit	twos-complement	multipli-cation	with	the	following	register	assignment:	R[3]	=	multiplier,	R[2]	=
multiplicand,and	R[1].R[0]	=	product.

5.17.	Design	the	control	logic	that	is	driven	by	the	CONFIG	control	field	appearing	in	Fig-ure	5.42.	In	other	words,	show	in	detail	how	the	2901-based	processor	is
dynamicallyreconfigured	while	executing	the	multiplication	microprogram	of	Figure	5.43.

5.18.	Use	the	information	in	Figure	5.50	and	the	text	to	determine	the	microoperations	thatimplement	the	call	and	return	microinstructions	for	the	890	microprogram
sequencer.Express	each	microinstruction	in	generic	HDL	format,	as	in	(5.18).



5.19.	You	are	to	design	a	microprogrammed	controller	for	a	fixed-point	divider	that	uses	thecircuit	of	Figure	4.23	and	the	nonrestoring	division	algorithm	of	Figure	4.24.
The	di-vider	should	handle	both	positive	and	negative	integers	having	a	16-bit	sign-magnitudeformat,	(a)	List	all	the	required	control	signals	and	the	microoperations	they
control.(b)	Design	a	microinstruction	format	of	the	type	shown	in	Figure	5.40	in	which	the	con-trol	fields	are	encoded	by	function	in	an	efficient	manner.

5.20.	A	microprogrammed	control	unit	is	to	be	designed	for	a	floating-point	adder	with	thegeneral	structure	shown	in	Figure	4.44.	A	number	of	the	form	M	x	B	is
representedby	a	32-bit	word	comprising	a	24-bit	mantissa,	which	is	a	twos-complement	fraction,and	an	8-bit	exponent,	which	is	a	biased	integer.	The	base	B	is	two.	(a)
Using	our	HDL,give	a	complete	listing	of	a	symbolic	microprogram	to	control	this	adder,	(b)	Derive	asuitable	microinstruction	format	that	uses	unencoded	control	fields.

5.21.	A	conventional	microprogrammed	CPU	is	being	redesigned	for	implementation	as	aone-chip	microprocessor.	At	present	it	has	a	single	256	x	80-bit	control	memory
andemploys	a	highly	parallel	horizontal	microinstruction	format	in	which	every	instructioncontains	one	8-bit	branch	address.	It	is	estimated	that	in	a	two-level
organization	of	thecontrol	unit,	only	about	sixty-four	300-bit	nanoinstructions	would	be	needed	to	imple-ment	the	current	instruction	set.	If	the	total	size	of	the	control
memories	is	the	majorcost	consideration,	should	the	new	microprocessor	have	one-	or	two-level	control1Show	your	calculations	and	state	all	your	assumptions.

5.22.	A	pipeline	P	is	found	to	provide	a	speedup	of	6.16	when	operating	at	100	MHz	and	anefficiency	of	88	percent,	(a)	How	many	stages	does	P	have?	(b)	What	are	P	s
MIPS	andCPI	performance	levels?
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Stage

Si

s3

Time	/

Figure	5.74

Reservation	table	for	a	three-stage	pipeline.

5.23.	The	hardware	cost	of	a	new	m-stage,	single-function	pipeline	is	approximated	by22m	+	30.	The	latency	of	the	function	to	be	executed	is	90	ns	if	pipelining	is
notused.	The	pipelined	implementation's	interstage	buffers	are	expected	to	add	an	addi-tional	10m	ns	to	this	latency.	Estimate	the	number	of	stages	needed	to	optimize
thepipeline's	performance/cost	ratio.

5.24.	(a)	For	the	pipeline	reservation	table	appearing	in	Figure	5.74,	calculate	the	forbid-den	set	F,	the	minimum	constant	latency	Lcmin,	and	the	minimum	average
latency	Lmin.(b)	Suppose	that	the	pipeline	is	to	be	operated	with	a	constant	latency	L	such	that	theresulting	pipeline	efficiency	is	as	close	to	0.5	as	possible.	What	is	L	in
this	case?

5.25.	Construct	a	task	initiation	diagram	(TID)	for	the	pipeline	reservation	table	appearingin	Figure	5.74	and	calculate	the	pipeline's	minimum	average	latency	Z.mjn.

5.26.	For	the	pipeline	reservation	table	appearing	in	Figure	5.75,	calculate	the	forbidden	setF,	the	minimum	constant	latency	Lcmn.	and	the	minimum	average	latency
Lmin.	Alsoconstruct	a	task	initiation	diagram	for	this	pipeline.

5.27.	Prove	informally	the	following	general	property	of	a	single-function	pipeline.	If	K	isthe	maximum	number	of	x's	in	any	row	of	the	pipeline's	reservation	table,	then	K
<Lmjn,	the	minimum	average	latency.	This	result	provides	a	useful	lower	bound	on	Lmin.

5.28.	Consider	the	following	seven-instruction	fragment	of	assembly	language	code	for	theMIPS	RX000.	Recall	that	the	RX000	has	no	explicit	flag	bits	and	that	the	general
reg-ister	R0	always	stores	the	constant	zero.

{Set	on	less	than:	if	Rl	<	R2,	then	set	R7	to	1,	else	set

R7to0}{Branch	on	equal:	if	R7	=	0.	then	PC	:=	OUT1}{No	operation	}

{Add	unsigned:	R3	:=	R2	+	R0}{Branch	unconditionally:	PC	:=	OUT2}{No	operation}{Add	unsigned:	R3	:=	Rl	+	R0}

(a)	What	is	the	program's	purpose?	(b)	What	is	the	role	of	its	two	NOP	instructions?(c)	Redesign	this	program	to	reduce	the	number	of	instructions	from	seven	to	four
(oras	much	as	you	can).

5.29.	The	following	code	fragment	is	to	be	executed	in	the	six-stage	instruction	pipeline	ofFigure	5.76.	Assume	that	every	instruction	must	pass	through	all	stages,
including	thethree	execution	stages.

SLT R7.R1.R2

BEQ R7,R0,OUTl

NOP

ADDU R3,R2,R0

B OUT2

NOP

OUT1 ADDU R3,R1,R0

OUT2

Stage

s2

Si

s*

Ss

Timef
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Figure	5.75

Reservation	table	for	a	five-stage

pipeline.

Load	constant	A	into	general	register	r4

Load	constant	B	into	general	register	r5



Add	r4	and	r5	and	put	the	sum	in	r8

Store	r8	in	the	memory	location	addressed	by	rl

Load	constant	C	into	general	register	r6

Add	r5	and	r6	and	put	the	sum	in	r9

Store	r9	in	the	memory	location	addressed	by	r2

(a)	Construct	a	space-time	diagram	in	the	style	of	Figure	5.57	for	this	program,	anddetermine	how	many	cycles	are	needed	to	completely	execute	it.	(b)	Determine	a
validreordering	of	the	program	that	will	reduce	its	execution	time.	Construct	the	space-timediagram	for	the	reordered	program.

Id r4,#A

Id r5,#B

add r8,	r4,	r5

St m(rl),	r8

Id r6,#C

add r9,	r5,	r6

St m(r2),	r9

' r

S,:	Fetch	(IF)

' r

S2:	Decode(DE)

' t

S3:	Execute	(El)

i t

S4:	Execute	(E2)

i <

S5:	Execute	(E3)

' i

S6:	Write	back	(WB)

Figure	5.76

Six-stage	instruction	pipeline.
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Id r4,#A

Id r5,	#B

Id r6,#C

Id r9,	#0

beq r4,	r5,	adrl

add r9,	r4,	r5

mul r9,	r9,	r9

mul r9,	r9.	#1

St m(rl),r9

398	5.30.	(a)	The	three	conditions	(5.34),	(5.35),	and	(5.36)	for	RAW,	WAR,	and	WAW	data-

dependent	hazards	are	considered	to	be	necessary,	but	not	sufficient,	for	an	instructionpipeline	to	produce	invalid	results.	Show	by	means	of	an	example	why	these
conditionsare	not	sufficient,	(b)	Conspicuous	by	its	absence	from	the	above	set	is	the	read-after-read	(RAR)	condition	D(/,)	n	D(I2)	*	0.	Explain	why	Jhis	condition	is	not	a
hazard.

5.31.	Consider	the	following	assembly-language	program	for	a	hypothetical	RISC:

Load	constant	A	into	general	register	r4Load	constant	B	into	general	register	r5Load	constant	C	into	general	register	r6Clear	general	register	r9If	r4	=	r5	then	go	to
adrlAdd	the	sum	of	r4	and	r5	to	r9Square	the	contents	of	r9Increment	r9	by	oneadrl:	st	m(rl),	r9	Store	r9	in	the	memory	location	addressed	by	rl



Identify	all	possible	RAW,WAR,	and	WAW	hazards	that	are	present	if	nothing	isknown	about	the	structure	of	the	RISC*s	instruction	pipeline.

5.32.	Suppose	the	code	fragment	in	problem	5.31	is	processed	by	the	four-stage	instructionpipeline	of	Figure	5.55.	Assume	that	data	reads	(from	registers	and/or	memory)
can	oc-cur	only	in	stage	52.	while	data	reads	and	writes	can	occur	only	in	stage	SA.	Identify	allRAW,	WAR,	and	WAW	hazards	that	are	present	in	this	case.

5.33.	Consider	the	five-stage	instruction	pipeline	of	Figure	5.65.	Assume	that	the	programcounter	can	be	changed	only	by	program-control	instructions	in	the	same
manner	as	ageneral	register.	What	delay	penalty	is	associated	with	a	branch	instruction?	By	howmuch	can	the	use	of	forwarding	paths	reduce	this	penalty?

5.34.	(a)	Explain	why	one	is	a	lower	bound	on	the	CPI	of	conventional,	nonsuperscalar	mi-croprocessors,	(b)	Name	and	briefly	describe	two	techniques	superscalar
microproces-sors	use	to	make	CPI	less	than	one.

5.35.	Early	RISCs	such	as	the	IBM	801,	which	are	not	superscalar,	use	a	branch-and-executeinstruction	to	eliminate	the	pipeline	delay	slots	caused	by	branch-instruction
latency,as	illustrated	by	(5.33).	(a)	This	feature	was	deliberately	excluded	from	the	laterPOWER	and	PowerPC	architectures	because	"it	poses	a	severe	handicap	for
supersca-lar	processors."	Explain	this	statement,	(b)	Suggest	a	reason	why	an	even	later	super-scalar	microprocessor,	the	MIPS	R10000,	has	the	branch-and-execute
feature.

5.36.	Instead	of	using	conventional	instructions	and	pipelining,	we	can	achieve	superscalarperformance	by	employing	a	very	long	instruction	word	(VLIW)	to	control
multiple	E-units	and	other	CPU	resources	in	much	the	same	way	a	microinstruction	controls	mul-tiple	resources	that	execute	microoperations.	The	programmer	or
compiler	determinesthe	control	fields	of	the	VLIW	instructions	and	specifies	the	resources	of	a	VLIW	pro-cessor	to	be	used	in	each	clock	cycle.	Like	horizontal
microinstructions,	VLIW	instruc-tions	aim	to	maximize	the	number	of	operations	done	in	parallel	and	require	simpledecoding	logic.	Superscalar	VLIW	computers	have	not
been	commercially	successful.Suggest	three	reasons	for	this	lack	of	success.

5.37.	One-bit	branch	prediction	can	be	extended	by	using	2	bits	to	record	the	outcomes	ofthe	last	two	executions	of	each	conditional	branch	instruction.	Devise	such	a	2-
bit	pre-

diction	method	and	explain	it	using	a	state	diagram	like	that	of	Figure	5.67.	State	399clearly	the	rationale	for	your	method's	prediction	rules.
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CHAPTER	6

Memory	Organization

This	chapter	is	concerned	with	the	design	of	a	computer's	memory	system	and	itsimpact	on	performance.	The	characteristics	of	the	most	important	storage-
devicetechnologies	are	surveyed.	The	behavior	and	management	of	multilevel	hierarchi-cal	memory	systems	are	discussed,	and	cache	memories	are	examined	in	detail.

6.1

MEMORY	TECHNOLOGY

Every	computer	contains	several	types	of	devices	to	store	the	instructions	and	datarequired	for	its	operation.	These	storage	devices	plus	the	algorithms—imple-mented	by
hardware	and/or	software—needed	to	manage	the	stored	informationform	the	memory	system	of	the	computer.

6.1.1	Memory	Device	Characteristics

A	CPU	should	have	rapid,	uninterrupted	access	to	the	external	memories	where	itsprograms	and	the	data	they	process	are	stored	so	that	the	CPU	can	operate	at	ornear
its	maximum	speed.	Unfortunately,	memories	that	operate	at	speeds	compara-ble	to	processor	speeds	are	expensive,	and	generally	only	very	small	systems	canafford	to
employ	a	single	memory	using	just	one	type	of	technology.	Instead,	thestored	information	is	distributed,	often	in	complex	fashion,	over	various	memoryunits	that	have	very
different	performance	and	cost.

Memory	types.	The	information-storage	components	of	a	computer	can	beplaced	in	four	groups,	as	illustrated	in	Figure	6.1.
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•	CPU	registers.	These	high-speed	registers	in	the	CPU	serve	as	the	workingmemory	for	temporary	storage	of	instructions	and	data.	They	usually	form	a	gen-eral-purpose
register	file	for	storing	data	as	it	is	processed.	A	capacity	of	32	datawords	is	typical	of	a	register	file,	and	each	register	can	be	accessed,	that	is,	readfrom	or	written	into,
within	a	single	clock	cycle	(a	few	nanoseconds).

•	Main	(primary)	memory.	This	large,	fairly	fast	external	memory	stores	programsand	data	that	are	in	active	use.	Storage	locations	in	main	memory	are	addresseddirectly
by	the	CPU's	load	and	store	instructions.	While	an	IC	technology	similarto	that	of	a	CPU	register	file	is	used,	access	is	slower	because	of	main	memory'slarge	capacity	and



the	fact	that	it	is	physically	separated	from	the	CPU.	Mainmemory	capacity	is	typically	between	1	and	210	megabytes,	where	a	megabyte,also	denoted	1	MB,	is	220	bytes,
and	210	MB	=	230	bytes	is	referred	to	as	agigabyte	(1	GB).	Access	times	of	five	or	more	clock	cycles	are	usual.

•	Secondary	memory.	This	memory	type	is	much	larger	in	capacity	but	also	muchslower	than	main	memory.	Secondary	memory	stores	system	programs,	largedata	files,
and	the	like	that	are	not	continually	required	by	the	CPU.	It	also	acts	asan	overflow	memory	when	the	capacity	of	the	main	memory	is	exceeded.	Infor-mation	in	secondary
storage	is	considered	to	be	on-line	but	is	accessed	indirectlyvia	input/output	programs	that	transfer	information	between	main	and	secondarymemory.	Representative
technologies	for	secondary	memory	are	magnetic	harddisks	and	CD-ROMs	(compact	disk	read-only	memories),	both	of	which	haverelatively	slow	electromechanical	access
mechanisms.	Storage	capacities	ofmany	gigabytes	are	common,	while	access	times	are	measured	in	milliseconds.

•	Cache.	Most	computers	now	have	another	level	of	IC	memory—sometimes	sev-eral	such	levels—called	cache	memory,	which	is	positioned	logically	betweenthe	CPU
registers	and	main	memory.	A	cache's	storage	capacity	is	less	than	thatof	main	memory,	but	with	an	access	time	of	one	to	three	cycles,	the	cache	ismuch	faster	than	main
memory	because	some	or	all	of	it	can	reside	on	the	sameIC	as	the	CPU.	Caches	are	essential	components	of	high-performance	computers

401

CHAPTER	6

MemoryOrganization

Cache(level	2)

ICs	2:m

CPU

Cache(level	1)

Register

file

IC	1	(microproces ior)

Mainmemory

ICs	m:n

Secondarymemory

Hard	disks,	etc.

Figure	6.1

Conceptual	organization	of	a	multilevel	memory	system	in	a	computer.

402	that	aim	to	make	CPI	<	1.	Unlike	the	three	other	memory	types,	caches	are	nor-

mally	transparent	to	the	programmer.	Together,	a	computer's	caches	and	main

M	T	.	.	memory	implement	the	external	memory	M	addressed	directly	by	CPU	instruc-

tions.

The	goal	of	every	memory	system	is	to	provide	adequate	storage	capacity	withan	acceptable	level	of	performance	and	cost.	We	can	achieve	these	goals	byemploying
several	memory	types—with	different	cost/performance	ratios—thatare	organized	to	provide	a	high	average	performance	at	a	low	average	cost	per	bit.The	individual
memory	units	form	a	multilevel	hierarchy	of	storage	devices,	assuggested	by	Figure	6.1.	Successful	operation	of	the	hierarchy	requires	automaticstorage-control	methods
that	make	efficient	use	of	the	available	memory	capacity.These	methods	should	free	the	user	from	explicit	management	of	memory	space.They	should	also	free	programs
from	the	particular	memory	environment	in	whichthey	are	executed.

Performance	and	cost.	The	computer	architect	can	choose	from	a	bewilder-ing	variety	of	memory	devices	that	employ	various	electronic,	magnetic,	and	opti-cal
technologies	and	offer	many	cost/performance	trade-offs	[Cook	and	White1994;	Prince	1996].	However,	all	memories	are	based	on	just	a	few	physical	phe-nomena	and
organizational	principles.	We	now	examine	the	features	common	tothe	devices	used	to	build	cache,	main,	and	secondary	memories.

The	most	meaningful	measure	of	the	cost	of	a	memory	device	is	the	purchaseprice	to	the	user	of	a	complete	unit.	The	price	should	include	not	only	the	cost	ofthe
information	storage	medium	itself	but	also	the	cost	of	the	peripheral	equipment(access	circuitry)	needed	to	operate	the	memory.	Let	C	be	the	price	in	dollars	of	acomplete
memory	system	with	S	bits	of	storage	capacity.	We	define	the	cost	c	ofthe	memory	as	follows:

C

c	=	—	dollars/bit

The	performance	of	an	individual	memory	device	is	primarily	determined	bythe	rate	at	which	information	can	be	read	from	or	written	into	the	memory.	A
basicperformance	measure	is	the	average	time	to	read	a	fixed	amount	of	information,	forinstance,	one	word,	from	the	memory.	This	parameter	is	called	the	read
accesstime,	or	simply	the	access	time,	of	the	memory	and	is	denoted	by	tA.	The	writeaccess	time	is	defined	similarly;	it	is	often,	but	not	always,	equal	to	the	read
accesstime.	The	access	time	depends	on	the	physical	nature	of	the	storage	medium	and	onthe	access	mechanisms	used.	It	is	calculated	from	the	time	the	memory	receives
aread	request	to	the	time	at	which	the	requested	information	becomes	available	atthe	memory's	output	terminals.

Clearly,	low	cost	and	short	access	time	are	desirable	memory	characteristics;unfortunately,	they	also	tend	to	be	incompatible.	Memory	units	with	fast	access	areexpensive,
while	low-cost	memories	are	slow.	Figure	6.2	shows	the	relationshipbetween	cost	c	and	access	time	tA	for	some	recent	memory	technologies.	Thestraight	line	AB
approximates	this	relationship.	If	we	write	tA	=	10-v	and	c	=	10\then	y	~	mx	+	k,	where	m	denotes	the	slope	of	AB	and	k	is	a	constant.	Hence	tA	~10""+*	=	kcm	+	k".
From	the	data	in	Figure	6.2,	we	can	conclude	that	m	«	-0.5.Hence	to	decrease	tA	by	a	factor	of	10,	the	cost	c	must	increase	by	about	100.
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Figure	6.2

Access	time	versus	cost	for	representative	memory	technologies.
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Manufacturing	improvements	have	steadily	reduced	the	storage	cost	per	bit	cfor	the	principal	memory	technologies.	This	trend	is	especially	striking	in	the	caseof	the	IC
RAMs	used	to	construct	main	and	cache	memories,	where	the	storagedensity	per	IC	has	increased	steadily	while	the	cost	per	IC	has	remained	fairly	con-stant.	The	state	of
the	art	in	RAM	manufacture	circa	1975,	1985.	and	1995	is	repre-sented	by	single-chip	RAMs	of	capacity	4	Kb,	256	Kb,	and	16	Mb,	respectively.Here	1	Kb	denotes	a	kilobit
and	equals	210,	or	4096	bits,	while	1	Mb	denotes	amegabit	and	equals	220,	or	1,048,576	bits.	At	a	typical	introductory	price	of	S40	foreach	chip	type,	the	cost	per	bit	c
fell	from	around	0.01	dollars	per	bit	in	1975	to0.00015	dollars	per	bit	in	1985	and	to	0.0000024	dollars	per	bit	a	decade	later.Similar	developments	have	taken	place	in
other	technologies,	notably	magnetic(hard)	disk	memories,	as	storage	density	has	increased	steadily	with	little	change	inthe	cost	per	memory	unit.

Although	storage	density	has	grown	rapidly	for	the	principal	memorytechnologies,	access	times	have	decreased	at	a	much	slower	rate.	This	disparity	hastended	to
aggravate	the	speed	mismatch—the	von	Neumann	bottleneck—betweenthe	CPU	and	M.	Memory	speed	has	increased	slowly,	but	the	computing	speed	ofmicroprocessors
has	spurted,	along	with	their	ability	to	produce	and	consume	ever-increasing	amounts	of	information.	As	we	will	see	in	this	chapter,	various	designtechniques	can	increase
the	effective	rate	at	which	the	CPU	can	access	the	informa-tion	stored	in	its	memory	system.
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Access	modes.	A	fundamental	characteristic	of	a	memory	is	the	order	orsequence	in	which	information	can	be	accessed.	If	storage	locations	can	beaccessed	in	any	order
and	access	time	is	independent	of	the	location	beingaccessed,	the	memory	is	termed	a	random-access	memory	(RAM).	IC	(semicon-ductor)	memories	are	generally	of	this
type.	Memories	whose	storage	locations	canbe	accessed	only	in	a	certain	predetermined	sequence	are	called	serial-access	mem-ories.	Magnetic	disks	and	tapes,	as	well	as
optical	memories	like	CD-ROMs,employ	serial-access	methods.

Each	storage	location	in	a	RAM	can	be	accessed	independently	of	the	otherlocations.	There	is,	in	effect,	a	separate	access	mechanism,	or	read-write	"head,"for	every
location,	as	suggested	in	Figure	6.3.	In	serial	memories,	on	the	otherhand,	the	access	mechanism	is	shared	by	the	storage	locations	and	must	beassigned	to	different
locations	at	different	times	by	moving	the	stored	information,the	read-write	head,	or	both.	Many	serial-access	memories	operate	by	continuallymoving	the	storage
locations	around	a	closed	path	or	track,	as	suggested	by	Figure6.4.	A	particular	location	can	be	accessed	only	when	it	passes	the	fixed	read-writehead.	Hence	the	time	to
access	a	particular	location	depends	on	its	position	relativeto	the	read-write	head	when	the	memory	receives	an	access	request.

Since	every	location	has	its	own	access	mechanism,	random-access	memoriestend	to	be	more	cosdy	than	the	serial	type.	In	serial-access	memories,	however,	thetime
required	to	bring	the	desired	location	into	correspondence	with	a	read-writehead	increases	the	effective	access	time,	so	serial	access	tends	to	be	slower	thanrandom
access.	Thus	the	type	of	access	mode	contributes	significantly	to	theinverse	relationship	between	cost	and	access	time.	In	Figure	6.2,	for	example,	therandom-access
technologies	(dynamic	and	static	RAMs	based	on	ICs)	and	serial-access	technologies	(magnetic	disks,	magnetic	tapes,	and	optical	disks)	are	clearlyseparated	into	two
groups.

Memory	devices	such	as	magnetic	hard	disks	and	CD-ROMs	contain	manyrotating	storage	tracks.	If	each	track	has	its	own	read-write	head,	the	tracks	can	beaccessed
randomly,	but	access	within	each	track	is	serial.	In	such	cases	the	accessmode	is	semirandom.	Note	that	the	access	mode	is	a	function	of	both	memoryorganization	and
the	inherent	characteristics	of	the	storage	technology.	The	ICtechnologies	used	for	RAMs	can	also	be	used	to	construct	serial-access	memories;the	converse	is	not	true,
however.

Read-write	head	selector

4	A	A	A	A	A	A	a	]!	ji	|	v	v	|	v	J	J

Read-writeheads

Storagelocations

Figure	6.3

Conceptual	model	of	a	random-access	memory.

Read-writehead

Storagelocations



Figure	6.4

Conceptual	model	of	aserial-access	memory.
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Memory	retention.	The	method	of	writing	information	into	a	memory	can	bepermanent	or	irreversible	in	that	once	information	has	been	written,	it	cannot	bealtered	while
the	memory	is	in	use	or	on-line.	Printing	on	paper	is	an	example	of	apermanent	storage	technique.	Memories	whose	contents	cannot	be	altered	on-line—if	they	can	be
altered	at	all—are	read-only	memories	(ROMs).	A	ROM	istherefore	a	nonerasable	storage	device.	ROMs	are	widely	used	to	store	control	pro-grams	such	as
microprograms.	Compact	disk	(CD)	ROMs	are	a	class	of	noneras-able	secondary	memory	devices	developed	in	the	1980s	that	employ	an	optical(laser)	read-write
mechanism.	A	standard	(12	cm	diameter)	CD-ROM	has	a	capac-ity	of	about	600	MB	and	is	used	to	store	large	program	and	data	files.	Semiconduc-tor	ROMs	whose
contents	can	be	changed	off-line—and	with	some	difficulty—arecalled	programmable	read-only	memories	(PROMs).	Programmable	CDs	arereferred	to	as	CD-recordable
(CD-R)	disks.

Memories	in	which	reading	or	writing	can	be	done	with	impunity	on-line	arecalled	read-write	memories	to	differentiate	them	from	ROMs.	All	memories	usedfor	temporary
storage	purposes	are	read-write	memories.	Unless	otherwise	speci-fied,	we	will	use	the	terms	memory	and	RAM	to	mean	read-write	memories.

In	some	technologies	the	stored	information	is	lost	over	a	period	of	time	unlesscorrective	action	is	taken.	Three	characteristics	of	memories	that	destroy	informa-tion	in
this	way	are	destructive	readout,	dynamic	storage,	and	volatility.	In	somememories	the	method	of	reading	the	memory	destroys	the	stored	information;	thisphenomenon	is
called	destructive	readout	(DRO).	Memories	in	which	reading	doesnot	affect	the	stored	data	have	nondestructive	readout	(NDRO).	In	DRO	memorieseach	read	operation
must	be	followed	by	a	write	operation	that	restores	the	mem-ory's	original	state.	This	restoration	is	carried	out	automatically	using	a	buffer	reg-ister,	as	shown	in	Figure
6.5.	The	read	transfers	the	word	at	the	addressed	(shaded)location	to	the	buffer	register	where	it	is	available	to	external	devices.	The	contentsof	the	buffer	are
automatically	written	back	into	the	original	location.

Certain	memory	devices	have	the	property	that	a	stored	1	tends	to	become	a	0,or	vice	versa,	due	to	some	physical	decay	process.	For	example,	in	some	IC	memo-ries,	an
electric	charge	in	a	capacitor	represents	a	stored	1;	the	absence	of	a	storedcharge	represents	a	0.	Over	time,	a	stored	charge	tends	to	leak	away,	causing	a	loss
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Figure	6.5

Memory	restoration	in	a	destructivereadout	(DRO)	memory.

of	information	unless	the	charge	is	restored	by	a	process	called	refreshing.	Memo-ries	that	require	periodic	refreshing	are	called	dynamic	memories,	as	opposed	tostatic
memories,	which	require	no	refreshing.	(Note	that	in	this	context	dynamicand	static	do	not	refer	to	the	presence	or	absence	of	mechanical	motion	in	the	stor-age	device.)
Most	memories	that	employ	magnetic	or	optical	storage	techniquesare	static.	Main	memories	are	usually	built	from	dynamic	ICs	referred	to	asdynamic	RAMS	(DRAMs).
ICs	can	also	implement	static	memories	referred	to	asstatic	RAMS	(SRAMs).	As	Figure	6.2	indicates,	SRAMs	tend	to	be	faster,	that	is,have	lower	access	time,	than
DRAMs,	but	the	cost	per	bit	of	SRAMs	is	higher.SRAMs	are	often	used	to	build	caches.	A	dynamic	memory	is	refreshed	in	muchthe	same	way	that	data	is	restored	in	a
DRO	memory.	The	contents	of	every	loca-tion	are	sent	periodically	to	buffer	registers	and	then	returned	in	amplified	form	totheir	original	locations.

Another	physical	process	that	can	destroy	the	contents	of	a	memory	is	theremoval	or	failure	of	its	power	supply.	A	memory	is	volatile	if	the	loss	of	powerdestroys	the
stored	information.	Information	can	be	stored	indefinitely	in	a	volatilememory	by	providing	batten,'	backup	or	other	means	to	maintain	a	continuous	sup-ply	of	power.
Most	IC	memories	are	volatile,	while	most	magnetic	and	opticalmemories	are	nonvolatile.

Figure	6.6	summarizes	these	characteristics	for	some	important	contemporarymemory	technologies.

Other	characteristics.	We	defined	the	access	time	tA	as	the	time	between	thereceipt	of	a	read	request	signal	by	a	memory	and	the	delivery	of	the	requestedinformation	to
its	output	terminals.	Some	DRO	and	dynamic	memories	cannot	ini-tiate	a	new	access	until	a	restore	or	refresh	operation	has	been	carried	out.	There-fore,	the	minimum
time	that	must	elapse	between	the	start	of	two	consecutiveaccess	operations	can	be	greater	than	fA.	This	elapsed	time	is	called	the	cycle	timetM	of	the	memory	and
represents	the	time	needed	to	complete	a	read	or	write	oper-ation.

The	maximum	amount	of	information	that	can	be	transferred	to	or	from	thememory	per	unit	time	is	the	data-transfer	rate	or	bandwidth	frM	and	is	measured	in
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Figure	6.6

Characteristics	of	some	common	memory	technologies.

bits	or	words	per	second.	If	vv	is	the	number	of	bits	that	can	be	transferred	simulta-neously	to	or	from	the	memory,	then	bM	=	w/tM	bits/s.	If	tM	=	tA,	then	bM	=
w/tA.Some	memory	types,	particularly	serial	memories,	require	a	long	access	time	tA	toinitiate	a	new	access	operation;	once	the	operation	is	initiated,	however,	data
trans-fer	can	proceed	at	a	rate	bM	much	greater	than	w/tA.	In	such	cases	the	manufacturerprovides	independent	specifications	for	tA,	fM,	bM,	and	related	performance
param-eters.

Finally,	we	mention	reliability,	which	is	measured	by	the	mean	time	beforefailure	(MTBF).	In	general,	memories	with	no	moving	parts	have	much	higher	reli-ability	than
memories	such	as	magnetic	disks,	which	involve	considerable	mechan-ical	motion.	Even	in	memories	without	moving	parts,	reliability	problems	arise,particularly	when
very	high	storage	densities	or	data-transfer	rates	are	used.	Error-detecting	and	error-correcting	codes	can	increase	the	reliability	of	any	memory.

6.1.2	Random-Access	Memories

RAMs	are	distinguished	by	the	fact	that	each	storage	location	can	be	accessedindependently	with	fixed	access	and	cycle	times	that	are	independent	of	the	posi-tion	of	the
accessed	location.

Organization.	Figure	6.7	shows	the	main	components	of	a	RAM	device	suchas	a	DRAM	IC.	At	its	heart	is	a	storage	unit	composed	of	a	large	number	(2m)	ofaddressable
locations,	each	of	which	stores	a	w-bit	word.	Individual	bits	are	notdirectly	addressable	unless	w	=	1.	A	RAM	of	this	sort	is	referred	to	as	a	2"'	x	n	-bitor	2m-word	memory.
The	RAM	operates	as	follows:	First	the	address	of	the	targetlocation	to	be	accessed	is	transferred	via	the	address	bus	to	the	RAM's	address
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Figure	6.7

One-dimensional	(1-D)	random-access	memory	unit.

buffer.	The	address	is	then	processed	by	the	address	decoder,	which	selects	therequired	location	in	the	storage	cell	unit.	A	control	line	indicates	the	type	of	accessto	be
performed.	If	a	read	operation	(load)	is	requested,	the	contents	of	theaddressed	location	are	transferred	from	the	storage	cell	unit	to	the	data	buffer	andfrom	there	to	the
data	bus.	If	a	write	(store)	is	requested,	the	word	to	be	stored	istransferred	from	the	data	bus	to	the	selected	location	in	the	storage	unit.	Since	it	isnot	usually	necessary
or	desirable	to	permit	simultaneous	reading	and	writing,	theinput	and	output	data	buses	are	often	combined	into	a	single,	bidirectional	data	bus.

The	storage	unit	is	made	up	of	many	identical	1-bit	memory	cells	and	theirinterconnections.	The	actual	number	of	lines	connected	to	the	cell	and	their	func-tions	depend
on	the	memory	technology	and	the	addressing	scheme	in	use.	Eachcell	is	connected	to	a	set	of	data,	address,	and	control	signals.	One	physical	lineoften	has	several
logical	functions;	for	example,	it	can	serve	as	both	an	address	anddata	line.	In	each	line	connected	to	the	storage	cell	unit,	we	can	expect	to	find	adriver	that	acts	as	either
an	amplifier	or	a	transducer	of	physical	signals.	Thus	wesee	in	Figure	6.7	several	sets	of	drivers	for	the	address	and	data	lines.	The	drivers,decoders,	and	control	circuits
form	the	access	circuitry	of	the	RAM	and	can	have	asignificant	impact	on	the	total	size	and	cost	of	the	memory.

A	RAM's	storage	cells	are	physically	arranged	into	regular	arrays	to	reducethe	cost	of	the	connections	between	the	cells	and	the	access	circuitry.	The	memoryaddress	is
partitioned	into	d	components	so	that	the	address	A,	of	cell	C,	becomes	ad-dimensional	vector	(AiA,Ai2,...,ALd)	=	At.	Each	of	the	d	parts	of	the	address	wordgoes	to	a
separate	address	decoder	and	a	separate	set	of	address	drivers.	A	cell	isselected	by	simultaneously	activating	all	d	of	its	address	lines.	A	memory	unit	withthis	kind	of
addressing	is	said	to	be	d-dimensional.	Thus	the	basic	RAM	of	Figure6.7	is	one-dimensional	(1-D).

Storage	cell	array

Columnaddress	decoder

Figure	6.8

Two-dimensional	(2-D)	RAM	addressing	scheme.
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The	most	common	RAM	organization	is	the	two-dimensional	(2-D)	or	row-column	scheme	shown	in	Figure	6.8,	where,	for	simplicity,	the	data	and	control	cir-cuits	are
omitted.	Here	the	m-bit	address	word	is	divided	into	two	parts,	X	and	Y,consisting	of	mx	and	my	bits,	respectively.	The	cells	are	arranged	in	a	rectangulararray	of	Nx	<
2m*	rows	and	Ny	<	2mv	columns,	so	the	total	number	of	cells	is	N	=NxNy.	A	cell	is	selected	by	the	coincidence	of	signals	applied	to	its	X	and	Y	addresslines.	The	2-D
organization	requires	much	less	access	circuitry	than	a	1-D	organi-zation	for	the	same	storage	capacity.	For	example,	if	7Vr	=	7VV	=	JN,	the	number	ofaddress	drivers
needed	is	ijN,	whereas	the	1-D	RAM	of	Figure	6.7	has	N	=	NxNyaddress	drivers.	Instead	of	a	single	one-out-of-TV	address	decoder,	two	one-out-of-Jn	address	decoders
suffice.	In	addition,	the	2-D	organization	is	a	good	match	forthe	inherently	two-dimensional	layout	structures	allowed	by	VLSI	technology.

Semiconductor	RAMs.	Semiconductor	memories	in	which	the	storage	cellsare	small	transistor	circuits	have	been	used	for	high-speed	CPU	registers	since	the1950s.	It	was
not	until	the	development	of	VLSI	in	the	1970s	that	producing	largeRAM	ICs	suitable	for	main-memory	and	cache	applications	became	economical.Single-chip	RAMs	can
be	manufactured	in	sizes	ranging	from	a	few	hundred	bitsto	1	Gb	or	more.	Both	bipolar	and	MOS	transistor	circuits	are	used	in	RAMs.	butMOS	is	the	dominant	circuit
technology	for	large	RAMs.	Current	IC	manufactur-ing	limitations	make	it	impossible	to	manufacture,	say,	a	terabit	(240-bit)	RAM	on	asingle	IC	chip.	Consequently,	very
large	semiconductor	RAMs	must	be	con-structed	from	a	set	of	smaller	RAM	ICs.

As	observed	earlier,	semiconductor	memories	fall	into	two	categories—SRAMs	and	DRAMs—whose	data-retention	methods	are	static	and	dynamic.
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respectively.	SRAMs	consist	of	memory	cells	that	resemble	the	flip-flops	used	inprocessor	design.	SRAM	cells	differ	from	flip-flops	primarily	in	the	methods	usedto	address
the	cells	and	transfer	data	to	and	from	them.	Multifunction	lines	mini-mize	storage-cell	complexity	and	the	number	of	cell	connections,	thereby	facilitat-ing	the
manufacture	of	very	large	2-D	arrays	of	storage	cells.

In	a	DRAM	cell	the	1	and	0	states	correspond	to'the	presence	or	absence	of	astored	charge	in	a	capacitor	controlled	by	a	transistor	switching	circuit.	Since	aDRAM	cell
can	be	constructed	around	a	single	transistor,	whereas	a	static	cellrequires	up	to	six	transistors,	higher	storage	density	is	achieved	with	DRAMs.Indeed,	DRAMs	are
among	the	densest	VLSI	circuits	in	terms	of	transistors	perchip.	The	charge	stored	in	a	DRAM	cell	tends	to	decay	with	time,	and	the	cell	mustbe	periodically	refreshed.
Hence	a	DRAM	must	contain	refreshing	circuitry	andinterleave	refreshing	operations	with	normal	memory	accesses.	Both	SRAMs	andDRAMs	are	volatile,	that	is,	the
stored	information	is	lost	when	the	power	source	isremoved.

Figure	6.9	shows	examples	of	MOS	RAM	cells	of	both	the	static	and	dynamicvarieties.	The	six-transistor	SRAM	cell	(Figure	6.9a)	superficially	resembles	a	flip-flop.	A
signal	applied	to	the	address	line	(also	called	the	word	line)	by	the	addressdecoder	selects	the	cell	for	either	the	read	or	write	operation.	The	two	data	lines(also	called	bit
lines)	are	used	in	a	complex	way	[Weste	and	Eshraghian	1992]	totransfer	the	stored	data	and	its	complement	between	the	cell	and	the	data	drivers.

Figure	6.9b	shows	a	particularly	simple	and	useful	memory	cell	based	ondynamic	charge	storage.	This	one-transistor	DRAM	cell	comprises	an	MOS	tran-sistor	T,	which
acts	as	a	switch,	and	a	capacitor	C,	which	stores	a	data	bit.	Apartfrom	power	and	ground,	the	cell	has	only	two	external	connections:	a	data	(bit)	lineand	an	address	(word)
line.	To	write	information	into	the	cell,	a	voltage	signal(either	high	or	low,	representing	1	and	0,	respectively)	is	placed	on	the	data	line.	Asignal	is	then	applied	to	the
address	line	to	switch	on	T.	This	action	transfers	acharge	to	C	if	the	data	line	is	1;	no	charge	is	transferred	otherwise.	To	read	the	cell,the	address	line	is	again	activated,
transferring	any	charge	stored	in	C	to	the	data
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T

Data	line	D

Ground

Data	line	D
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Figure	6.9

(a)	Static	and	(b)	dynamic	RAM	cells	in	MOS	technology.

line	where	it	is	detected.	Since	the	readout	process	is	destructive,	the	data	beingread	out	is	amplified	and	subsequently	written	back	to	the	cell;	this	process	may
becombined	with	the	periodic	refreshing	operation	required	by	dynamic	memories.The	advantages	of	this	DRAM	cell	are	its	small	size,	which	means	that	ICs	withvery
high	cell	density	can	be	manufactured,	and	its	low	power	consumption.
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RAM	design.	A	RAM	IC	typically	contains	all	required	access	circuitry,including	address	decoders,	drivers,	and	control	circuits.	Figure	6.10	shows	ageneric	2m	x	w-bit
RAM	IC	and	identifies	its	control	lines.	WE	is	the	write-enableline;	a	memory	write	(read)	operation	takes	place	if	WE	=	1	(0).	A	second	controlline,	the	chip-select	line	CS,
triggers	a	memory	operation.	A	word	is	accessed	foreither	reading	or	writing	only	when	CS	is	activated.	This	line	signals	that	the	databus	has	a	word	ready	to	be	written
into	the	RAM	or,	in	the	case	of	a	read	operation,that	the	data	bus	is	ready	to	receive	a	data	word.	The	RAM	of	Figure	6.10	has	abidirectional	data	bus	D,	which	is	directly
wired	to	all	addressable	storage	loca-tions,	and	so	it	requires	a	third	control	line,	output	enable	OE.	In	write	(input)	oper-ations	this	line	is	deactivated	(OE	=	0),	allowing
D	to	act	as	an	input	bus	to	allstorage	locations.	Of	course,	only	the	addressed	location	actually	stores	the	wordreceived	on	D.	In	read	(output)	operations,	OE	must	be
activated	(OE	=	1)	so	thatonly	the	addressed	memory	location	transfers	its	data	to	D.

A	memory-design	problem	that	the	computer	architect	may	encounter	is	thefollowing:	given	that	N	x	w-bit	RAM	ICs	denoted	MNw	are	available,	design	anN'	x	w'-bit	RAM,
where	N'	>	N	and/or	w'	>	w.	A	general	approach	is	to	construct	ap	x	q	array	of	the	MNw	ICs,	where	p	=	\N'/N\	q	=	fw'/w~|,	and	[x~]	denotes	thesmallest	integer	greater
than	or	equal	to	x.	In	this	IC	array	each	row	stores	N	words(except	possibly	the	last	row),	while	each	column	stores	a	fixed	set	of	w	bits	fromevery	word	(except	possibly
the	last	column).	For	example,	to	construct	a	1GBRAM	using	64M	x	1-bit	RAM	ICs	requires	p	=	16,	q	=	8,	and	a	total	of	pq	=	128copies	of	the	64Mb	RAM.	When	N'	>	N,
additional	extemal-address-decoding	cir-cuitry	is	usually	required.

Consider	the	task	of	designing	an	N	x	4w-bit	RAM	using	N	x	w-bit	ICs	of	thetype	appearing	in	Figure	6.10.	Clearly,	four	ICs	are	needed	to	quadruple	the	wordsize	in	this
way,	since	p	-	1	and	q	=	4.	The	four	are	arranged	in	the	1	x	4	array	con-figuration	of	Figure	6.11.	Each	RAM	IC	contains	a	w-bit	slice	of	every	storedword.	Note	how	all	the
address	and	control	lines	are	connected	in	exactly	the	same

Address	A

*—»•	DataD

Output	enable	OEWrite	enable	WEChip	select	CS

Figure	6.10

A	RAM	IC	showing	its	majorexternal	connections.
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way	to	each	IC.	Their	w-bit	data	buses	are	concatenated	to	form	a	single	4u	-bitbus,	as	indicated.



Now	suppose	we	want	to	increase	the	number	of	stored	words	by	a	factor	offour.	This	time	p	=	4	and	q	=	1,	and	again	we	need	four	RAM	ICs.	The	number	ofaddresses	has
quadrupled,	hence	two	lines	are	added	«to	the	address	bus.	Further-more,	a	one-out-of-four	address	decoder	must	be	introduced,	as	shown	in	Figure6.12,	to	decode	the
extra	address	bits.	The	original	m	address	lines	are	connected	tothe	m-bit	address	bus	of	every	RAM	IC;	the	new	lines	are	the	main	inputs	to	thedecoder.	Each	decoder
output	line	is	connected	to	the	CS	inputs	of	the	RAMs	in	thesame	row,	ensuring	that	the	row	has	a	unique	address.	The	output	buses	of	all	RAMICs	in	the	same	column	are
designed	so	they	can	be	wired	together	without	addi-tional	logic.	(This	tristate	busing	technique	is	explained	in	section	7.1.1.)	Theremaining	control	lines	WE	and	OE	are
attached	to	every	RAM	IC	as	before.	Theexternal	CS	line	is	connected	to	an	enable	input	of	the	decoder.	Making	this	line	0forces	all	CS	lines	to	the	individual	RAM	ICs	to
0	so	that	they	are	all	deactivatedand	no	memory	operation	takes	place.

EXAMPLE	6.1	A	COMMERCIAL	64Mb	DRAM	CHIP	IMICRON	TECHNOLOGY1997].	The	Micron	Technology	MT4LC8M8E1,	which	we	will	call	the	8E1	for	short,is	a
commercial	DRAM	chip	introduced	in	1996.	It	stores	64	Mb,	that	is,	226	bits	ofdata,	in	single-transistor	storage	cells	of	the	kind	shown	in	Figure	6.9b.	The
storedinformation	is	organized	as	223	8-bit	bytes,	so	the	8E1	is	also	referred	to	as	an	8M	x8-bit	DRAM.	The	memory	address	size	m	=	23,	and	the	data	word	size	w	=	8.

The	internal	structure	of	the	8E1	appears	in	Figure	6.13.	Two-dimensionaladdressing	is	employed,	with	the	23-bit	address	broken	into	two	parts:	a	13-bit	rowaddress	and
a	10-bit	column	address.	Only	13	external	address	lines	are	used,	allowingthe	8E1	to	be	housed	in	a	small,	32-pin	package,	which	implies	that	row	and	columnaddresses
must	be	multiplexed	over	the	address	bus,	a	common	tactic	in	large	RAMchips.	This	multiplexing	is	controlled	by	two	lines:	RAS	(row	address	select)	and	CAS(column
address	select),	which	replace	the	generic	CS	control	line	of	Figures	6.10,

DataD
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2mxwRAM 2mxwRAM 2mxwRAM 2mXH-RAM

m CS	WE	OE CS	WE	OE CS	WE	OE CS	WE	OE

Address	A	■ < > 4 i 4 »
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Control	lines	CS	WE	OE

Figure	6.11

Increasing	the	word	size	of	a	RAM	by	a	factor	of	four.
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Figure	6.12

Increasing	the	number	of	words	stored	in	a	RAM	by	a	factor	of	four.

6.11,	and	6.12.	First	the	row	address	is	transferred	to	the	DRAM	by	the	external	(mas-ter)	device,	which	places	the	row	address	on	the	8El's	address	bus	and	activates
RAS.The	master	then	places	the	column	address	on	the	address	bus,	and	activates	CAS.	CASalso	serves	to	indicate	that	a	data	word	is	ready	on	the	data	bus	(write
operation)	or	thatthe	external	bus	is	ready	to	receive	a	data	word	(read	operation).	WE	and	OE	are	thewrite-enable	and	output-enable	lines,	respectively.	As	the	overbars
in	their	names	indi-cate,	all	the	control	lines	are	active	in	the	0	state.

The	read	access	time	fA,	which	is	50	ns	in	faster	versions	of	the	8E1.	includes	thetime	needed	to	transfer	the	row	and	column	addresses	to	the	DRAM	and	the	time	toread
out	a	data	word.	The	read	cycle	time	tM	with	respect	to	a	"random"	address	streamis	90	ns,	since	every	such	access	is	followed	by	an	internal	restoring	write,	as	depicted
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Figure	6.13

Structure	of	a	commercial	8M	x	8-bit	DRAM	chip.

in	Figure	6.5.	If	a	sequence	of	memory'	accesses	share	the	same	row	address,	then	it	issufficient	to	transfer	the	row	address	to	the	DRAM	once	at	the	start	of	the
sequence.This	transfer	causes	an	entire	row	of	data,	referred	to	as	a	page,	to	be	read	out	and	heldin	an	internal	buffer.	A	subsequent	memory	access	to	the	same	page
needs	to	transferonly	a	column	address,	thus	reducing	the	effective	memory	cycle	time	fM.	This	time	isfurther	reduced	by	the	fact	that	there	is	no	need	to	write	back	and
restore	the	page	dataevery	time	a	word	from	it	is	accessed.	A	fast	access	method	of	this	type	is	called	pagemode,	and	in	the	8E1	case	it	reduces	tM	to	30	ns.	The	memory
address	space	of	the8E1	consists	of	8192	rows	or	pages,	each	containing	1024	locations.	Both	RAS	andCAS	are	normally	deactivated	before	the	start	of	a	new	read	or
write	cycle.	Page	modeis	established	by	activating	RAS	to	load	the	row	address	and	then	maintaining	it	activefor	the	duration	of	a	sequence	of	column-address	transfers	in
which	CAS	is	toggled	inthe	normal	way.

To	ensure	that	the	stored	data	does	not	decay,	every	cell	in	the	memory	must	beread	to	refresh	it	at	least	once	every	64	ms,	which	is	the	specified	refresh	period	tREF.An
internal	restoring	write	that	performs	the	refreshing	accompanies	each	such	read,	asin	Figure	6.5.	The	2-D	addressing	structure	makes	it	possible	to	read	and	restore
thecontents	of	an	entire	row	of	storage	locations	in	a	single	read	cycle.	Hence	the	refresh

controller	need	only	sweep	through	all	the	row	addresses	in	a	sequence	of	internal	read	415cycles	to	implement	the	refreshing.	If	a	one-row	read	operation	takes	90	ns,
then	thetotal	time	needed	to	refresh	the	DRAM	once	is	90	x	8192	ns	=	0.737	ms.	Thus	the	frac-	CHAPTER	6tion	of	time	devoted	to	refreshing	is	0.737/64	=	1.15	percent—
a	negligible	amount.	emory	Organization

Other	semiconductor	memories.	Techniques	similar	to	those	employed	inDRAM	technology	are	also	used	to	build	several	other	types	of	high-density	semi-conductor
memories	for	computer	applications.	Read-only	memories	(ROMs),	astheir	name	implies,	cannot	have	their	contents	rewritten	once	they	are	installed	in	asystem,	that	is,
on-line.	They	are	read	using	random-addressing	methods	like	thosein	RAM	chips.	A	ROM	has	essentially	the	same	internal	organization	and	externalinterface	as	a	RAM,
but	without	the	latter's	writing	ability.	However,	ROMs	havethe	advantage	of	being	nonvolatile,	so	they	are	widely	used	to	store	permanentcode	at	the	instruction	and
microinstruction	levels.	Various	ROM	types	are	distin-guished	by	the	methods	used	to	program	them.	Some	types	can	be	programmedonly	once.	Others,	known	as
programmable	ROMS	(PROMs),	can	be	programmedrepeatedly,	which	requires	their	contents	to	be	erased	in	bulk	off-line	and	thenreplaced	via	a	special	writing	process
referred	to	as	"programming."	This	program-ming	step	resembles	that	of	programmable	logic	devices	such	as	FPGAs	(section2.2.2).

A	recent	semiconductor	technology	called	flash	memory	offers	the	same	non-volatility	as	a	PROM,	but	it	can	be	programmed	and	erased	on-line.	The	program-ming	can	be
done	a	bit	at	a	time,	but	erasure	is	done	in	large	blocks—a	"flasherase"	process	from	which	this	memory	gets	its	name.	Thus	individual	bits	can	beread	randomly,	but
writing	must	be	done	in	blocks.	The	storage	densities	and	read-access	times	of	flash	memories	are	comparable	to	those	of	DRAMs,	but	a	simplersingle-transistor	storage
cell	makes	a	flash	memory	potentially	cheaper	to	producethan	a	DRAM.	Flash	memories	are	suitable	for	writable	control	stores	and	asreplacements	for	secondary
memories	in	some	applications.

Fast	RAM	interfaces.	The	gap	between	microprocessor	and	RAM	data-trans-fer	rates	(bandwidth),	especially	those	of	cheap	but	slow	DRAMs.	has	given	rise	tonovel
methods	for	enabling	RAM	units	to	communicate	at	higher-than-normalspeeds.	The	use	of	multiple	memory	types,	serial	as	well	as	random	access,	in	amemory	hierarchy
is	a	separate	speedup	issue	that	we	examine	later.	Here	we	arejust	concerned	with	one	level	in	the	hierarchy—main	memory,	for	example.

Suppose	a	particular	RAM	technology	must	supply	a	faster	external	processorwith	individually	addressable	/7-bit	words.	There	are	two	basic	ways	we	can	in-crease	the
data-transfer	rate	across	its	external	interface	by	a	factor	of	5:

•	Use	a	bigger	memory	word.	We	can	design	the	RAM	with	an	internal	memoryword	size	of	w	=	Sn	bits.	This	size	permits	Sn	bits	to	be	accessed	as	a	unit	in	onememory
cycle	time	TM.	We	then	need	fast	circuits	inside	the	RAM	that,	in	thecase	of	a	read	operation,	can	access	an	Sn-bil	word,	break	it	into	S	parts,	and	out-put	them	to	the
processor,	all	within	the	period	TM.	During	write	operations,these	circuits	must	accept	up	to	S	n-b'n	words	from	the	processor,	assemble	theminto	an	nS-bit	word,	and
store	the	result,	again	within	the	period	7*M.

•	Access	more	than	one	word	at	a	time.	We	can	partition	the	RAM	into	S	separatebanks	MQ,M}	Ms_,,	each	covering	part	of	the	memory	address	space	and	each

416	provided	with	its	own	addressing	circuitry.	Then	it	is	possible	to	carry	out	S	inde-

,	pendent	accesses	simultaneously	in	one	memory	clock	period	TM.	Once	more,
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we	need	fast	circuits	inside	the	RAM	unit	to	assemble	and	disassemble	the	wordsbeing	accessed.

Both	approaches	increase	the	memory	bandwidth«by	increasing	the	amount	ofparallelism	in	memory	accesses,	and	both	require	fast	parallel-to-serial	and	serial-to-parallel
circuits	at	the	processor-memory	interface.	Hence	an	interface	technol-ogy	different	from	that	of	the	RAM	itself	may	be	necessary;	therefore,	theseapproaches	may	not	be
suitable	for	single-chip	RAM	designs.	The	special	interfacecircuits	also	add	substantially	to	the	overall	cost	of	the	memory	system.

The	S	words	produced	or	consumed	by	the	processor	in	each	memory	cyclenormally	have	consecutive	memory	addresses,	so	we	must	consider	how	theseaddresses	are
implemented	inside	the	RAM,	particularly	when	S	independentmemory	banks	are	used.	Let	Xh,Xk+l,Xh+2>---	be	words	that	are	expected	to	beaccessed	in	sequence	by
the	processor,	for	example,	consecutive	instruction	wordsin	a	program.	They	will	normally	be	mapped	to	consecutive	physical	addresses/4I,/4I	+	1,y4,+2.--	in	the	RAM.
The	following	rule	is	employed	to	distribute	theseaddresses	among	5	memory	banks:

Interleaving	rule:	Assign	address	A,	to	bank	M}	if	j	=	/	(modulo	5).

Thus	Aq,	As,	A25,...	are	assigned	to	M0;	A,,	As+1,	A^+p...	are	assigned	to	A/,;	andso	on.	This	way	of	distributing	addresses	among	memory	banks	is	address	inter-leaving.
The	interleaving	of	addresses	among	S	banks	according	to	the	above	ruleis	S-way	interleaving.	It	is	convenient	to	make	5,	the	number	of	banks,	a	power	oftwo,	say,	S	=	2P.
Then	the	least	significant	p	bits	of	a	memory	address	immediatelyidentify	the	bank	to	which	the	address	belongs.

The	appropriate	number	of	memory	banks	S	is	determined	by	comparing	thecycle	time	of	the	RAM	technology	to	the	data	requirements	of	its	host	processor.Consider	the
case	of	the	Cray-1,	an	influential	supercomputer	of	the	mid-1970s,which	uses	address	interleaving	in	its	main	memory	M.	The	CPU	cycle	time	is12.5	ns,	and	the
semiconductor	main	memory	has	a	cycle	time	of	?M=	50	ns	and	aword	size	of	w	=	64	bits.	(The	Cray-1	has	no	cache,	however.)	Although	the	num-ber	of	memory	accesses
associated	with	each	CPU	cycle	varies	from	cycle	tocycle,	a	reasonable	estimate	is	that	when	operating	at	maximum	speed,	oneinstruction	word	and	two	input	operand
words	are	read	from	M	and	one	resultword	is	written	into	M.	Hence	a	memory	bandwidth	of	four	64-bit	words	per	CPUcycle,	or	16	words	per	memory	cycle,	is	required.
Consequently,	the	Cray-1	has	16memory	banks	and	uses	16-way	address	interleaving.

The	efficiency	of	an	interleaved	memory	system	is	highly	dependent	on	theorder	in	which	memory	addresses	are	generated;	this	order	is	determined	by	theprograms
being	executed.	If	two	or	more	addresses	require	simultaneous	access	tothe	same	module,	then	memory	interference	or	contention	occurs.	The	memoryaccesses	in
question	cannot	be	executed	simultaneously.	In	the	worst	case,	if	alladdresses	refer	to	the	same	module,	the	advantages	of	interleaving	are	entirely	lost.

Various	high-performance	interfacing	techniques	have	been	devised	for	RAMs[Kumanoya,	Ogaywa,	and	Inoue	1995].	As	discussed	in	Example	6.1,	a	2-D	RAMorganization
with	multiplexed	row	and	column	addresses	facilitates	page	address-ing,	in	which	the	row	or	page	address	remains	fixed	while	the	processor	supplies	a

stream	of	column	addresses.	This	technique,	which	exists	in	several	variations,	hasthe	effect	of	approximately	doubling	the	data-transfer	rate	compared	with
pure"random"	addressing.	Another	DRAM	design	style	called	synchronous	DRAM(SDRAM)	achieves	a	speed	doubling	by	pipelining	its	internal	operations	and
byimplementing	two-way	address	interleaving.	To	facilitate	this	internal	architecture,the	timing	relationships	among	the	SDRAM's	control	signals	(WE,	CS,	and	so	on)are



streamlined	so	that	the	SDRAM	presents	a	synchronous	(clocked)	interface	tothe	outside	world.	The	so-called	cached	DRAMs	(CDRAMs)	feature	an	on-chipcache	realized
by	a	small,	fast	SRAM	that	acts	as	a	high-speed	buffer	or	front-endmemory	for	the	main	DRAM.	A	common	characteristic	of	the	preceding	RAMstyles	is	that	they	can	have
a	fast	burst	mode	of	operation,	where	an	initial	slowaccess	is	followed	by	a	sequence	or	burst	of	much	faster	accesses.
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EXAMPLE	6.2	THE	RAMBUS	DRAM	AND	INTERFACE	[PRINCE	1996].	Firstannounced	in	1992,	this	is	a	proprietary	DRAM	design	with	a	supporting	processor-memory
interface	that	aims	to	transfer	memory	data	at	very	high	rates	over	a	narrowprocessor-memory	link.	It	employs	several	speedup	techniques,	including	a	synchro-nous
interface,	address	interleaving	and	caching	inside	the	DRAM	units,	very	fast	sig-nal	timing,	and	stringent	electrical	design	rules.	The	Rambus	data	bus	is	8	or	9	bitswide,
with	the	9th	bit	typically	serving	as	a	parity	check.	The	peak	data	transfer	rate	is500	MB/s	which,	however,	is	achievable	only	in	burst	mode.

Figure	6.14	depicts	the	overall	Rambus	organization.	As	we	will	see	in	Chapter	7,it	is	closer	in	style	to	that	of	a	typical	IO	interface	than	a	traditional	memory
interface.Rambus	DRAM	units	are	attached	to	this	shared	interface—the	Rambus	channel—which	consists	of	a	nine-line	data	bus	D	and	a	small	set	of	control	lines.	Access
is	con-trolled	either	by	the	host	CPU	or	a	special	Rambus	controller	chip	acting	as	the	mastercontrol	unit.	Each	Rambus	DRAM	unit	covers	part	of	the	memory-address
space	andacts	as	an	independent	slave	device	that	communicates	with	the	master	via	the	Ram-bus	channel.	The	Sm/S0M	lines	that	link	the	DRAM	units	in	daisy-chain
fashion	areused	for	initialization.	They	enable	the	master	to	visit	each	DRAM	unit	in	turn	to	loada	configuration	register	that	determines	the	range	of	addresses	to	which
that	unitresponds.

Normal	Rambus	operation	is	as	follows.	The	master	transmits	an	initial	"packet"of	information	on	the	Rambus	channel:	this	packet	contains	a	target	memory	address
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Figure	6.14

The	Rambus	DRAM	interface.

418	and	the	desired	access	(read	or	write)	operation.	Each	Rambus	DRAM	chip	examines

the	address,	and	the	DRAM	unit	/?,	containing	that	address	returns	either	a	"ready"	or	a"busy"	control	signal	to	the	master.	If	/?,	is	ready,	the	master	then	proceeds	to
transfer

Memory	Technology	tQ	^	a	data	packet	of	up	to	250	bytes	(write	case)	or	/?,-	sends	the	master	a	data	packet

(read	case).	This	data	transmission	takes	place	in	burst	mode	at	speeds	up	to	500	MB/s,which	implies	accessing	and	transferring	up	to	1	byte	avery	2	ns.	If	Rt	is	busy	with
anearlier	operation	when	an	access	request	arrives,	the	master	must	try	again	later	and	asignificant	delay	in	response	time	occurs.

6.1.3	Serial-Access	Memories

The	data	in	a	serial-access	memory	must	be	accessed	in	a	predetermined	order	viaread-write	circuitry	that	is	shared	by	different	storage	locations.	Large	serial	mem-ories
typically	store	information	in	a	fixed	set	of	tracks,	each	consisting	of	asequence	of	1-bit	storage	cells.	A	track	has	one	or	more	access	points	at	which	aread-write	"head"
can	transfer	information	to	or	from	the	track.	A	stored	item	isaccessed	by	moving	either	the	stored	information	or	the	read-write	heads	or	both.Functionally,	a	storage
track	in	a	serial	memory	resembles	a	shift	register,	so	datatransfer	to	and	from	a	track	is	essentially	serial.

Serial-access	memories	find	their	main	application	as	secondary	computermemories	because	of	their	low	cost	per	bit	and	relatively	long	access	times.	Lowcost	is	achieved
by	using	very	simple	and	small	storage	cells.	Long	access	time	isdue	to	several	factors:

•	The	read-write	head	positioning	time.

•	The	relatively	slow	speed	at	which	the	tracks	move.

•	The	fact	that	data	transfer	to	and	from	the	memory	is	serial	rather	than	parallel.

Because	access	speed	is	so	important,	we	now	consider	this	factor	in	detail.

Access	methods.	Serial	memories	such	as	magnetic	hard	disks	can	be	dividedinto	those	where	each	track	has	one	or	more	fixed	read-write	heads	and	thosewhose	read-
write	heads	are	shared	among	different	tracks.	In	memories	that	shareread-write	heads,	the	need	to	move	the	heads	between	tracks	introduces	a	delay.The	average	time
to	move	a	head	from	one	track	to	another	is	the	seek	time	ts	of	thememory.	Once	the	head	is	in	position,	the	desired	cell	may	be	in	the	wrong	part	ofthe	moving	storage
track.	Some	time	is	required	for	this	cell	to	reach	the	read-writehead	so	that	data	transfer	can	begin.	The	average	time	for	this	movement	to	takeplace	is	the	latency	tL	of
the	memory.	In	memories	where	information	rotatesaround	a	closed	track,	tL	is	called	the	rotational	latency.

Each	storage	cell	in	a	track	stores	a	single	bit.	A	w-bit	word	may	be	stored	intwo	different	ways.	It	can	consist	of	w	consecutive	bits	along	a	single	track.	Alter-natively,	w



tracks	may	be	used	to	store	the	word,	with	each	track	storing	a	differentbit.	By	synchronizing	the	w	tracks	and	providing	a	separate	read-write	head	foreach	track,	all	w
bits	can	be	accessed	simultaneously.	In	either	case	it	is	inefficientto	read	or	write	just	one	word	per	serial	access,	since	the	seek	time	and	the	rota-tional	latency	consume
so	much	time.	Words	are	therefore	grouped	into	largerunits	called	blocks.	All	the	words	in	a	block	are	stored	in	consecutive	locations	sothat	the	time	to	access	an	entire
block	includes	only	one	seek	and	one	latency	time.

Once	the	read-write	head	is	positioned	at	the	start	of	the	requested	word	orblock,	data	is	transferred	at	a	rate	that	depends	on	two	factors:	the	speed	of	thestored
information	relative	to	the	read-write	head	and	the	storage	density	along	thetrack.	The	speed	at	which	data	can	be	transferred	continuously	to	or	from	the	trackunder
these	circumstances	is	the	data-transfer	rate.	If	a	track	has	a	storage	densityof	T	bits/cm	and	moves	at	a	velocity	of	V	cm/s	past	the	read-write	head,	then	thedata-transfer
rate	is	TV	bits/s.

The	time	tB	needed	to	access	a	block	of	data	in	a	serial-access	memory	can	beestimated	as	follows.	Assume	that	the	memory	has	closed,	rotating	storage	tracksof	the	type
shown	in	Figure	6.4.	Let	each	track	have	a	fixed	(average)	capacity	of	A/words	and	rotate	at	r	revolutions	per	second.	Let	n	be	the	number	of	words	perblock.	The	data-
transfer	rate	of	the	memory	is	then	rN	words/s.	Once	the	read-writehead	is	positioned	at	the	start	of	the	desired	block,	its	data	can	be	transferred	inapproximately	n/{rN)
seconds.	The	average	latency	is	l/(2r)	seconds,	which	is	thetime	needed	for	half	a	revolution.	If	ts	is	the	average	seek	time,	then	an	appropriate

formula	for	tB	is

1	n

tr>	=	to	+	—	+	—

B	s	2r	rN

(6.1)
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Memory	organization.	Figure	6.15	shows	the	overall	organization	of	a	serial-memory	unit.	Assume	that	each	word	is	stored	along	a	single	track	and	that	eachaccess
results	in	the	transfer	of	a	block	of	words.	The	address	of	the	data	to	beaccessed	is	applied	to	the	address	decoder,	whose	output	determines	the	track	to	be
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Organization	of	a	serial-accessmemory	unit.

420	used	(the	track	address)	and	the	location	of	the	desired	block	of	information	within

section	6	^e	tra°k	^e	block	address).	The	track	address	determines	the	particular	read-

Memo	-	Technology	WI*ite	head	to	be	selected.	Then,	if	necessary,	the	selected	head	is	moved	into	posi-tion	to	transfer	data	to	or	from	the	target	track.	The	desired	block
cannot	beaccessed	until	it	coincides	with	the	selected	head.	To	determine	when	this	condi-tion	occurs,	a	track-position	indicator	generates	the	address	of	the	block	that	is
cur-rently	passing	the	read-write	head.	The	generated	address	is	compared	with	theblock	address	produced	by	the	address	decoder.	When	they	match,	the	selectedhead	is
enabled	and	data	transfer	between	the	storage	track	and	the	memory	databuffer	registers	begins.	The	read-write	head	is	disabled	when	a	complete	block	ofinformation
has	been	transferred.

The	number	of	different	types	of	storage	media	and	access	mechanisms	used	toconstruct	serial	memories	is	quite	large.	In	many	such	memories	the	read-writeheads	or
the	storage	locations	are	moved	through	space	by	electromechanicaldevices,	such	as	electric	motors,	in	order	to	perform	an	access.	The	most	widelyused	group	of
secondary	memory	devices,	magnetic-disk	and	-tape	units,	fall	intothis	category,	as	do	many	optical	memories.	Some	optical	memories—CD-ROMsare	an	example—employ
laser	beams	with	electromechanical	focusing	as	theirread-write	heads.	Only	a	few	serial	memories	have	no	moving	parts,	for	example,the	so-called	solid-state	disks,	which
use	semiconductor	RAM	technology	to	simu-late	the	behavior	of	disk	memories	in	applications	that	need	unusually	fast	(andtherefore	expensive)	secondary	memory.
Magnetic	memories	with	electromechani-cal	access	have	had	many	years	of	development.	The	storage	media	(magneticdisks	and	tape	cartridges)	are	inexpensive	and
portable.	Electromechanical	equip-ment	is	less	reliable	than	electronic	equipment,	however,	and	is	a	common	sourceof	computer	system	failure.

Magnetic-surface	recording.	Magnetic-disk	and	-tape	memories	store	infor-mation	on	the	surface	of	tracks	coated	with	a	magnetic	medium	such	as	ferricoxide.	Each	cell
of	a	track	has	two	stable	magnetic	states	that	represent	logical	0and	1.	These	magnetic	states	are	defined	by	the	direction	or	magnitude	of	the	cell'smagnetic	flux	in	the
cell.	Electric	currents	alter	and	sense	the	magnetic	states,	forexample,	via	an	inductive	read-write	head	of	the	type	shown	in	Figure	6.16.	Theread	and	write	signals	pass
through	coils	around	a	ring	of	soft	magnetic	material.	Avery	narrow	gap	separates	the	ring	from	a	cell	on	the	storage	track	so	that	theirrespective	magnetic	fields	can
interact.	This	interaction	permits	information	trans-fer	between	the	read-write	head	and	the	storage	medium.

To	write	data,	the	addressed	cell	is	moved	under	the	read-write	gap.	A	pulseof	current	is	then	transmitted	through	the	write	coil,	which	alters	the	magneticfield	at	the	ring
gap;	this	in	turn	alters	the	magnetization	state	of	the	cell	under	thegap.	The	direction	or	magnitude	of	the	write	current	determines	the	resulting	state.To	read	a	cell,	it	is
moved	past	the	read-write	head,	causing	the	magnetic	field	ofthe	cell	to	induce	a	magnetic	field	in	the	core	material	of	the	read-write	head.Since	the	cell	is	in	motion,	this
magnetic	field	varies	and	so	induces	an	electricvoltage	pulse	in	the	read	coil.	This	voltage	pulse,	which	is	then	fed	to	a	senseamplifier,	identifies	the	state	of	the	cell.	The
readout	process	is	nondestructive;	inaddition,	magnetic-surface	storage	is	nonvolatile.

Electromechanically	accessed	magnetic	memories	are	distinguished	by	theshapes	of	the	surfaces	in	which	the	storage	tracks	are	embedded.	In	disk	memories

the	tracks	form	concentric	circles	on	the	surface	of	a	plastic	or	metal	disk.	In	tapememories	the	tracks	form	parallel	lines	on	the	surface	of	a	long,	narrow	plastic	tape.

Magnetic-disk	memories.	A	magnetic-disk	unit	employs	storage	media	con-sisting	of	thin	disks	with	a	coating	of	magnetic	material	on	which	data	can	berecorded.	One	or
both	surfaces	of	a	disk	contain	thousands	of	recording	tracksarranged	in	concentric	circles	as	shown	in	Figure	6.17a.	Several	disks	can	beattached	to	a	common	spindle;
the	four	disks	in	Figure	6.11b	provide	up	to	eightrecording	surfaces.

During	operation	of	the	memory,	the	disks	are	rotated	at	a	constant	speed	by	adisk	drive	unit.	Each	recording	surface	is	supplied	with	at	least	one	read-writehead.	The
read-write	heads	can	be	connected	to	form	a	read-write	arm,	as	shown	inFigure	6.17ft,	so	that	all	heads	move	in	unison.	This	arm	moves	back	and	forth	to
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Magnetic-surface	recording	mechanism.
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(a)	Top	view	and	(b)	side	view	of	a	magnetic-disk	drive	unit.
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422	select	a	particular	set	of	tracks	for	reading	or	writing.	The	recording	surface	is

~~~7~,.	,	divided	into	sectors	so	that	the	part	of	a	track	within	a	sector	stores	a	fixed	amount
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M	t	h	l	°	in'ormatlon	corresponding	to	the	memory	unit	s	block	size.	Memory	control	is

simplified	if	all	tracks	store	the	same	amount	of	data,	in	which	case	the	track	den-sity	(bits	stored	per	cm)	on	the	outer	tracks	is	less	than	the	maximum	possible.

Since	their	introduction	in	the	1950s	by	IBM,	mdgnetic-disk	memories	haveundergone	steady	evolution	characterized	by	decreasing	physical	size	and	increas-ing	storage
density.	Small	flexible	magnetic	disks	referred	to	as	floppy	disks	form	acompact,	inexpensive,	and	portable	medium	for	off-line	storage	of	small	amountsof	data,	for
instance,	1.4	MB.	They	are	contrasted	with	hard	disks,	which	are	oftensealed	into	their	drive	units	and	have	much	higher	storage	capacity	and	reliability.

EXAMPLE	6.3	A	COMMERCIAL	MAGNETIC	HARD-DISK	MEMORY	UNIT	[QUAN-TUM	corp.	1996].	The	XP39100	is	a	9.3	GB	hard-disk	memory	in	die	Atlas	II
seriesmanufactured	by	Quantum	Corp.	and	introduced	in	the	mid-1990s.	It	is	housed	in	arectangular	box	whose	dimensions	are	approximately	14.6	x	10.2	x	4.14	cm.	It
con-tains	ten	3.5	in	(8.89	cm)	diameter	disks,	supplying	a	total	of	20	recording	surfaces,each	with	its	own	read-write	head.	Figure	6.18	summarizes	the	main	features	of
misdevice.	The	cited	capacity	of	9.1	GB	is	for	a	formatted	disk,	which	stores	a	directoryand	other	control	information	needed	to	make	the	disk	drive	ready	for	use.	The
numberof	sectors	along	a	track	varies	from	108	to	180,	and	each	sector	within	a	track	accom-modates	a	512-byte	block.	While	the	sector	size	is	fixed,	the	number	of
sectors	pertrack	varies	due	to	the	fact	that	the	inner	tracks	are	smaller	and	can	therefore	store	lessinformation	at	the	maximum	recording	density	of	the	magnetic
medium.	The	averageblock	access	time	given	by	Equation	(6.1)	with	the	data	from	Figure	6.18	is

where	ts	=	7.9	ms,	r	=	0.120	revs/ms,	n	=	8,	and	we	take	(108	+	180)/2	=	144	to	be	theaverage	number	of	sectors	per	track,	implying	mat	A/=	144	x	512	=	73,728
bytes/track.Observe	that	the	seek	time	is	the	major	factor	in	rB.	The	data-transfer	rate	rN	=	120	x

Parameter	Size

Disk	diameter	(form	factor)	3.5	in	(8.89	cm)

Number	of	disks	10

Number	of	recording	surfaces	20

Number	of	read-write	heads	per	recording	surface	1

Number	of	tracks	per	recording	surface	5964

Number	of	sectors	per	track	108	to	180

Storage	capacity	per	track	sector	(block	size)	512	bytes

Track-recording	density	110,000	bits/in

Storage	capacity	per	recording	surface	(formatted)	445	MB

Storage	capacity	of	disk	drive	(formatted)	9.1	GB

Disk-rotation	speed	7200	rev/min



Average	seek	time	7.9	ms

Average	rotational	latency	4.2	ms

Internal	data-transfer	rate	8.7	to	13.8	MB/s

External	(buffered)	data-transfer	rate	20	to	40	MB/s

Figure	6.18

Characteristics	of	the	Quantum	Atlas	II	model	XP391000	magnetic	hard-disk	memory	unit.

73,728	=	8.85	MB/s,	which	is	consistent	with	Figure	6.18.	Because	of	factors	such	asdata	buffering	in	the	hard-disk	unit	and	the	format	of	its	external	interface,	the
usermay	see	a	different	and	higher	effective	data-transfer	rate.

Other	noteworthy	features	of	the	XP39100	hard	disk	are	a	built-in	1	MB	cache	tobuffer	data	transfers	and	an	error-correcting	code	that	is	applied	on	the	fly	to	data
beingstored	in	the	XP39100.	The	system's	reliability	is	measured	by	its	MTBF,	which	themanufacturer	projects	to	be	1	million	hours.
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Magnetic-tape	memories.	The	magnetic-tape	unit	is	one	of	the	oldest	andcheapest	forms	of	mass	memory.	Its	main	use	today	is	to	provide	backup	storagefor	a	computer
system	in	the	event	of	failure	of	its	hard	disk	subsystem.	Magnetic-tape	memories	resemble	domestic	tape	recorders,	but	instead	of	storing	analogsound,	they	store	binary
digital	information.	The	storage	medium	has	as	its	sub-strate	a	flexible	plastic	tape,	usually	packaged	in	a	small	cassette	or	cartridge.	Fig-ure	6.19	shows	a	standard
memory	of	the	data-cartridge	type	containing	a	magnetictape,	which	is	0.25	in	(6.35	mm)	wide	and	about	200	m	long.

Data	is	stored	on	a	tape	in	parallel,	longitudinal	tracks.	Older	tapes	employednine	such	tracks	designed	to	store	one	data	byte	and	a	parity	bit	across	the	tape;newer	tapes
have	as	many	as	several	hundred	tracks.	A	read-write	head	can	simul-taneously	access	all	tracks.	Data	transfer	takes	place	when	the	tape	is	moving	atconstant	velocity
relative	to	a	read-write	head;	hence	the	maximum	data-transferrate	depends	largely	on	the	storage	density	along	the	tape	and	the	tape's	speed.	Forexample,	if	an	80-track
tape	has	a	per-track	storage	density	of	110	Kb/in	and	the

Drive	belt

Read-write	headaccess	door

Figure	6.19

A	magnetic	tape	cartridge.

Drive	capstan

Recording	tape

424	tape	speed	is	50	in/s,	the	maximum	data-transfer	rate	d	is	110,000	x	80/8	x	50	=	55

cc^nv.,	MB/s.	A	200	m	tape	of	this	type	can	store	about	55/50	x	200/0.0254	=	8.661	GB,	a
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Memory	Technology	number	that	is	reduced	by	formatting	requirements.	The	time	to	scan	or	rewind	anentire	tape	is	about	a	minute.

Information	stored	on	magnetic	tapes	is	organized	into	blocks,	usually	of	fixedlength.	A	relatively	large	gap	is	inserted	at	the	end	of	each	block	to	permit	the	tapeto	start
and	stop	between	blocks.	If	the	block	length	is	bl	and	the	interblock	gaplength	is	gl,	then	the	tape's	(space)	utilization	u	is	measured	by

(6.2)

bl	+	gl

For	example,	if	gl	=	0.6	in,	the	storage	density	s	=	3200	b/in,	and	a	block	storesbs	=	4KB	of	data,	then	bl	=	4096/3200	=	1.28	in.	Equation	(6.2)	implies	that	u	=1.28/1.88
=	0.68.

Because	of	the	interblock	gaps	and	the	time	needed	to	start	and	stop	the	tapebetween	accesses,	the	effective	data-transfer	rate	def{	seen	by	the	user	is	less	thanthe
quoted,	maximum	rate	d.	Let	tD	denote	the	time	to	scan	a	data	block,	let	tG	bethe	time	to	scan	an	interblock	gap,	and	let	/ss	be	the	time	to	start	and	stop	the	tape.Then

eff	"	'd	+	'g	+	'ss

If	the	block	and	gap	sizes	in	bytes	are	bs	and	gs,	respectively,	then	tD	=	bs/d,	andtG	=	gs/d,	so	this	equation	becomes

bsd

de{f	=	-	-	(6.3)

bs	+	gs	+	tss	■	d

and	the	effective	block	access	time	tB	is	l/deff.	For	example,	with	bs	=	4096	bytes;gl	=	0.6	in,	corresponding	to	gs	=	1.92	bytes;	d	=	100,000	bytes/s;	and	/ss	=	2
ms,Equation	(6.3)	yields	de{{	=	65,894	bytes/s,	a	reduction	of	34	percent	from	the	max-imum	data-transfer	rate.

Optical	memories.	Optical	or	light-based	techniques	for	data	storage	havebeen	the	subject	of	intensive	research	for	many	years.	Such	memories	usuallyemploy	optical
disks,	which	resemble	magnetic	disks	in	that	they	store	binaryinformation	in	concentric	tracks	(or	a	spiral	track	in	the	CD-ROM	case)	on	an	elec-tromechanically	rotated
disk.	The	information	is	read	or	written	optically,	how-ever,	with	a	laser	replacing	the	read-write	arm	of	a	magnetic-disk	drive.	Opticalmemories	offer	extremely	high
storage	capacities,	but	their	access	rates	are	gener-ally	less	than	those	of	magnetic	disks.	Read-only	optical	memories	are	well	devel-oped,	but	low-cost	read-write
memories	have	proven	difficult	to	build.

The	CD-ROM	is	a	well-established	read-only	optical	memory.	CD-ROMs	arean	offshoot	of	the	audio	compact	disks	(CDs)	introduced	in	the	1980s.	They	aremanufactured	in
the	same	12	cm	format	and	can	be	mass-produced	at	very	low	costper	disk	by	injection	molding.	Binary	data	is	stored	in	the	form	of	0.1	urn	widepi'fsand	lands	(nonpitted
areas)	in	circular	tracks	on	a	plastic	substrate;	see	Figure	6.20.A	laser	beam	scans	the	tracks	and	is	reflected	differently	by	the	pits	and	lands.	Amirror-and-lens	system
forms	a	read	arm	that	can	move	back	and	forth	across	thetracks.	The	mirror	can	also	be	tilted	slightly	to	provide	fine	tracking	adjustments.

Mirror

Light	beamsplitter



CD-ROM	disk	Data	out

Figure	6.20

Optical	readout	mechanism	for	a	CD-ROM.
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The	reflected	light	from	the	laser	is	picked	up	by	a	sensor	and	decoded	to	extractthe	stored	information,	which	is	then	converted	to	electronic	form	for	further	pro-
cessing.	A	standard	12	cm	CD-ROM	has	a	capacity	of	around	600	MB.	which	isenough	to	store	some	240.000	pages	of	printed	text—a	large	encyclopedia,	forinstance.
Access	time	is	about	100	ms,	and	data	is	transferred	from	the	disk	at	a	rateof	3.6	MB/s	(in	so-called	24-speed	CD-ROM	drives).	Low-cost	CD	drives	areavailable	that	allow
computer	users	to	create	their	own	CD	ROMs	under	suchnames	as	CD-recordable	(CD-R)	and	CD-rewritable	(CD-RW).	They	employ	alaser	to	create	(bum)	pits	on	the
surface	of	blank	disks.	A	much	denser	type	of	CDcalled	a	digital	video	disk	(DVD)	has	recently	been	introduced	in	both	read-onlyand	read-write	forms.	With	two	recording
surfaces	and	one	or	two	storage	layersper	surface,	a	DVD	can	have	a	capacity	as	high	as	16	GB.

A	few	types	of	secondary	memory	devices	combine	magnetic	and	opticalrecording	methods.	A	magneto-optical	disk	memory	uses	rotating	disks	that	storeinformation	in
magnetic	form	but	are	accessed	by	a	laser	beam	similar	to	that	in	aCD-ROM	drive.	Like	a	magnetic	disk,	a	magneto-optical	disk	has	a	magnetizablesurface	coating	whose
direction	of	magnetization	can	be	polarized	(up	or	downcorresponding	to	0	or	1)	as	depicted	in	Figure	6.16.	A	cell	is	read	by	bouncing	alaser	beam	off	it.	The	beam's	angle
of	polarization	is	affected	by	the	cell's	magne-tization	direction,	a	phenomenon	known	as	the	Kerr	effect.	The	slight	change	in	thepolarization	angle	of	the	reflected	laser
beam	is	sensed	and	decoded	by	the	readmechanism.	Writing	is	accomplished	by	using	the	laser	beam	to	briefly	heat	a	cho-sen	cell	above	a	specific	temperature	(the	Curie
temperature	of	the	magneticmedium),	at	which	point	the	cell's	magnetic	coercivity	becomes	zero,	making	thecell	sensitive	to	external	magnetic	fields.	An	electromagnetic
coil	placed	below	therotating	disk	then	supplies	a	magnetic	field	of	the	required	direction.	The	heatedcell	captures	the	magnetic	field's	direction	which	is	retaineo	after
the	cell	coolsbelow	its	Curie	temperature.
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This	section	examines	the	general	characteristics	of	memory	systems	that	have	amultilevel,	hierarchical	organization.	Two	key	design	issues	are	considered	indetail:
automatic	translation	of	addresses	and	dynamic	relocation	of	data.

6.2.1	Multilevel	Memories

A	computer's	memory	units	form	a	hierarchy	of	different	memory	types	in	whicheach	member	is	in	some	sense	subordinate	to	the	next-highest	member	of	the	hier-archy.
The	object	of	this	organization	is	to	achieve	a	good	trade-off	between	cost,storage	capacity,	and	performance	for	the	memory	system	as	a	whole.

General	characteristics.	Consider	a	general	n-level	system	of	n	memorytypes	(M|,M2,...,M„).	Figure	6.21	shows	some	examples	with	n	=	2,	3,	and	4.	Typ-ical	technologies
used	in	these	hierarchies	are	semiconductor	SRAMs	for	cachememory,	semiconductor	DRAMs	for	main	memory,	and	magnetic-disk	units	forsecondary	memory.	The	two-
level	hierarchy	of	Figure	6.21a	is	typical	of	earlycomputers.	Figure	6.2\b	adds	a	cache	of	a	type	called	a	split	cache,	since	it	hasseparate	areas	for	storing	instructions	(the
I-cache)	and	data	(the	D-cache).	Thethird	example	(Figure	6.21c)	has	two	cache	levels,	both	of	the	nonsplit	or	unifiedtype.	Embedded	microcontrollers	also	use	the	various
hierarchical	organizationsdepicted	in	the	figure,	but	often	lack	the	secondary	or	the	cache	levels.

The	following	relations	normally	hold	between	adjacent	memory	levels	M,	andMi+1	in	a	memory	hierarchy:

Cost	per	bit c,>c,	+	,

Access	time 'A,	<	?A

Storage	capacity Si<Si+l

The	differences	in	cost,	access	time,	and	capacity	between	M,	and	M,+	1	can	be	sev-eral	orders	of	magnitude.	Considerable	system	resources	are	devoted	to	shieldingthe
CPU	from	these	differences,	so	it	almost	always	sees	a	very	large	and	inexpen-sive	memory	space	and	rarely	sees	an	access	time	greater	than	that	of	M,,	the	first(highest)
level	of	the	memory	hierarchy.

The	CPU	and	other	processors	can	communicate	directly	with	Mi	only,	M,can	communicate	with	M2,	and	so	on.	Consequently,	for	the	CPU	to	read	informa-tion	held	in
some	memory	level	M,	requires	a	sequence	of	i	data	transfers	of	theform

M,_,:=M,.;	M,-_2	^M,-.,;	M,-_3	:=	M,_2;	...	M,	:=	M2:	CPU^Mj.

An	exception	is	allowed	in	the	case	of	caches;	the	CPU	is	designed	to	bypass	thecache	level(s)	and	go	directly	to	main	memory,	as	we	will	see	later.	In	general,	allthe
information	stored	in	M,	at	any	time	is	also	stored	in	M,+	1,	but	not	vice	versa.

During	program	execution	the	CPU	produces	a	steady	stream	of	memoryaddresses.	At	any	time	these	addresses	are	distributed	in	some	fashion	throughoutthe	memory
hierarchy.	If	an	address	is	generated	that	is	currently	assigned	only	to

I:	Instruction	flow I
Secondarymemory

M;

D:	Data	flow I
Mainmemory
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Figure	6.21

Common	memory	hierarchies	with	(a)	two,	(b)	three,	and	(c)	four	levels.

M,	where	i	*	1,	the	address	must	be	reassigned	to	M,,	the	level	of	the	memory	hier-archy	that	the	CPU	can	access	directly.	This	relocation	of	addresses	involves
thetransfer	of	data	between	levels	M,	and	M,—a	relatively	slow	process.	For	a	mem-ory	hierarchy	to	work	efficiently,	the	addresses	generated	by	the	CPU	should	befound
in	M,	as	often	as	possible.	This	approach	requires	that	future	addresses	be	tosome	extent	predictable	so	that	information	can	be	transferred	to	M,	before	it	isactually
referenced	by	the	CPU.	If	the	desired	data	cannot	be	found	in	M,,	then	theprogram	originating	the	memory	request	must	be	suspended	until	an	appropriatereallocation	of
storage	is	made.

Cache	and	virtual	memory.	The	various	parts	of	a	memory	hierarchy	are	con-trolled	in	very	different	fashions.	Cache	and	main	memory	form	a	distinct	subhier-archy
whose	design	objective	is	to	support	CPU	accesses	with	a	minimum	of	delay.Hence	hardware	controllers	that	are	transparent	to	both	user	and	system	programs
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usually	manage	this	subhierarchy.	Much	more	than	the	rest	of	the	memory	system,the	cache	and	main	memory	resemble	a	single	memory	M	to	the	software
beingexecuted.

Main	and	secondary	memory	form	another	distinct	two-level	subhierarchy.This	interaction	is	managed	by	the	operating	system,	however,	and	so	is	not	trans-parent	to
system	software,	although	it	is	somewhat	transparent	to	user	code.	Theterm	virtual	memory	is	applied	when	the	main	and	secondary	memories	appear	to	auser	program
like	a	single,	large,	and	directly	addressable	memory.	Traditionally,there	are	three	reasons	for	using	virtual	memory:

•	To	free	user	programs	from	the	need	to	carry	out	storage	allocation	and	to	permitefficient	sharing	of	the	available	memory	space	among	different	users.

•	To	make	programs	independent	of	the	configuration	and	capacity	of	the	physicalmemory	present	for	their	execution;	for	example,	to	allow	seamless	overflowinto
secondary	memory	when	the	capacity	of	main	memory	is	exceeded.

•	To	achieve	the	very	low	access	time	and	cost	per	bit	that	are	possible	with	amemory	hierarchy.

A	memory	system	is	addressed	by	a	set	V	of	logical	or	virtual	addressesderived	from	identifiers	explicitly	or	implicitly	specified	in	an	object	program.	Aset	of	physical	or
real	addresses	R	identifies	the	fixed	physical	storage	locations	ineach	memory	unit	M,.	An	efficient	and	flexible	mechanism	to	implement	addressmappings	of	the	form/:	V
—>	R	is	the	key	to	successful	design	of	a	multilevel	mem-ory.

Locality	of	reference.	The	predictability	of	memory	addresses	depends	on	acharacteristic	of	computer	programs	called	locality	of	reference,	which	says	thatover	the	short
term,	the	addresses	generated	by	a	program	tend	to	be	localized	andare	therefore	predictable.

One	reason	for	locality	of	reference	is	that	instructions	and,	to	a	lesser	extent,data	are	specified	and	subsequently	stored	in	a	memory	unit	in	approximately	theorder	in
which	they	are	accessed	during	program	execution.	Suppose	a	request	ismade	for	a	one-word	instruction	/	stored	at	address	A,	but	this	address	is	currentlyassigned	to	M,
^	M,.	The	instruction	most	likely	to	be	required	next	by	the	CPU	isthe	one	immediately	following	/	whose	address	is	A	+	1.	Figure	6.22,	which	showspart	of	the	680X0
program	for	vector	addition	discussed	in	Example	3.8	(section

Machine	Language



Assembly	Language

Location	Instruction ;	680X0	program	for	vector	addition

0100 2078	07D1 MOVE.L A+1000,A0

0104 2278	0BB9 MOVE.L B+1000.A1

0108 2478	0FA1 MOVE.L C+1000,A2

010C C308 START	ABCD -(A0),-(A1)

010E 1511 MOVE.B (A1),-<A2)

0110 B0F8	03E9 CMPA A,A0

0114 66F6 BNE START

;Set	pointer	beyond	end	of	A;Set	pointer	beyond	end	of	B;Set	pointer	beyond	end	of	C.Decrement	pointers	and	add;	Store	result	in	C;Test	for	termination;Branch	to	START
if	Z	*	1

Figure	6.22

Code	fragment	illustrating	locality	of	reference.

3.3.3),	illustrates	this	tendency.	The	first	(4	byte)	instruction	fetched	has	address010016,	the	next	has	address	010416,	the	next	010816,	and	so	on.	This	type	of	local-ity	is
called	spatial	because	it	implies	that	consecutive	memory	references	are	toaddresses	that	are	close	to	one	another	in	the	memory-address	space.

Instead	of	simply	transferring	/	to	M,	when	it	is	referenced,	it	is	more	efficientto	transfer	a	block	of	consecutive	words	containing	/.	A	common	way	to	automatethis
process	is	to	subdivide	the	information	stored	in	M,	into	pages,	each	containinga	fixed	number	SP	of	consecutive	words.	Information	is	then	transferred	one	pageor	SP
words	at	a	time	between	levels	M,	and	M,_,.	Thus	if	the	CPU	requests	word	/in	level	M(,	the	page	of	the	length	SP	in	M,	containing	/	is	transferred	to	MM,then	the	page	of
length	SP	,	containing	/	is	transferred	to	M,_2,	and	so	on.	Finally,the	page	P	of	length	SP	containing	/	reaches	M,,	where	the	CPU	can	directlyaccess	it.	Subsequent
memory	references	are	likely	to	refer	to	other	addresses	in	P,so	the	single	transfer	to	M,	anticipates	future	memory	requests	by	the	CPU.

A	second	factor	in	locality	of	reference	is	the	presence	of	loops	in	programs.Instructions	in	a	loop,	even	when	they	are	far	apart	in	spatial	terms,	are	executedrepeatedly,
resulting	in	a	high	frequency	of	reference	to	their	addresses.	This	char-acteristic	is	referred	to	as	temporal	locality.	When	a	loop	is	being	executed,	it	isdesirable	to	store
the	entire	loop	in	M,	if	possible.	For	example,	in	the	small,	four-instruction	program	loop	shown	in	boldface	in	Figure	6.22,	the	BNE	branchinstruction	with	address	0114l6
is	usually	followed	by	the	instruction	with	the	non-consecutive	address	010C16	(START).

The	items	of	information	whose	addresses	are	referenced	during	the	time	inter-val	from	t	-	7"	to	t,	denoted	(t	-	T,	t),	constitute	the	current	working	set	W(t,	T)	of	aprogram.
W(t,	T)	tends	to	change	rather	slowly;	hence	by	maintaining	all	of	W(t,	T)in	the	fastest	level	of	memory	M1?	the	number	of	references	to	M,	can	be	made	fargreater	than
the	number	of	references	to	other	levels	of	the	memory	hierarchy.
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Cost	and	performance.	The	overall	goal	in	memory-hierarchy	design	is	toachieve	a	performance	close	to	that	of	the	fastest	device	M,	and	a	cost	per	bit	closeto	that	of	the
cheapest	device	M„.	The	performance	of	a	memory	system	dependson	various	related	factors,	the	more	important	of	which	are	the	following:

•	The	address-reference	statistics,	that	is,	the	order	and	frequency	of	the	logicaladdresses	generated	by	programs	that	use	the	memory	hierarchy.

•	The	access	time	/A	of	each	level	M,	relative	to	the	CPU.

•	The	storage	capacity	5,	of	each	level.

•	The	size	Sp	of	the	blocks	(pages)	transferred	between	adjacent	levels.

•	The	allocation	algorithm	used	to	determine	the	regions	of	memory	to	whichblocks	are	transferred	by	the	block-swapping	process.

These	factors	interact	in	complex	ways,	which	are	by	no	means	fully	understood.Simulation	of	a	multilevel	memory	using	realistic	address	traces	is	often	the	bestway	to
determine	suitable	values	for	/A,	5,,	SP,	and	other	important	design	param-eters.	A	few	analytic	models	indicate	how	these	factors	are	related.	Some	usefulmodels	of	this
kind	are	discussed	next.

For	simplicity	we	restrict	our	attention	to	a	generic	two-level	memory	hierarchydenoted	by	(M^N^),	which	can	be	interpreted	as	(cache,	main	memory)	or	(mainmemory,
secondary	memory).	It	is	not	difficult	to	generalize	our	analysis	front	two-
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5,	+	S2

c

where	c,	denotes	the	cost	per	bit	of	M,	and	5,	denotes	the	storage	capacity	in	bits	ofM,.	To	reach	the	goal	of	making	c	approach	c2,	5,	must	be	much	smaller	than	S2.

The	performance	of	a	two-level	memory	is	often	measured	in	terms	of	the	hitratio	H,	which	is	defined	as	the	probability	that	a	virtual	address	generated	by	theCPU	refers
to	information	currently	stored	in	the	faster	memory	M,.	Since	refer-ences	to	Mj	(hits)	can	be	satisfied	much	more	quickly	than	references	to	M2(misses),	it	is	desirable	to
make	H	as	close	to	one	as	possible.	Hit	ratios	are	gener-ally	determined	experimentally	as	follows.	A	set	of	representative	programs	is	exe-cuted	or	simulated.	The	number
of	address	references	satisfied	by	M1	and	M2,denoted	by	iV,	and	N2,	respectively,	are	recorded.	H	is	calculated	from	the	equation

and	is	highly	program	dependent.	The	quantity	1	-	H	is	called	the	miss	ratio.

Let	tA]	and	tAl	be	the	access	times	of	Mj	and	M2,	respectively,	relative	to	theCPU.	The	average	time	tA	for	the	CPU	to	access	a	word	in	the	two-level	memory	isgiven	by

tA	=	HtAi	+(l-//)/A2	(6.6)

In	most	two-level	hierarchies,	a	request	for	a	word	not	in	the	fast	level	Mj	causes	ablock	of	information	containing	the	requested	word	to	be	transferred	to	M,	fromM2.
When	the	block	transfer	has	been	completed,	the	requested	word	is	available	inMj.	The	time	fB	required	for	the	block	transfer	is	called	the	block-access	or	block-transfer
time.	Hence	we	can	write	t*	=	tB	+	tA	.	Substituting	into	Equation	(6.6)yields

tA=	tAt	+	(l-H)tB	(6.7)

In	many	cases	tA	»	tA	;	therefore,	rA	~	rB.	For	example,	a	block	transfer	fromsecondary	to	main	memory	requires	a	relatively	slow	IO	operation,	making	rAi	andtB	much
greater	than	tA	.

Let	r	=	tA/tA	denote	the	access-time	ratio	of	the	two	levels	of	memory.	Lete	=	tA/tA,	which	is	the	factor	by	which	tA	differs	from	its	minimum	possiblevalue;	e	is	called	the
access	efficiency	of	the	two-level	memory.	From	Equation(6.6)	we	obtain

1



e	=

r+(\-r)H

Figure	6.23	plots	e	as	a	function	of	H	for	various	values	of	r.	This	graph	shows	theimportance	of	achieving	high	values	of	H	in	order	to	make	e	~	1;	that	is,	tA	~	tA.For
example,	suppose	that	r	=	100.	In	order	to	make	e	>	0.9,	we	must	have	H	>0.998.

Memory	capacity	is	limited	by	cost	considerations;	therefore,	we	do	not	wantto	waste	memory	space.	The	efficiency	with	which	space	is	being	used	at	any	timecan	be
defined	as	the	ratio	of	the	memory	space	Su	occupied	by	"active"	or	"useful"

0.4	0.6

Hit	ratio	H

Figure	6.23

Access	efficiency	e	=	tA	/rA	of	a	two-level	memory	as	a	function	of	hit	ratio	H	for	vari-

user	programs	and	data	to	the	total	amount	of	memory	space	available	S.	We	callthis	the	space	utilization	u	and	write
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U	=	—S

Since	memory	space	is	more	valuable	in	M,	than	in	M2,	it	is	useful	to	restrict	uto	measuring	M,'s	space	utilization.	In	that	case	the	S	-	5U	words	of	M,	that	repre-sent
"wasted"	space	can	be	attributed	to	several	sources.

•	Empty	regions.	The	blocks	of	instructions	and	data	occupying	Ml	at	any	time	aregenerally	of	different	lengths.	As	the	contents	of	M,	are	changed,	unoccupiedregions	or
holes	of	various	sizes	tend	to	appear	between	successive	blocks.	Thisphenomenon	is	called	fragmentation.

•	Inactive	regions.	Data	may	be	transferred	to	M,,	for	example,	as	part	of	a	page,and	may	be	subsequently	transferred	back	to	M,	without	ever	being	referencedby	a
processor.	Some	superfluous	transfers	of	this	kind	are	unavoidable,	sinceaddress	references	are	not	fully	predictable.

•	System	regions.	These	regions	are	occupied	by	the	memory-management	soft-ware.

A	central	issue	in	managing	(M,,M2),	or	any	multilevel	memory,	is	to	make	itappear	to	its	users	like	a	single,	fast	memory	of	high	capacity.	This	goal	can	beachieved	in	a
way	that	is	largely	transparent	to	the	users	by	providing	a	memorymanagement	system	that	automatically	performs	the	following	tasks:

•	Translation	of	memory	addresses	from	the	virtual	addresses	encountered	in	pro-gram	execution	to	the	real	addresses	that	identify	physical	storage	locations.

432	•	Dynamic	(re)allocation	or	swapping	of	information	among	the	different	memory

.__,...,	.	levels	so	that	stored	items	reside	in	the	fastest	level	before	they	are	needed.
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6.2.2	Address	Translation

The	set	of	abstract	locations	that	a	program	Q	can	reference	is	Q	's	virtual	addressspace	V.	Such	addresses	can	be	explicitly	or	implicitly	named	by	identifiers	that
aprogrammer	assigns	to	data	variables,	instruction	labels,	and	so	forth.	Theaddresses	can	also	be	constructed	or	modified	by	the	system	software	that	controlsQ.	To
execute	Qona	particular	computer,	its	virtual	addresses	must	be	mappedonto	the	real	address	space	R,	defined	by	the	addressable	(external)	memory	Mthat	is	physically
present	in	the	computer.	This	process	is	called	address	transla-tion	or	address	mapping.	The	real	address	space	R	is	a	linear	sequence	of	numbers

0.	1,	2,	...,	n	-	1	corresponding	to	the	addressable	word	locations	in	M.	It	is	conve-nient	to	identify	M	with	main	memory,	while	noting	that	R	is	usually	distributedover
several	levels	of	the	memory	hierarchy,	including	the	cache	and	the	levellabeled	"main"	memory.	V	is	a	loose	collection	of	lists,	multidimensional	arrays,and	other
nonlinear	structures,	so	it	is	much	more	complex	than	R.

Address	translation	can	be	viewed	abstractly	as	a	function	/:	V	—>	R.	Thisfunction	is	not	easily	characterized,	since	address	assignment	and	translation	is	car-ried	out	at
various	stages	in	the	life	of	a	program,	specifically:

1.	By	the	programmer	while	writing	the	program.

2.	By	the	compiler	during	program	compilation.

3.	By	the	loader	at	initial	program-load	time.

4.	By	run-time	memory	management	hardware	and/or	software.

Explicit	specification	of	real	addresses	by	the	programmer	was	necessary	inearly	computers,	which	had	neither	hardware	nor	software	support	for	memorymanagement.
With	modern	computers,	however,	programmers	normally	deal	onlywith	virtual	addresses.	Specialized	hardware	and	software	within	the	computerautomatically
determine	the	real	addresses	required	for	program	execution.

A	compiler	transforms	the	symbolic	identifiers	of	a	program	into	binaryaddresses.	If	the	program	is	sufficiently	simple,	the	compiler	can	completely	mapvirtual	addresses
to	real	addresses.	Address	translation	can	also	be	completed	whenthe	program	is	first	loaded	for	execution.	This	process	is	called	static	translation,since	the	real	address
space	of	the	program	is	fixed	for	the	duration	of	its	execu-tion.	It	is	often	desirable	to	vary	the	virtual	space	of	a	program	dynamically	duringexecution;	this	process	is
dynamic	translation.	For	example,	a	recursive	proce-dure—one	that	calls	itself—is	typically	controlled	by	a	stack	containing	the	linkagebetween	successive	calls.	The	size
of	this	stack	cannot	be	predicted	in	advancebecause	it	depends	on	the	number	of	times	the	procedure	is	called;	therefore,	it	isdesirable	to	allocate	stack	addresses	on	the
fly.	Hardware-implemented	memorymanagement	units	(MMUs)	have	come	into	widespread	use	for	run-time	addresstranslation.

Base	addressing.	An	executable	program	comprises	a	set	of	instruction	anddata	blocks	each	of	which	is	a	sequence	of	words	to	be	stored	in	consecutive	mem-

Baseaddress

DisplacementD
Effective	address

<4eff

0 B

1 B	+	1



m-\

B	+	i

B	+	m-l

Figure	6.24

Block	of	m	words	with	(base)address	B.
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ory	locations	during	execution.	A	word	W	within	a	block	has	its	own	effectiveaddress	Ae({,	which	the	CPU	must	know	to	access	W.	(For	the	moment,	we	willignore	the
distinction	between	the	real	and	virtual	address	spaces.)	W	is	also	speci-fied	by	the	address	B,	called	the	base	address,	of	the	block	that	contains	it,	alongwith	Ws	relative
address	or	displacement	D	(also	called	an	offset	or	index)	withinthe	block,	as	shown	in	Figure	6.24.	Clearly,

Aeff=B	+	D	(6.8)

Often	the	address	is	designed	so	that	B	supplies	the	high-order	bits	of	Aeff	while	Dsupplies	the	low-order	bits	thus:

Aeff=B.D	(6.9)

Now	Aeff	is	formed	simply	by	concatenating	B	and	D,	a	process	that	does	not	sig-nificantly	increase	the	time	for	address	generation.

A	simple	way	to	implement	static	and	dynamic	address	mapping	is	to	put	baseaddresses	in	a	memory	map	or	memory	address	table	controlled	by	the	memorymanagement
system.	The	table	can	be	stored	in	memory,	in	CPU	registers,	or	inboth.	The	address-generation	logic	of	the	CPU	computes	an	effective	address	y4effby	combining	the
displacement	D	with	the	corresponding	base	address	5,	accord-ing	to	(6.8)	or	(6.9).

Blocks	are	easily	relocated	in	memory	by	manipulating	their	base	addresses.Figure	6.25	illustrates	block	relocation	using	base-address	modification.	Supposethat	two
blocks	are	allocated	to	main	memory	M	as	shown	in	Figure	6.25a.	It	isdesired	to	load	a	third	block	K3	into	M;	however,	a	contiguous	empty	space,	or"hole,"	of	sufficient
size	is	unavailable.	A	solution	to	this	problem	is	to	move	blockK2,	as	shown	in	Figure	6.25b,	by	assigning	it	a	new	base	address	B,2	and	reloadingit	into	memory.	This
creates	a	gap	into	which	block	AT3	can	be	loaded	by	assigningto	it	an	appropriate	base	address.

With	dynamic	memory	allocation,	we	must	control	the	references	made	by	ablock	to	locations	outside	the	memory	area	currently	assigned	to	it.	The	block	canbe	permitted
to	read	from	certain	locations,	but	writing	outside	its	assigned	areamust	be	prevented.	A	common	way	of	doing	this	is	by	specifying	the	highestaddress	L(,	called	the	limit
address,	that	the	block	can	access.	Equivalently,	the	sizeof	the	block	may	be	specified.	The	base	address	fl,	and	the	limit	address	L,	are
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Figure	6.25

Relocation	of	blocks	in	memory	using	base	and	limit	addresses.

stored	in	the	memory	map.	Every	real	address	Ar	generated	by	the	block	is	com-pared	to	Bj	and	L,;	the	memory	access	is	completed	if	and	only	if	the	condition

B,<A<L;

is	satisfied.

Translation	look-aside	buffer.	Figure	6.26	shows	how	various	parts	of	a	mul-tilevel	memory	management	typically	realize	the	address-translation	ideas	just	dis-cussed.	The
input	address	Av	is	a	virtual	address	consisting	of	a	(virtual)	baseaddress	Bv	concatenated	with	a	displacement	D.	Av	contains	an	effective	addresscomputed	in	accordance
with	some	program-defined	addressing	mode	(direct,	indi-rect,	indexed,	and	so	on)	for	the	memory	item	being	accessed.	It	also	can	contain

Translationlook-aside	buffer	TLB

containing	(part	of)the	memory	map

Real	base
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i
i
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c)	address	Bv
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Displacen(offset)	D

r

tent

Real	address	AR	>■	To	memory	system
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Figure	6.26

Structure	of	a	dynamic	address-translation	system.

system-specific	control	information—a	segment	address,	for	example—as	we	willsee	later.	The	real	address	BR	=	f(Bv)	assigned	to	Bv	is	stored	in	a	memory
mapsomewhere	in	the	memory	system;	this	map	can	be	quite	large.	To	speed	up	themapping	process,	part	(or	occasionally	all)	of	the	memory	map	is	placed	in	a	smallhigh-
speed	memory	in	the	CPU	called	a	translation	look-aside	buffer	(TLB).	TheTLB's	input	is	thus	the	base-address	part	Bvof	Av;	its	output	is	the	correspondingreal	base
address	BR.	This	address	is	then	concatenated	with	the	D	part	of	Av	toobtain	the	full	physical	address	AR.

If	the	virtual	address	Bv	is	not	currently	assigned	to	the	TLB,	then	the	part	ofthe	memory	map	that	contains	Bv	is	first	transferred	from	the	external	memory	intothe	TLB.
Hence	the	TLB	itself	forms	a	cachelike	level	within	a	multilevel	address-storage	system	for	memory	maps.	For	this	reason,	the	TLB	is	sometimes	referred	toas	an	address
cache.
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EXAMPLE	6.4	MEMORY	ADDRESS	TRANSLATION	IN	THE	MIPS	R2/3000

[Kane	1988].	The	MIPS	R2/30O0	microprocessor,	whose	main	features	were	intro-duced	earlier	CExamples	3.5	and	3.7),	employs	an	on-chip	MMU.	The	MMU's
primaryfunction	is	to	map	32-bit	virtual	addresses	to	32-bit	real	addresses.	(Later	members	ofthe	RXOOO	family	like	the	R10000	support	64-bit	addresses.)	A	32-bit
address	allowsthe	R2/30O0	to	have	a	virtual	address	space	of	232	bytes,	or	4	GB.	Both	address	spacesare	composed	of	4KB	pages,	which	are	convenient	block	sizes	for
information	transferwithin	a	conventional	memory	hierarchy	comprising	a	cache	(of	the	split	kind),	mainmemory,	and	secondary	memory.	The	4GB	virtual-address	space	is
further	partitionedinto	four	parts	called	segments,	three	of	which	form	the	system	region	(or	"kernelregion"'	in	MIPS	parlance)	devoted	to	operating	system	functions,
while	the	other	is	theuser	region,	where	application	programs,	data,	and	control	stacks	are	stored.

The	format	of	an	R2/3000	virtual	address	appears	in	Figure	6.27.	It	consists	of	a20-bit	virtual	page	address,	referred	to	as	the	virtual	page	name	VPN.	and	a	12-bit	dis-
placement	D,	which	specifies	the	address	of	a	byte	within	the	virtual	page.	The	high-order	3	bits	31:29	of	VPN	form	a	type	of	tag	that	identifies	the	segment
beingaddressed.	Bit	31	of	VPN	is	0	for	a	user	segment	and	1	for	a	supervisor	segment:	it	thusdistinguishes	the	user	and	supervisor	(privileged)	control	states	of	the	CPU.
The	usersegment	is	kuseg	and	occupies	half	the	virtual	address	space.	The	supervisor	region	isdivided	into	three	segments.	ksegO.	ksegl,	and	ksegl.	each	of	which	has
differentaccess	characteristics.

•	kuseg:	This	2GB	segment	is	designed	to	store	all	user	code	and	data.	Addresses	inthis	region	make	full	use	of	the	cache	and	are	mapped	to	real	addresses	via	the	TLB.

•	ksegO:	This	512MB	system	segment	is	cached	and	unmapped;	mat	is,	virtualaddresses	within	ksegO	are	mapped	directly	into	the	first	512	MB	of	the	real	addressspace,
which	includes	the	cache,	but	no	virtual	address	translation	takes	place.	Thissegment	typically	stores	active	parts	of	the	operating	system.

•	ksegl:	This	is	also	a	512MB	segment,	but	is	both	uncached	and	unmapped.	It	isintended	for	such	purposes	as	storing	boot-up	code	(which	cannot	be	cached)	and
forother	instructions	and	data—high-speed	10	data,	for	instance—that	might	seriouslyslow	down	cache	operation.

•	ksegl:	This	is	a	1GB	segment	which,	like	kuseg,	is	both	cached	and	mapped.

The	MMU	contains	a	TLB	to	provide	fast	virtual-to-real	address	translation.	TheTLB	stores	a	64-entry	portion	of	the	memory	map	(page	table)	assigned	to	each	processby
the	operating	system.	The	current	virtual	page	address	WW	is	used	to	access	a	64-bit	entry	in	the	TLB.	which,	as	shown	in	Figure	6.27,	contains	among	other	items',	a	20-
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bit	page	frame	number	PFN.	This	real	page	address	is	fetched	from	the	TLB	andappended	to	the	displacement	D	to	obtain	the	desired	32-bit	real	address.	An	R2/3000-
based	system	often	has	less	than	4	GB	of	physical	memory,	in	which	case	not	all	theavailable	real	address	combinations	are	used.

Observe	that	the	VPN	itself	is	also	part	of	the	TLB	entry	because	a	fast	accessmethod	called	associative	addressing	is	used;	see	seetion	6.3.2.	Another	major	itemstored	in
each	TLB	entry	is	a	6-bit	process	identification	field	PID.	This	field	distin-guishes	each	active	program	(process);	hence	up	to	64	processes	can	share	the	availablevirtual
page	numbers	without	interference.	There	are	also	4	control	bits	denotedNDVG,	which	define	the	types	of	memory	accesses	permitted	for	the	correspondingTLB	entry.	For
example,	N	denotes	noncachable;	when	set	to	1,	it	causes	the	CPU	to	godirectly	to	main	memory,	instead	of	first	accessing	the	cache.	D	is	a	write-protection(read-only)
bit;	an	attempt	to	write	when	D	=	0	causes	a	CPU	interrupt	or	trap.

The	MMU	has	some	features	not	shown	in	Figure	6.27,	which	are	designed	to	traperror	conditions	that	are	collectively	referred	to	as	address	translation	exceptions.When
a	trap	occurs,	relevant	information	about	the	exception	is	stored	in	MMU	regis-ters,	which	can	be	examined	and	modified	by	certain	privileged	instructions.	A
commonaddress	translation	exception	is	a	TLB	miss,	which	occurs	when	there	is	no	(valid)	entryin	the	TLB	that	matches	the	current	VPN.	The	operating	system	responds
to	a	TLB	missby	accessing	the	current	process's	page	table,	which	is	stored	in	a	known	location	inksegl,	and	copying	the	missing	entry	to	the	TLB.	Another	address-
translation	exceptiontype	is	an	illegal	access—for	instance,	a	write	operation	addressed	to	a	page	with	D	=	0(read	only)	in	its	TLB	entry.
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Figure	6.27

Memory	address	mapping	in	the	MMU	of	the	MIPS	R2/3000.

Segments.	The	basic	unit	of	information	for	swapping	purposes	in	a	multi-level	memory	is	a	fixed-size	block	called	a	page.	Pages	are	allocated	to	page-sizedstorage
regions	(page	frames),	whose	fixed	size	and	address	formats	make	pagingsystems	easy	to	implement.	Pages	are	convenient	blocks	for	the	physical	partition-ing	and
swapping	of	the	information	stored	in	a	multilevel	memory.	It	is	oftendesirable	to	have	higher-level	information	blocks,	termed	segments,	that	corre-spond	to	logical
entities	such	as	programs	or	data	sets.	Segments	facilitate	the	map-ping	of	individual	programs,	as	well	as	the	assignment	and	checking	of	differentstorage	properties.	For
example,	write	operations	may	not	be	permitted	into	certainregions	of	the	virtual	address	space	in	order	to	protect	critical	items.	It	is	easier	toprotect	the	information	in
question	by	making	it	a	read-only	segment	5,	rather	thanassigning	access	restrictions	to	the	possibly	large	number	of	pages	that	compose	S.

Formally,	a	segment	is	a	set	of	logically	related,	contiguous	words;	it	is	there-fore	a	special	type	of	block	in	the	sense	used	in	section	6.2.1.	A	word	in	a	segmentis	referred
to	by	specifying	a	base	address—the	segment	address—and	a	displace-ment	within	the	segment.	A	program	and	its	data	can	be	viewed	as	a	collection	oflinked	segments.
The	links	arise	from	the	fact	that	a	program	segment	uses,	orcalls,	other	segments.	Some	computers	have	a	memory	management	technique	thatallocates	main	memory
by	Mx	segments	alone.	When	a	segment	not	currently	resi-dent	in	M	j	is	required,	the	entire	segment	is	transferred	from	secondary	memoryM2.	The	physical	addresses
assigned	to	the	segments	are	kept	in	a	memory	mapcalled	a	segment	table	(which	can	itself	be	a	relocatable	segment).

Segmentation	was	implemented	in	this	general	form	in	the	Burroughs	B6500/7500	series	[Hauck	and	Dent	1968].	Each	program	has	a	segment	called	its	pro-gram
reference	table	(PRT),	which	serves	as	its	segment	table.	All	segments	asso-ciated	with	the	program	are	defined	by	special	words	called	segment	descriptors	inthe
corresponding	PRT.	As	shown	in	Figure	6.28,	a	B6500/7500	segment	descrip-tor	contains	the	following	information:

•	A	presence	bit	P	that	indicates	whether	the	segment	is	currently	assigned	to	M,.

•	A	copy	bit	C	that	specifies	whether	this	is	the	original	(master)	copy	of	thedescriptor.

•	A	20-bit	size	field	Z	that	specifies	the	number	of	words	in	the	segment.

•	A	20-bit	address	field	S	that	is	the	segment's	real	address	in	Mj	(when	P	=	1)	orM2	(when	P	=	0).

A	program	refers	to	a	word	within	a	segment	by	specifying	the	segment	descriptorword	W	in	its	PRT	and	the	displacement	D.	The	CPU	fetches	and	examines	W.	Ifthe
presence	bit	P	=	0,	an	interrupt	occurs	and	execution	of	the	requesting	program
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Figure	6.28

Segment	descriptor	of	the	Burroughs	B6500/7500.

438	is	suspended	while	the	operating	system	transfers	the	required	segment	from	M-,	to

Mj.	When	P	=	1,	the	CPU	compares	D	to	the	segment	size	field	Z	in	the	descriptor.

Mm	s	stems	If	D	>	Z,	then	D	is	invalid	and	an	interrupt	occurs.	If	D	<	Z,	the	address	field	5

from	the	descriptor	is	added	to	the	displacement	D.	The	result	S	+	D	is	the	realaddress	of	the	required	word	in	Mt,	which	can	then	be	accessed.

The	main	advantage	of	segmentation	is	that	segment	boundaries	correspond	tonatural	program	and	data	boundaries.	Consequently,	information	that	is	sharedamong
different	users	is	often	organized	into	segments.	Because	of	their	logicalindependence,	a	program	segment	can	be	changed	or	recompiled	at	any	time	with-out	affecting
other	segments.	Certain	properties	of	programs	such	as	the	scope(range	of	definition)	of	a	variable	and	access	rights	are	naturally	specified	by	seg-ment.	These	properties
require	that	accesses	to	segments	be	checked	to	protectagainst	unauthorized	use;	this	protection	is	most	easily	implemented	when	the	unitsof	allocation	are	segments.
Certain	segment	types—stacks	and	queues,	forinstance—vary	in	length	during	program	execution.	Segmentation	varies	theregion	assigned	to	such	a	segment	as	it
expands	and	contracts,	thus	efficientlyusing	the	available	memory	space.	On	the	other	hand,	the	fact	that	segments	can	beof	different	lengths	requires	a	relatively
complex	allocation	method	to	avoid	exces-sive	fragmentation	of	main-memory	space.	This	problem	is	alleviated	by	combin-ing	segmentation	with	paging,	as	discussed
later.

Some	computers	implement	a	more	specialized	form	of	segmentation.	TheMIPS	R2/3000	divides	the	virtual	address	space	into	four	large	regions	that	aretreated	as
segments;	see	Example	6.4.	Just	3	bits	of	the	virtual	address	define	thecurrent	segment.	Microprocessors	in	the	Intel	80X86	series,	including	the	Pentium,have	four	16-bit
segment	registers	forming	a	segment	table	that	supports	a	verylarge	number	of	segments.

Pages.	A	page	is	a	fixed-length	block	that	can	be	assigned	to	fixed	regions	ofphysical	memory	called	page	frames.	The	chief	advantage	of	paging	is	that	datatransfer
between	memory	levels	is	simplified:	an	incoming	page	can	be	assigned	toany	available	page	frame.	In	a	pure	paging	system,	each	virtual	address	consists	oftwo	parts:	a
page	address	and	a	displacement.	The	memory	map,	now	referred	to	asa	page	table,	typically	contains	the	information	shown	in	Figure	6.29.	Each	(vir-tual)	page	address
has	a	corresponding	(real)	address	of	a	page	frame	in	main	orsecondary	memory.	When	the	presence	bit	P	=	1,	the	page	in	question	is	present	inmain	memory,	and	the
page	table	contains	the	base	address	of	the	page	frame	towhich	the	page	has	been	assigned.	If	P	=	0,	a	page	fault	occurs	and	a	page	swapensues.	The	change	bit	C
indicates	whether	or	not	the	page	has	been	changed	sinceit	was	last	loaded	into	main	memory.	If	a	change	has	occurred	(C	=	1),	the	page

Page	address	Page	frame	Presence	bit	P	Change	bit	C	Access	rights

A 0000000 1 0 R,	X

C D6C7F9 0 d R.	W,	X

E 0000024 1 1 R.	W.	X

F 0000016 1 0 R

Figure	6.29

Representative	organization	of	a	page	table.

must	be	copied	onto	secondary	memory	when	it	is	preempted.	The	page	table	canalso	contain	memory	protection	data	that	specifies	the	access	rights	of	the
currentprogram	to	read	from,	write	into,	or	execute	the	page	in	question.	Page	tables	differfrom	segment	tables	primarily	in	the	fact	that	they	contain	no	block	size
informa-tion.

As	noted	earlier,	pages	require	a	simpler	memory	allocation	system	than	seg-ments,	since	block	size	is	not	a	factor	in	paging.	On	the	other	hand,	pages	have	nological
significance,	as	they	do	not	represent	program	elements.	Paging	and	seg-mentation	can	also	be	compared	in	terms	of	memory	fragmentation.	In	systemswith
segmentation,	holes	of	different	sizes	tend	to	proliferate	throughout	mainmemory;	they	can	be	eliminated	by	the	time-consuming	process	of	memory	com-paction.
Unusable	space	between	occupied	regions	is	called	external	fragmenta-tion.	Since	page	frames	are	contiguous,	no	external	fragmentation	occurs	in	pagedsystems.
However,	if	a	k-word	block	is	divided	into	p	rc-word	pages,	and	k	is	not	amultiple	of	n,	the	last	page	frame	to	which	the	block	is	assigned	will	not	be	filled.Unusable	space
within	a	partially	filled	page	frame	is	called	internal	fragmentation.

Paging	and	segmentation	can	be	combined	in	an	attempt	to	gain	the	advantagesof	both.	The	great	advantage	of	breaking	a	segment	into	pages	is	that	it	eliminatesthe



need	to	store	the	segment	in	a	contiguous	region	of	main	memory.	Instead,	allthat	is	required	is	a	number	of	page	frames	equal	to	the	number	of	pages	into	whichthe
segment	has	been	broken.	Since	these	page	frames	need	not	be	contiguous,	thetask	of	placing	a	large	segment	in	main	memory	is	eased.

When	segmentation	is	used	with	paging,	a	virtual	address	has	three	compo-nents:	a	segment	index	SI,	a	page	index	PI,	and	a	displacement	(offset)	D.	Thememory	map
then	consists	of	one	or	more	segment	tables	and	page	tables.	For	fastaddress	translation,	two	TLBs	can	be	used	as	shown	in	Figure	6.30,	one	for	seg-ment	tables	and	one
for	page	tables.	As	discussed	earlier,	the	TLBs	serve	as	fastcaches	for	the	memory	maps.	Every	virtual	address	Av	generated	by	a	programgoes	through	a	two-stage
translation	process.	First,	the	segment	index	SI	is	used	toread	the	current	segment	table	to	obtain	the	base	address	PB	of	the	required	pagetable.	This	base	address	is
combined	with	the	base	index	PI	(which	is	just	a	dis-placement	within	the	page	table)	to	produce	a	page	address,	which	is	then	used	toaccess	a	page	table.	The	result	is	a
real	page	address,	that	is,	a	page	frame	number,which	can	be	combined	with	the	displacement	part	D	of	Av	to	give	the	final	(real)address	AR.	This	system,	as	depicted	in
Figure	6.30.	is	very	flexible.	All	the	variousmemory	maps	can	be	treated	as	paged	segments	and	can	be	relocated	anywhere	inthe	physical	memory	space.
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EXAMPLE	6.5	MEMORY	ADDRESS	TRANSLATION	IN	THE	INTEL	PENTIUM

[INTEL	19941.	The	Pentium	is	a	32-bit	microprocessor	introduced	in	1993	that	pro-vides	direct	hardware	support	for	both	segmentation	and	paging.	It	is	a	member
ofIntel's	80X86	microprocessor	family	and	maintains	some	degree	of	compatibility	at	theobject-code	level	with	its	predecessors	back	to	the	original,	1976-vintage	8086
CPU.Most	of	the	memory-addressing	features	discussed	here	originated	with	the	80386,introduced	in	1985.

Like	the	MIPS	R2/3000	(Example	6.4),	the	Pentium"s	real	address	space	can	be	aslarge	as	4	GB	(232	bytes);	however,	the	virtual	address	space	can	be	an	extremely
large64	TB	(64	terabytes	=	246	bytes).	An	on-chip	MMU	has	a	segmentation	unit	that	per-forms	address	translation	for	segments	ranging	in	size	from	1	to	232	bytes.	A
separatepaging	unit	handles	address	translation	for	pages	of	size	4	KB	or	4	MB.	Any	one	of	the
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Virtual	address	Av

Real	address	AR

To	memorysystem	M

Figure	6.30

Two-stage	address	translation	with	segments	and	pages.

following	four	memory	access	methods	can	be	selected	under	program	control:	unseg-mented	and	unpaged,	segmented	and	unpaged,	unsegmented	and	paged,	and
segmentedand	paged.	The	output	of	the	paging	unit	is	a	32-bit	real	address,	while	that	of	the	seg-mentation	unit	is	a	32-bit	word	called	a	linear	address.	If	both
segmentation	and	pagingare	used,	every	memory	address	generated	by	a	program	goes	through	a	two-stagetranslation	process

Virtual	address	Av	—>	linear	address	TV	—>	real	address	AR

as	depicted	in	Figure	6.31.	Without	segmentation	Av	=	N,	while	without	paging	N	=AR.	The	segmentation	and	paging	units	both	contain	TLBs	to	store	the	active
portionsof	the	various	memory	maps	needed	for	address	translation,	so	the	delay	of	the	transla-tion	process	is	small.	This	delay	is	further	diminished	by	overlapping
(pipelining)	theformation	of	the	virtual,	linear,	and	real	addresses,	as	well	as	by	overlapping	memoryaddressing	and	fetching,	so	the	next	real	address	is	ready	by	the	time
the	current	mem-ory	cycle	is	completed.

An	active	process	controlled	by	the	Pentium	has	several	segments	associated	withit,	such	as	the	object	program	code,	a	program	control	stack,	and	one	or	more	data
sets.Each	segment	can	be	thought	of	as	a	virtual	memory	of	size	4	GB,	which	has	the	linear
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Figure	6.31

Address	translation	with	segmentation	and	paging	in	the	Intel	Pentium.
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address	organization	of	main	memory.	The	CPU	contains	six	segment	registers	thatstore	pointers	to	the	segments	in	current	use.	For	example,	the	segment	registers
CSand	SS	address	a	code	(program)	and	stack	segment,	respectively.	These	registers	aretypically	used	in	a	manner	that	is	transparent	to	the	application	programmer.
Forinstance,	when	an	instruction	fetch	is	initiated,	a	32-bit	(effective)	address	obtainedfrom	the	program	counter	PC	is	appended	to	a	14-bit	segment	index	Ls	obtained
fromthe	CS	register	to	form	a	46-bit	virtual	address	L.	As	Figure	6.31	indicates,	Ls	serves	asa	relative	address	for	an	8-byte	segment	descriptor	stored	in	one	of	many
possible	seg-ment	tables.	The	descriptor	specifies	the	base	address	and	length	of	the	segment	5referred	to	by	Ls.	It	also	indicates	5"s	type	and	access	rights,	and	whether
5	is	present	inmain	memory.	The	linear	address	TV	is	constructed	by	adding	the	base	address	obtainedfrom	the	segment	descriptor	to	the	program-derived	effective
address.

Figure	6.31	also	shows	how	the	paging	unit	processes	the	linear	address	N	to	pro-duce	a	real	address	AR,	assuming	a	page	size	of	4	KB.	A	two-step	table	lookup	processis
employed	to	obtain	AR	from	N.	The	right-most	12	bits	of	N	form	a	displacementwithin	the	page	containing	the	desired	information;	they	therefore	supply	the	right-most	12
bits	of	AR.	The	remaining	20	bits	of	N	yield	a	real	page	address	as	follows.First	a	page	directory	is	accessed,	which	contains	entries	defining	up	to	1024	pagetables.	The
left-most	10	bits	Nd	of	N	form	the	relative	address	of	a	32-bit	entry	E	in	thepage	table	directory.	E	contains	the	20-bit	base	address	of	a	page	table	T,	as	well	assuch
standard	information	as	a	presence	bit,	a	change	bit	(indicating	whether	or	not	thepage	has	been	written	into),	and	some	protection	information.	Using	the	base
addressderived	from	£,	the	page	table	T	is	then	accessed,	and	the	word	£",	which	is	stored	atthe	relative	address	pointed	to	by	the	10-bit	field	N	of	the	linear	address	N.	is
fetched.E',	which	has	the	same	format	as	£,	provides	the	20-bit	page	address	(page	frame	num-ber)	of	the	desired	real	address	AR.

442	Page	size.	The	page	size	Sp	has	a	big	impact	on	both	storage	utilization	and

section	6	2	the	effective	memory	data-transfer	rate.	Consider	first	the	influence	of	Sp	on	the

Memory	Systems	space-utilization	factor	u	defined	earlier.	If	Sp	is	too	large,	excessive	internal	frag-

mentation	results;	if	it	is	too	small,	the	page	tables	become	very	large	and	tend	toreduce	space	utilization.	A	good	value	of	Sp	should	achieve	a	balance	betweenthese	two
extremes.	Let	Ss	denote	the	average	segment	size	in	words.	If	Ss	»	S„the	last	page	assigned	to	a	segment	should	contains	about	5/2	words.	The	size	ofthe	page	table
associated	with	each	segment	is	approximately	S/Sp	words,	assum-ing	each	entry	in	the	table	is	a	word.	Hence	the	memory	space	overhead	associatedwith	each	segment
is

2+Sp

The	space	utilization	u	is

"	=	FTT	=	~2	—	(6-10)

Ss	+	S	S2p	+	2SS(\+Sp)

OPT

The	optimum	page	size	Sp	can	be	defined	as	the	value	of	Sp	that	maximizes	u	or,equivalently,	that	minimizes	5.	Differentiating	S	with	respect	to	5	,	we	obtain

dS_	_	15,

JSp'i'sl

S	is	a	minimum	when	dS/dS	-	0,	from	which	it	follows	that

OFT	/

S„	=	JlSs	(6.11)

p

The	optimum	space	utilization	is

i	+	V27s;

Figure	6.32	shows	the	space	utilization	u	defined	by	Equation	(6.10)	plottedagainst	Ss	for	some	representative	values	of	S	.

The	influence	of	page	size	on	hit	ratio	is	complex,	depending	on	the	programreference	stream	and	the	amount	of	space	available	in	Mv	Let	the	virtual	addressspace	of	a
program	be	a	sequence	of	numbers	Aq,	Alt...,	AL_X.	Let	A,	be	the	virtualaddress	referenced	at	some	point	in	time,	and	let	Ai+d	be	the	next	address	gener-ated,	where	d	is
the	"distance"	between	A,	and	A,	+	d.	For	example,	if	both	addressespoint	to	instructions,	A{	+	d	points	to	the	(d	+	l)st	instruction	either	preceding	or	fol-lowing	the
instruction	whose	virtual	address	is	A,.	Let	Sp	be	the	page	size	and	sup-pose	that	an	efficient	replacement	policy	such	as	LRU	is	being	used.	Theprobability	of	Ai	+	d	being
in	M,	is	high	if	one	of	the	following	conditions	is	satis-fied:

•	d	is	small	compared	with	Sp,	so	A,	and	A,	+	d	are	in	the	same	page	P.	The	probabil-ity	of	these	addresses	both	being	in	P	increases	with	the	page	size.

•	d	is	large	relative	to	S	but	A,	+	d	is	associated	with	a	set	of	words	that	are	fre-quently	referenced.	A,	+	d	is	therefore	likely	to	be	in	a	page	P'	*	P,	which	is	also

3	0.8

2	3	4



Segment	size	Ss,	in	K-words

Figure	6.32

Influence	of	page	size	Sp5	and	segment	size	Ss	onspace	utilization	u.
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in	M,.	This	likelihood	tends	to	increase	with	the	number	of	pages	stored	in	M,;	ittherefore	tends	to	decrease	with	the	size	of	Sp.

Thus	H	is	influenced	by	two	opposing	forces	as	S	is	varied.	When	S	is	small,H	increases	with	Sp.	However,	when	Sp	exceeds	a	certain	value,	H	begins	todecrease.	Figure
6.33	shows	some	typical	curves	relating	H	and	S	for	variousmain-memory	capacities.	Simulation	studies	indicate	that	in	large	systems,	the	val-ues	of	5	yielding	the
maximum	hit	ratios	can	be	greater	than	the	"optimum"	pagesize	given	by	Equation	(6.11).	Since	high	H	is	important	in	achieving	small	tA	(dueto	the	relatively	slow	rates
at	which	page	swapping	takes	place),	values	of	Sp	thatmaximize	H	are	preferred.	The	first	computer	with	a	paging	system	(the	Universityof	Manchester's	Atlas	computer)
had	a	512-word	page,	while	the	Pentium	dis-cussed	in	Example	6.5	supports	page	sizes	of	4	KB	and	4	MB.

5.6.1	Memory	Allocation

As	we	have	seen,	the	various	levels	of	a	memory	system	are	divided	into	sets	ofcontiguous	locations,	variously	called	regions,	segments,	or	pages,	which	store

Page	size	5_

Figure	6.33

Influence	of	page	size	Spon	hit	ratio	H.

444	blocks	of	data.	Blocks	are	swapped	automatically	among	the	levels	in	order	to	min-

sfction	imize	the	access	time	seen	by	the	processor.	Swapping	generally	occurs	in

M	s	t	m	response	to	processor	requests	(demand	swapping).	However,	to	avoid	making	a

processor	wait	while	a	requested	item	is	being	moved	to	the	fastest	level	of	mem-ory	Mj,	some	kind	of	anticipatory	swapping	must	be	implemented,	which
impliestransferring	blocks	to	M,	in	anticipation	that	they	will	be	required	soon.	Goodshort-range	prediction	of	access-request	patterns	is	possible	because	of	locality
ofreference.

The	placement	of	blocks	of	information	in	a	memory	system	is	called	memoryallocation	and	is	the	topic	of	this	section.	The	method	of	selecting	the	part	of	M,	inwhich	an
incoming	block	K	is	to	be	placed	is	the	replacement	policy.	Simplereplacement	policies	assign	K	to	M,	only	when	an	unoccupied	or	inactive	region	ofsufficient	size	is
available.	More	aggressive	policies	preempt	occupied	blocks	tomake	room	for	K.	In	general,	successful	memory	allocation	methods	result	in	a	highhit	ratio	and	a	low
average	access	time.	If	the	hit	ratio	is	low,	an	excessive	amountof	swapping	between	memory	levels	occurs,	a	phenomenon	known	as	thrashing.Good	memory	allocation
also	minimizes	the	amount	of	unused	or	underused	spacein	M,.

The	information	needed	for	allocation	within	a	two-level	hierarchy	(M,,M-,)—unless	otherwise	stated,	we	will	assume	the	main-secondary-memory	hierarchy—can	be	held
in	a	memory	map	that	contains	the	following	information:

•	Occupied	space	list	for	Mx.	Each	entry	of	this	list	specifies	a	block	name,	the(base)	address	of	the	region	it	occupies,	and,	if	variable,	the	block	size.	In	sys-tems	using
preemptive	allocation,	additional	information	is	associated	with	eachblock	to	determine	when	and	how	it	can	be	preempted.

•	Available	space	list	for	Mx.	Each	entry	of	this	list	specifies	the	address	of	anunoccupied	region	and,	if	necessary,	its	size.

•	Directory	for	M2.	This	list	specifies	the	unit(s)	that	contain	the	directories	for	allthe	blocks	associated	with	the	current	programs.	These	directories,	in	turn,	definethe
regions	of	the	M2	space	to	which	each	block	is	assigned.

When	a	block	is	transferred	from	M2	to	Mx,	the	memory	management	systemmakes	an	appropriate	entry	in	the	occupied	space	list.	When	the	block	is	no	longerrequired
in	Mx,	it	is	deallocated	and	the	region	it	occupies	is	transferred	from	theoccupied	space	list	to	the	available	space	list.	A	block	is	deallocated	when	a	pro-gram	using	it
terminates	execution	or	when	the	block	is	replaced	to	make	room	forone	with	higher	priority.

Many	preemptive	and	nonpreemptive	algorithms	have	been	developed	fordynamic	memory	allocation.	Accurate	analysis	of	their	performance	is	difficult;	asa	result,
simulation	is	the	most	widely	used	evaluation	tool.	The	performance	of	anallocation	algorithm	can	be	estimated	by	the	various	parameters	introduced	in	sec-tion	6.2.1,
such	as	the	hit	ratio	H,	the	access	time	tA,	and	the	space	utilization	u.

Nonpreemptive	allocation.	Suppose	a	block	K:	of	nl	words	is	to	be	transferredfrom	M2	to	M,.	If	none	of	the	blocks	already	occupying	M,	can	be	preempted(overwritten	or
moved)	by	K{,	then	it	is	necessary	to	find	or	create	an	"available"region	of	«,	or	more	words	to	accommodate	Kt	This	process	is	termed	nonpreemp-tive	allocation.	The
problem	is	more	easily	solved	in	a	paging	system	where	all

blocks	(pages)	have	size	5.	words	and	Mj	is	divided	into	fixed	S^-word	regions(page	frames).	The	memory	map	(page	table)	is	searched	for	an	available	pageframe;	if	one
is	found,	it	is	assigned	to	the	incoming	block	Kt.	This	easy	allocationmethod	is	the	principal	reason	for	the	widespread	use	of	paging.	If	memory	spaceis	divisible	into
regions	of	variable	length,	however,	then	it	becomes	more	difficultto	allocate	incoming	blocks	efficiently.

Two	widely	used	algorithms	for	nonpreemptive	allocation	of	variable-sizedblocks—unpaged	segments,	for	example—are	first	fit	and	best	fit.	The	first-fitmethod	scans	the
memory	map	sequentially	until	an	available	region	Rj	of	ni	ormore	words	is	found,	where	ni	is	the	size	of	the	incoming	block	Kt.	It	then	allocatesK{	to	Rj.	The	best-fit
approach	requires	searching	the	memory	map	completely	andassigning	Kt	to	a	region	of	rij	>	n,	words	such	that	rij	-	n,	is	minimized.

Suppose,	for	example,	that	at	some	point	in	time	M,	stores	three	blocks,	as	inFigure	6.34a.	There	are	three	available	(shaded)	regions,	and	the	available	spacelist	has	the
form:
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Region	address

Size	(words)

0

300

800

50

400

200

Further,	suppose	that	two	new	blocks	K4	and	K5	whose	sizes	are	100	and	250words,	respectively,	are	to	be	assigned	to	Mj.	Figures	6.34b	and	c	show	the	resultsobtained
using	the	first-fit	and	best-fit	methods,	respectively,	when	the	memoryscan	begins	at	address	0.

The	first-fit	algorithm	has	the	advantage	of	needing	less	time	to	execute	thanthe	best-fit	approach.	If	the	best-fitting	available	region	can	be	found	by	scanning	k
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Figure	6.34

(a)	Initial	memory	state;	(b)	allocation	of	K4	and	K5	by	first	fit;	(c)	allocation	of	KA	and	K5by	best	fit.
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entries	of	the	available	space	list,	the	first	fit	can	always	be	found	by	scanning	k	orfewer	entries.	The	relative	efficiency	of	the	two	techniques	has	long	been	a	subjectof
debate,	since	both	have	been	implemented	with	satisfactory	results	[Knuth	1973;Shore	1975].	The	performance	obtained	in	a	particular	environment	depends	on
thedistribution	of	the	block	sizes	to	be	allocated.	Simulation	studies	suggest	that,	inpractice,	first	fit	tends	to	outperform	best	fit.

Preemptive	allocation.	Nonpreemptive	allocation	cannot	make	efficient	useof	memory	in	all	situations.	Memory	overflow,	that	is,	rejection	of	a	memory	allo-cation	request
due	to	insufficient	space,	can	be	expected	to	occur	with	M,	only	par-tially	full.	Much	more	efficient	use	of	the	available	memory	space	is	possible	if	theoccupied	space	can
be	reallocated	to	make	room	for	incoming	blocks.	Reallocationmay	be	done	in	two	ways:

•	The	blocks	already	in	M[	can	be	relocated	within	M,	to	create	a	gap	large	enoughfor	the	incoming	block.

•	One	or	more	occupied	regions	can	be	made	available	by	deallocating	the	blocksthey	contain.	This	method	requires	a	rule—a	replacement	policy—for	selectingblocks	to
be	deallocated	and	replaced.

Deallocation	requires	that	a	distinction	be	made	between	"dirty"	blocks,	whichhave	been	modified	since	being	loaded	into	M,,	and	"clean"	blocks,	which	havenot	been
modified.	Blocks	of	instructions	remain	clean,	whereas	blocks	of	data	canbecome	dirty.	To	replace	a	clean	block,	the	memory	management	system	can	sim-ply	overwrite	it
with	the	new	block	and	update	its	entry	in	the	memory	map.	Beforea	dirty	block	is	overwritten,	it	should	be	copied	to	M2,	which	involves	a	slow	blocktransfer.

Relocation	of	the	blocks	already	occupying	M[	can	be	done	by	a	method	calledcompaction,	which	is	illustrated	in	Figure	6.35.	The	blocks	currently	in	memoryare
compressed	into	a	single	contiguous	group	at	one	end	of	the	memory.	This	cre-ates	an	available	region	of	maximum	size.	Once	the	memory	is	compacted,	incom-ing	blocks
are	assigned	to	contiguous	regions	at	the	unoccupied	end.	The	memory

Block	A-

Block	K2

Block	AT

Block	K

Block	K-,

Block	AT,

(a)

(b)

Figure	6.35

Memory	allocation	(a)	before	and	(b)	aftercompaction.

is	viewed	as	having	a	single	available	region;	new	available	regions	due	to	freedblocks	are	ignored.	When	the	gap	at	the	end	of	the	memory	is	eventually	filled,compaction
is	carried	out	again.	The	advantages	of	this	scheme	are	its	simplicityand	the	fact	that	it	eliminates	the	task	of	selecting	an	available	region;	its	drawbackis	the	long
compaction	time.

Replacement	policies.	The	second	major	approach	to	preemptive	allocationinvolves	preempting	a	region	R	occupied	by	block	K	and	allocating	it	to	an	incom-ing	block	K'.
The	criteria	for	selecting	K	as	the	block	to	be	replaced	constitute	thereplacement	policy.	The	main	goal	in	choosing	a	replacement	policy	is	to	maxi-mize	the	hit	ratio	of	the
faster	memory	M,	or,	equivalently.	minimize	the	numberof	times	a	referenced	block	is	not	in	Mh	a	condition	called	a	memory	fault	or	miss.

It	is	generally	accepted	that	the	hit	ratio	tends	to	a	maximum	if	the	time	inter-vals	between	successive	memory	faults	are	maximized.	An	optimal	replacementstrategy
would	therefore	at	time	ti	determine	the	time	t.	>	t,	at	which	the	next	refer-ence	to	block	K	is	to	occur;	the	K	to	be	replaced	is	the	one	for	which	t-	-	r,	has	themaximum
value	tK.	This	ideal	strategy	has	been	called	OPT	[Mattson	et	al.	1970;Stone	1993].	In	principle.	OPT	can	be	implemented	by	making	two	passes	throughthe	executing
program.	The	first	is	a	simulation	run	to	determine	the	sequence	5Bof	distinct	virtual	block	addresses	generated	by	the	program;	the	sequence	is	calledthe	block	address
trace.	The	values	of	tK	at	each	point	in	time	can	be	computedfrom	5B	and	used	to	construct	the	optimal	sequence	5b	PT	of	blocks	to	be	replaced.The	second	run	is	the
execution	run,	which	uses	5b	to	specify	the	blocks	to	bereplaced.	OPT	is	not	a	practical	replacement	policy	because	of	the	cost	of	the	sim-ulation	runs	and	the	fact	that	5B
can	be	extremely	long,	making	5bPT	too	expen-sive	to	compute.	A	practical	replacement	policy	attempts	to	estimate	tK	usingstatistics	it	gathers	on	the	past	references	to
all	blocks	currently	in	Mj.

Two	useful	replacement	policies	are	first-in	first-out	(FIFO)	and	least	recently-used	(LRU).	FIFO	selects	for	replacement	the	block	least	recently	loaded	into	M,.FIFO	has



the	advantage	that	it	is	very	easy	to	implement.	A	loading-sequence	num-ber	is	associated	with	each	block	in	the	occupied	space	list.	Each	time	a	block	istransferred	to	or
from	M,,	the	loading-sequence	numbers	are	updated.	By	inspect-ing	these	numbers,	the	memory	manager	can	easily	determine	the	oldest	(first-in)block.	FIFO	has	the
defect,	however,	that	a	frequently	used	block,	for	instance,	onecontaining	a	program	loop,	may	be	replaced	simply	because	it	is	the	oldest	block.

The	LRU	policy	selects	for	replacement	the	block	that	was	least	recentlyaccessed	by	the	processor.	This	policy	is	based	on	the	reasonable	assumption	thatthe	least
recently	used	block	is	the	one	least	likely	to	be	referenced	in	the	future.LRU	avoids	the	replacement	of	old	but	frequently	used	blocks,	as	occurs	withFIFO.	LRU	is	slightly
more	difficult	to	implement	than	FIFO,	however,	since	thememory	manager	must	maintain	data	on	the	times	of	references	to	all	blocks	inmain	memory.	LRU	is
implemented	by	associating	a	hardware	or	software	counter,called	an	age	register,	with	every	block	in	M,.	Whenever	a	block	is	referenced,	itsage	register	is	set	to	a
predetermined	positive	number.	At	fixed	intervals	of	time,the	age	registers	of	all	the	blocks	are	decremented	by	a	fixed	amount.	The	leastrecently	used	block	at	any	time	is
the	one	whose	age	register	contains	the	smallestnumber.

The	performance	of	a	replacement	policy	in	a	given	memory	organization	canbe	analyzed	using	the	block	address	stream	generated	by	a	set	of	representative
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computations.	Let	N\	and	N*2	denote	the	number	of	references	to	Mj	and	M2,respectively,	in	the	block	address	stream.	The	block	hit	ratio	H*	is	defined	by

N,

H	=

which	is	analogous	to	the	(word)	hit	ratio	H	defined	by	Equation	(6.5).	Let	n*denote	the	average	number	of	consecutive	word	address	references	within	eachblock.	H	can
be	estimated	from	H*	using	the	following	relation:

H	=	\-

\-H

In	a	paging	system,	H*	is	the	page-hit	ratio.	1	-	H*,	the	page-miss	ratio,	is	alsocalled	the	page	fault	probability.

EXAMPLE	6.6	COMPARISON	OF	SEVERAL	REPLACEMENT	POLICIES.	Consider

a	paging	system	in	which	M,	has	a	capacity	of	three	pages.	The	execution	of	a	programQ	requires	reference	to	five	distinct	pages	Pt,	where	i	=	1,	2,	3,	4,	5,	and	/	is	the
pageaddress.	The	page	address	stream	formed	by	executing	Q	is

232152453252

which	means	that	the	first	page	referenced	is	P2,	the	second	is	P3,	and	so	on.	Figure6.36	shows	the	manner	in	which	the	pages	are	assigned	to	M,	using	FIFO,	LRU,
andthe	ideal	OPT	replacement	policies.	The	next	block	to	be	selected	for	replacement	ismarked	by	an	asterisk	in	the	FIFO	and	LRU	cases.	It	will	be	observed	that	LRU
recog-nizes	that	P2	and	P5	are	referenced	more	frequently	than	other	pages,	whereas	FIFO
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Figure	6.36

Action	of	three	replacement	policies	on	a	common	address	trace.
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does	not.	Thus	FIFO	replaces	P2	twice,	but	LRU	does	so	only	once.	The	highest	page-hit	ratio	is	achieved	by	OPT,	the	lowest	by	FIFO.	The	page-hit	ratio	of	LRU	is
quiteclose	to	that	of	OPT,	a	property	that	seems	to	hold	generally.

Stack	replacement	policies.	As	discussed	in	section	6.2.1,	the	cost	and	perfor-mance	of	a	memory	hierarchy	can	be	measured	by	average	cost	per	bit	c	and	averageaccess
time	tA.	Equations	(6.4)	and	(6.7)	repeated	here	are	convenient	expressionsfor	c	and	t	A:

c	=

t	1	Ji	+	C-y-J'j

5,	+	S-,

tA=	tA[+(l-H)tB

The	quantities	c,	tA,	and	tB	are	determined	primarily	by	the	memory	technologiesused	for	M[	and	M2.	Once	these	technologies	have	been	chosen,	the	hit	ratio	H	canbe
computed	for	various	possible	system	configurations.	The	major	variables	onwhich	H	depends	are

•	The	address	streams	encountered.

•	The	average	block	size.

•	The	capacity	of	M,.

•	The	replacement	policy.

Simulation	is	perhaps	the	most	practical	technique	used	for	evaluating	differ-ent	memory	system	designs.	H	is	determined	for	representative	address	traces,memory
technologies,	block	sizes,	memory	capacities,	and	replacement	policies.Figure	6.36	shows	a	sample	point	in	this	simulation	process.	Here	the	addresstrace,	block	size,	and
memory	capacity	are	fixed,	and	three	different	replacementstrategies	are	being	tested.

Due	to	the	many	alternatives	that	exist,	the	amount	of	simulation	required	tooptimize	the	design	of	a	multilevel	memory	system	can	be	huge.	A	number	of	ana-lytic	models
for	optimizing	memory	design	have	been	proposed.	Notable	amongthese	is	a	technique	called	stack	processing,	which	is	applicable	to	paging	systemsthat	use	a	class	of
replacement	algorithms	called	stack	algorithms	[Stone	1993].Let	AT	be	any	page	address	trace	of	length	L	to	be	processed	using	a	replacementpolicy	RP.	Let	t	denote	the
point	in	time	when	the	first	t	pages	of	A	T	have	been	pro-cessed.	Let	n	be	a	variable	denoting	the	page	capacity	of	M,.	Bt{n)	denotes	the	setof	pages	in	M,	at	time	r,	and	L,
denotes	the	number	of	distinct	pages	that	have	beenencountered	at	time	/.	Policy	RP	is	called	a	stack	algorithm	if	it	has	the	followinginclusion	property:

Bt(n)cBt(n+	1)	if	n<Lt

Bt(n)	=	Bt(n+	1)	if	n>L,

LRU	retains	in	M,	the	n	most	recently	used	pages.	Since	these	are	alwaysincluded	in	the	n	+	1	most	recently	used	pages,	it	can	be	seen	right	away	that	LRUis	a	stack
algorithm.	Some	other	replacement	policies	are	also	of	this	type.	FIFO	isa	notable	exception,	however.	Consider	the	following	page	address	stream:
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Figure	6.37

FIFO	replacement	with	two	different	memory	capacities.
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Figure	6.37	shows	how	this	address	stream	is	processed	using	FIFO	and	memorycapacities	of	three	and	four	pages.	It	can	be	seen	that	at	various	points	of	time
theconditions	for	the	inclusion	property	are	not	satisfied.	For	example,	when	t	=	l,n	=5,	fl7(3)	=	{1,	2,	5},	andfl7(4)	=	{2,	3,	4,	5}.	Hence	fl7(3)	2	fl7(4),	so	FIFO	is	nota
stack	algorithm.

The	usefulness	of	stack	replacement	algorithms	lies	in	the	fact	that	the	hitratios	for	different	Mx	capacities	can	be	determined	by	processing	the	addressstream	once	and
by	representing	M1	by	a	list	or	"stack."	The	stack	5,	at	time	t	is	anordered	set	of	L,	distinct	pages	5,(1),	5,(2),...,	St(Lt),	with	5,(1)	referred	to	as	the	topof	the	stack	at	time
t.	The	inclusion	property	of	stack	algorithms	implies	that	thestack	can	always	be	generated	so	that

B,(n)	=	{5,(1),	5,(2),...,	5,(n)}	for	n<LtBt(n)	=	{5,(1),	5,(2),...,	St(Lt)}	for	n	>	L,

In	other	words,	the	behavior	of	a	system	in	which	Mj	has	capacity	n	is	determinedby	the	top	n	entries	of	the	stack.	By	scanning	5,,	we	can	easily	see	whether	a	hitoccurs
for	all	possible	values	of	n.	This	type	of	analysis	permits	the	simultaneousdetermination	of	hit	ratios	for	various	capacities	of	M1.

The	procedures	for	updating	the	stack	depend	on	the	particular	stack	algorithmRP	being	used.	There	may	be	little	resemblance	between	the	order	of	the	elementsin	5,
and	5,+	1;	the	stack	should	not	be	confused	with	simple	LIFO	stacks.	The	fol-lowing	example	describes	the	stack-updating	process	for	LRU	replacement.

EXAMPLE	6.7	DETERMINATION	OF	HIT	RATIOS	WITH	LRU	REPLACE-MENT.	Let	S,	=	{5,(1),	5,(2),...,	St(k)}	denote	the	stack	contents	at	time	t.	Stack	pro-cessing
requires	placing	the	most	recently	used	page	addresses	in	the	top	of	stack	sothat	the	least	recently	used	page	gets	pushed	to	the	bottom.	More	formally,	let	x	be	thenew
page	reference	at	time	t.	If	x	i	Sr	x	is	pushed	into	the	stack	so	that	x	becomes5r+1(l),	5,(1)	becomes	5,+	1(2),	and	so	on.	If	xe	St,	x	is	removed	from	5,	and	then
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Figure	6.38

Stack	processing	of	a	page	address	trace	using	LRU.

pushed	into	the	top	of	the	stack	to	form	S,+1.	Figure	6.38	illustrates	this	process	for	theaddress	stream	used	in	Figure	6.36.	To	determine	whether	a	hit	occurs	at	time	t
formemory	page	capacity	n,	it	is	necessary	only	to	check	whether	the	new	page	referencex	is	one	of	the	top	n	entries	of	5,;	if	it	is,	a	hit	occurs.	The	hit	occurrences	for	all
valuesof	n	<	5	also	appear	in	Figure	6.38.	The	values	for	the	various	page-hit	ratios	H*	are	asfollows:

n=	1 2 3 4 5 >5

H*	=	0.00 0.17 0.42 0.50 0.58 0.58

It	follows	from	the	inclusion	property	of	stack	replacement	algorithms	that	thehit	ratio	increases	with	the	available	capacity	n.	If	the	next	page	address	x	is	inB,(n),	it	must
also	be	in	Bt(n	+	1)	because	Bt{n)	cz	Bt{n	+	1).	Hence	if	a	hit	occurswith	capacity	n,	a	hit	also	occurs	when	the	capacity	is	increased	to	n	+	1.	It	mightbe	expected	that
this	inclusion	property	holds	for	all	replacement	policies,	but	itdoes	not.	The	example	in	Figure	6.37	shows	that	increasing	n	from	three	to	fourpages	in	a	system	with
FIFO	replacement	actually	reduces	the	page-hit	ratio	in	thiscase	from	0.25	to	0.17.	This	phenomenon	seems	to	be	relatively	rare,	not	occurringfor	most	address	traces.

Other	replacement	policies.	A	few	other	replacement	algorithms	are	used	inmultilevel	memories.	As	discussed	later	(in	section	6.3),	caches	often	have	a	low-cost
replacement	policy	called	direct	mapping,	where	each	incoming	block	fromM2	is	assigned	to	a	fixed	region	of	M,	determined	by	the	block's	low-order	addressbits.

Another	interesting	and	low-cost	technique	is	random	replacement,	where	thereplaced	block	is	chosen	in	an	apparently	random	fashion.	An	example	is	found	inthe	TLB	in
the	MIPS	R2/3000	of	Example	6.4—recall	that	although	pan	of	theMMU,	the	TLB	is	itself	a	special	type	of	cache.	The	block	to	be	replaced	(a	page
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452	entry	in	the	case	of	the	R2/3000's	TLB)	is	selected	by	a	fast	process	that	approxi-

sfction	mates	truly	random	selection	and,	unlike	LRU,	does	not	use	memory-reference

data.	The	R2/3000's	MMU	contains	a	6-bit	register	called	RANDOM,	which	is	dec-remented	in	each	CPU	clock	cycle.	RANDOM	therefore	continually	loops	throughthe
numbers	8	through	63,	each	of	which	can	act	as	an	entry	point	or	index	to	the64-entry	TLB.	(RANDOM	skips	the	numbers	zero	(hough	seven	so	that	the	firsteight	entries
of	the	TLB	can	be	reserved	for	critical	parts	of	the	operating	system.)When	a	TLB	miss	exception	is	being	serviced,	the	MMU	replaces	the	TLB	entrywhose	index	is	the
current	value	of	RANDOM.	Hence	the	randomness	of	the	timesat	which	TLB	miss	exceptions	occur	determines	the	randomness	of	this	register'scontents.	There	is	no	delay
and	very	little	hardware	overhead	associated	with	thisreplacement	policy.	Although	less	efficient	than	LRU,	this	policy	appears	to	workquite	well	in	practice.

•i.3CACHES

The	term	cache	refers	to	a	fast	intermediate	memory	within	a	larger	memory	system[Smith	1982;	Handy	1993].	Although	caches	appeared	as	early	as	1968	in	the
IBMSystem/360	Model	91,	they	did	not	come	into	wide	use	until	the	appearance	of	low-cost,	high-density	RAM	and	microprocessor	ICs	in	the	1980s.	Caches
directlyaddress	the	von	Neumann	bottleneck	by	providing	the	CPU	with	fast,	single-cycleaccess	to	its	external	memory.	They	also	provide	an	efficient	way	to	place	a
smallportion	of	memory	on	the	same	chip	as	a	microprocessor.	If	an	additional	off-chipcache	is	used	that	employs,	say,	fast	SRAM	technology—and	the	continuing	dispar-
ity	between	processor	and	DRAM	speeds	makes	that	desirable—a	two-level	cacheorganization	results	(refer	to	Figure	6.21c).

A	cache	serves	as	a	buffer	between	a	CPU	and	its	main	memory;	in	this	sectionwe	focus	on	caches	used	in	this	way.	However,	caches	appear	as	buffer	memoriesin	several
other	contexts.	We	saw	in	section	6.2	that	the	translation	look-aside	buff-ers	(TLBs)	used	within	a	memory	management	system	are	specialized	caches	thatpermit	very	fast
translation	of	memory	addresses.	Data	buffers	built	into	high-speed	secondary	memory	devices	such	as	hard	disk	drives	are	also	called	caches.

6.3.1	Main	Features

The	cache	and	main	memory	form	a	two-level	subhierarchy	(M,,M2)	that	differs	inimportant	ways	from	the	main-secondary	system	(M2,M3);	Figure	6.39	summa-rizes
these	differences.	Because	it	is	higher	in	the	memory	hierarchy,	the	pair(M[,M2)	functions	at	much	higher	speed	than	(M2,	M3).	The	access	time	ratio	tAJtA	is	around	5/1,
while	tA/tA_>	is	about	1000/1.	These	speed	differences	require(M,,M2)	to	be	managed	by	high-speed	hardware	circuits	rather	than	by	softwareroutines;	(M2,M3),	on	the
other	hand,	is	controlled	mainly	by	the	operating	system.Thus	while	the	(M2,M3)	hierarchy	is	transparent	to	the	application	programmer	butvisible	to	the	system
programmer,	(Mj,M2)	is	largely	transparent	to	both.	Anotherdifference	lies	in	the	block	size	used.	Communication	within	(M,,M2)	is	by	pages,

Two-level	hierarchy

(M,--i,M,)

Cache-main	memory

(Mi,	Mj)

Main-secondary	memory

(M2,M3)
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Typical	access	timeratios	rA/rAi._, 5/1 1000/1 MemoryOrganization

Memory	managementsystem Mainly	implemented	by	hardware Mainly	implemented	bysoftware

Typical	page	size 8B 4KB

Access	of	processor	tosecond	level	M, Processor	has	directaccess	to	M2 All	access	to	M3	isviaM2

Figure	6.39

Major	differences	between	cache-main	and	main-secondary-memory	hierarchies.

but	the	page	size	is	much	smaller	than	that	used	in	(M2,M3).	Finally,	we	note	thatthe	CPU	generally	has	direct	access	to	both	Mj	and	M2,	whereas	it	does	not	havedirect
access	to	M3.

Cache	organization.	Figure	6.40	shows	the	principal	components	of	a	cache.Memory	words	are	stored	in	a	cache	data	memory	and	are	grouped	into	smallpages	called
cache	blocks	or	lines.	The	contents	of	the	cache's	data	memory	arethus	copies	of	a	set	of	main-memory	blocks.	Each	cache	block	is	marked	with	itsblock	address,	referred
to	as	a	tag,	so	the	cache	knows	to	what	part	of	the	memoryspace	the	block	belongs.	The	collection	of	tag	addresses	currently	assigned	to	thecache,	which	can	be



noncontinguous,	is	stored	in	a	special	memory,	the	cache	tagmemory	or	directory.	For	example,	if	block	Bj	containing	data	entries	Dj	is	assignedto	M,,	then	5	is	in	the
cache's	tag	memory	and	Dj	is	in	the	cache's	data	memory.

Obviously	for	a	cache	to	improve	the	performance	of	a	computer,	the	timerequired	to	check	tag	addresses	and	access	the	cache's	data	memory	must	be	lessthan	the	time
required	to	access	main	memory.	Thus	if	main	memory	is	imple-mented	with	a	DRAM	technology	having	an	access	time	fAi	=	50	ns,	the	cache'sdata	memory	might	be
implemented	with	an	SRAM	technology	having	an	accesstime	of	tA	=10	ns.	A	basic	issue	in	cache	design,	which	we	examine	in	section6.3.2,	is	how	to	make	the	matching
of	tag	addresses	extremely	fast.

Two	general	ways	of	introducing	a	cache	into	a	computer	appear	in	Figure6.41.	In	the	look-aside	design	of	Figure	6.41a,	the	cache	and	the	main	memory	aredirectly
connected	to	the	system	bus.	In	this	design	the	CPU	initiates	a	memory-access	by	placing	a	(real)	address	A,	on	the	memory	address	bus	at	the	start	of	a

Cache	M, Hit

Cache

data

memory

Cache	tag

memory

(directory)

. i

Address	Control	Data

Figure	6.40

Basic	structure	of	a	cache.
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Figure	6.41

Two	system	organizations	for	caches:	(a)	look-aside	and	(b)	look-through.

read	(load)	or	write	(store)	cycle.	The	cache	M,	immediately	compares	A,	to	the	tagaddresses	currently	residing	in	its	tag	memory.	If	a	match	is	found	in	M,,	that	is,	acache
hit	occurs,	the	access	is	completed	by	a	read	or	write	operation	executed	inthe	cache;	main	memory	M2	is	not	involved.	If	no	match	with	A,	is	found	in	thecache,	that	is,	a
cache	miss	occurs,	then	the	desired	access	is	completed	by	a	reador	write	operation	directed	to	M2.	In	response	to	a	cache	miss,	a	block	(line)	of	dataBj	that	includes	the
target	address	A,	is	transferred	from	M2	to	M,.	This	transfer	isfast,	taking	advantage	of	the	small	block	size	and	fast	RAM	access	methods,	suchas	page	mode	(section
6.1.2),	which	allow	the	cache	block	to	be	filled	in	a	singleshort	burst.	The	cache	implements	some	replacement	policy	such	as	LRU	to	deter-mine	where	to	place	an
incoming	block.	When	necessary,	the	cache	block	replacedby	Bj	in	M,	is	saved	in	M2.	Note	that	cache	misses,	even	though	they	are	infrequent,result	in	block	transfers
between	M,	and	M2	that	tie	up	the	system	bus,	making	itunavailable	for	other	uses	like	IO	operations.



A	faster,	but	more	costly	organization	called	a	look-through	cache	appears	inFigure	6.4lb.	The	CPU	communicates	with	the	cache	via	a	separate	(local)	busthat	is	isolated
from	the	main	system	bus.	The	system	bus	is	available	for	use	byother	units,	such	as	IO	controllers,	to	communicate	with	main	memory.	Hencecache	accesses	and	main-
memory	accesses	not	involving	the	CPU	can	proceedconcurrently.	Unlike	the	look-aside	case,	with	a	look-through	cache	the	CPUdoes	not	automatically	send	all	memory
requests	to	main	memory;	it	does	so	onlyafter	a	cache	miss.	A	look-through	cache	allows	the	local	bus	linking	M,	and	M2to	be	wider	than	the	system	bus,	thus	speeding	up
cache-main-memory	transfers.For	example,	if	the	system	data	bus	is	32	bits	wide	and	the	cache	block	size	is	128bits	=16	bytes	(a	typical	value),	a	128-bit	data	bus	might
be	provided	to	link	M,and	M2,	which	would	allow	a	cache	block	to	be	replaced	in	as	little	as	a	singleclock	cycle.	The	main	disadvantage	of	the	look-through	design,	besides
its	highercomplexity	and	cost,	is	that	it	takes	longer	for	M2	to	respond	to	the	CPU	when	amiss	occurs.
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Cache	operation.	Figure	6.42	shows	a	small	cache	system	that	illustrates	therelationship	between	the	data	stored	in	the	cache	Mt	and	the	data	stored	in	mainmemory	M2.
Here	a	cache	block	(line)	size	of	4	bytes	is	assumed.	Each	memoryaddress	is	12	bits	long,	so	the	10	high-order	bits	form	the	tag	or	block	address,	andthe	2	low-order	bits
define	a	displacement	address	within	the	block.	When	a	blockis	assigned	to	M,'s	data	memory,	its	tag	is	also	placed	in	M,'s	tag	memory.	Figure6.42	shows	the	contents	of
two	blocks	assigned	to	the	cache	data	memory;	note	thelocations	of	the	same	blocks	in	main	memory.	To	read	the	shaded	word,	its	addressAj	=	101111000110	is	sent	to
Mj,	which	compares	A,'s	tag	part	to	its	stored	tagsand	finds	a	match	(hit).	The	stored	tag	pinpoints	the	corresponding	block	in	Mj's
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Cache	execution	of	a	read	operation.
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data	memory,	and	the	2-bit	displacement	is	used	to	output	the	target	word	to	theCPU.

A	cache	write	operation	employs	the	same	addressing	technique.	As	shown	inFigure	6.43,	the	tag	part	of	the	target	address	A,	is	again	presented	to	M,,	alongwith	the
data	word	to	be	stored.	When	a	hit	occurs,	the	new	data,	in	this	case,	88,	is

c

stored	at	the	location	pointed	to	by	A,	in	the	data	memory	of	M,,	thereby	overwrit-ing	the	old	data	FF.	Now	a	new	problem	arises:	The	data	in	M,	with	address	/4,	dif-fers
from	the	data	in	M2	with	the	same	address.	A	temporary	inconsistency	of	thissort	is	acceptable	as	long	as	no	device—another	processor,	for	instance—attemptsto	read	the
old	or	stale	data.	Preventing	the	improper	use	of	stale	data	is	the	cachecoherence	or	cache	consistency	problem.	It	is	a	basic	design	issue	in	multiproces-sors	where
several	CPUs	share	access	to	the	same	main	memory	but	each	has	itsown	cache.	This	issue	also	arises	in	single-CPU	systems	when	an	10	controller	orprocessor	is	present
that	has	direct	access	to	main	memory,	independent	of	theCPU;	see	problem	6.38.	We	can	minimize	cache-related	inconsistencies	by	imple-menting	a	policy	that
systematically	updates	the	data	in	M2	in	response	to	changesmade	to	the	corresponding	data	in	M,.	(We	will	discuss	some	general	solutions	tothe	cache	coherence
problem	in	Chapter	7.)



Most	of	the	methods	used	by	virtual	memory	systems	to	update	secondarymemory	can	be	adapted	for	use	with	the	cache-main-memory	subhierarchy.	Eachcache	block	in
the	data	memory	of	M,	can	have	a	change	bit	C	attached	to	it,	whichis	set	to	0	when	the	block	is	first	placed	in	M,.	Any	subsequent	write	operationaddressed	to	that	block
sets	C	to	1.	When	a	block	with	C	=	1	is	replaced,	its	datacontents	are	then	written	back	to	main	memory	M2.	This	technique	is	referred	to	aswrite-back	or	copy-back.	It
has	the	disadvantage	that	M,	and	M2	can	be	tempo-rarily	inconsistent,	that	is,	have	different	data	associated	with	the	same	physical
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Cache	execution	of	a	write	operation.

address.	Difficulties	arise	if	several	processors	with	independent	caches	are	sharingM,	because	their	data	can	become	inconsistent.	The	write-back	technique
alsocomplicates	recovery	from	system	failures.

Direct	communication	links	between	the	CPU	and	main	memory,	which	are	notpresent	in	the	virtual-memory	case,	permit	some	novel	write	policies	for	caches.
Analternative	to	write-back	is	to	transfer	the	data	word	to	both	M,	and	M2	during	everymemory	write	cycle,	even	when	the	target	address	is	already	assigned	to	the
cache.This	policy,	called	write-through,	is	easy	to	implement,	and	it	guarantees	that	M2never	contains	stale	information.	On	the	other	hand,	write-through	results	in
morewrite	cycles	to	M-,	than	write-back	does.	Since	the	time	needed	for	each	write	is	thenthe	slower	(write)	access	time	of	M2,	system	performance	may	suffer.
However,only	a	small	fraction,	perhaps	1/10,	of	all	memory	accesses	are	writes.	Some	pro-cessors	support	both	write-back	and	write-through	so	that	a	user	can	select	the
pol-icy	that	best	suits	a	particular	program's	memory-access	behavior.
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6.3.2	Address	Mapping

When	a	tag	address	is	presented	to	the	cache,	it	must	be	quickly	compared	to	thestored	tags	to	determine	whether	a	matching	tag	is	currently	assigned	to	the	cache.The
obvious	approach	of	scanning	all	the	tags	in	sequence	is	unacceptably	slow.The	fastest	technique	for	implementing	tag	comparison	is	associative	or	contentaddressing,
which	permits	the	input	tag	to	be	compared	simultaneously	to	all	tagsin	the	cache-tag	memory.	Pure	associative	memories	are	very	expensive,	however,so	it	is	only
feasible	to	use	them	in	small	caches	and	TLBs	(see	Example	6.4).	Var-ious	less	costly	techniques	have	been	developed	to	solve	this	problem,	some	ofwhich	make	limited
use	of	associative	addressing.

Associative	addressing.	In	an	associative	memory	any	stored	item	can	beaccessed	by	using	the	contents	of	the	item	in	question,	generally	some	specified	sub-field,	as	an
address.	Associative	memories	are	also	commonly	known	as	content-addressable	memories	(CAMs).	The	subfield	chosen	to	address	the	memory	iscalled	the	key.	Items
stored	in	an	associative	memory	can	viewed	as	having	the	two-field	format

KEY,	DATA

where	KEY	is	the	stored	address	and	DATA	is	the	information	to	be	accessed.	Forexample,	if	a	page	table	of	the	kind	shown	in	Figure	6.29	is	placed	in	an
associativememory,	the	page	address	can	be	selected	as	the	key,	while	the	page	frame,	pres-ence	bit,	change	bit,	and	access	rights	form	the	data.	Such	a	memory	can	then
beaccessed	with	a	request	such	as:	Read	the	page	frame	number	corresponding	topage	address	E.	However,	we	could	equally	well	choose	the	page	frame	as	the	key.which
would	permit	queries	such	as:	Write	1	in	the	presence-bit	field	of	page	frameD6C7F9.

An	associative	cache	employs	a	tag,	that	is,	a	block	address,	as	the	key.	At	thestart	of	a	memory	access,	the	incoming	tag	is	compared	simultaneously	to	all	thetags	stored
in	the	cache's	tag	memory.	If	a	match	(cache	hit)	occurs,	a	match-indicating	signal	triggers	the	cache	to	service	the	requested	memory	access.	A
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no-match	signal	identifies	a	cache	miss,	and	the	memory	access	requested	is	for-warded	to	main	memory	for	service.	A	cache	block	containing	the	target	addressis	then
sent	from	main	memory	to	the	cache,	and	at	the	same	time,	a	data	word	issent	to	the	CPU	or	transferred	from	the	CPU	to	the	cache,	in	response	to	the	origi-nal	access
request.

Associative	memory.	Figure	6.44	shows	the	general	structure	of	an	associativememory.	Each	unit	of	stored	information	is	a	fixed-length	word.	Any	subfield	ofthe	word	can
be	chosen	as	the	key.	Here	the	desired	key	is	specified	by	a	mask	reg-ister,	whose	contents	identify	the	bit	positions	(which	need	not	be	adjacent)	thatdefine	the	key.	The
current	key	is	compared	simultaneously	with	all	stored	words;those	that	match	the	key	output	a	match	signal,	which	enters	a	select	circuit,	whichenables	the	data	field	to
be	accessed.	If	several	entries	have	the	same	key,	then	theselect	circuit	determines	which	data	field	is	to	be	read	out.	It	can,	for	example,	readout	all	matching	entries	in
some	predetermined	order.	Since	all	words	in	the	mem-ory	are	required	to	compare	their	keys	with	the	input	key	simultaneously,	eachneeds	its	own	match	circuit.	The
match	and	select	circuits	make	associative	memo-ries	much	more	complex	and	expensive	than	conventional	memories.	AlthoughVLSI	techniques	have	made	associative
memories	economically	feasible,	cost	con-siderations	still	limit	them	to	applications	in	which	a	relatively	small	amount	ofinformation	must	be	accessed	very	rapidly,	such
as	address	mapping	for	caches.

The	logic	circuit	for	a	1-bit	associative	memory	cell	appears	in	Figure	6.45[Triebel	and	Chu	1982].	The	cell	comprises	a	D	flip-flop	for	data	storage,	a	matchcircuit	(the
EXCLUSIVE-NOR	gate)	for	comparing	the	flip-flop's	contents	to	anexternal	data	bit	D,	and	circuits	for	reading	from	and	writing	into	the	cell.	Theresults	of	a	comparison
appear	on	the	match	output	M,	where	M	=	1	denotes	amatch	and	M	=	0	denotes	no	match.	The	cell	is	selected	or	addressed	for	both	readand	write	operations	by	setting
the	select	line	S	to	1.	New	data	is	written	into	thecell	by	setting	the	write	enable	line	WE	to	1,	which	in	turn	enables	the	D	flip-flop's
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Structure	of	an	associative	(contentaddressable)	memory.
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clock	input	CK.	The	stored	data	is	read	out	via	the	Q	line.	The	mask	control	lineMK	is	activated	{MK	=	1)	to	force	the	match	line	M	to	0	independently	of	the	datastored	in
the	D	flip-flop;	MK	also	disables	the	input	circuits	of	the	flip-flop	by	forc-ing	CK	to	0.	A	cell	like	that	of	Figure	6.45	can	be	realized	with	about	10	transis-tors—far	more
than	the	single	transistor	required	for	a	dynamic	RAM	cell	(refer	toFigure	6.9b).	This	high	hardware	cost	is	the	main	reason	that	large	associativememories	are	rarely
used	outside	caches.

Associative	cells	of	the	preceding	type	can	be	combined	into	word-organizedassociative	memory	arrays.	Figure	6.46	shows	a	16-bit	associative	memory	thatstores	four
words	(columns)	of	4	bits	each.	The	words	are	individually	addressablevia	their	S	lines.	All	words	share	a	common	set	of	data	and	mask	lines	for	each	bitposition.
Consequently,	an	external	data	bit	D{	can	be	compared	simultaneously	tothe	z'th	stored	bit	of	every	word	in	the	memory.	The	output	lines	of	the	cells	aredesigned	so	that
they	can	be	connected	to	form	wired	OR	or	AND	gates,	as	indi-cated	in	the	figure.

A	small	associative	cache	is	found	in	Data	General	Corp.'s	ECLIPSE,	a	16-bitcomputer	from	the	1970s.	This	computer	has	a	modular	memory	design	in	whicheach	8K-word
main-memory	module	M2	is	paired	with	a	cache	Mj	that	stores	six-teen	16-bit	words	forming	four	4-word	blocks.	M2	is	constructed	from	MOS	RAMchips	with	a	700	ns
cycle	time,	while	the	cache	M,	uses	bipolar	RAMs	with	a	cycletime	of	200	ns.	The	memory	(tag)	addresses	of	the	blocks	stored	in	the	cache	areplaced	in	an	associative
memory	CAM.	When	the	CPU	generates	a	memoryaddress	A,	it	is	sent	to	the	CAM,	which	compares	it	to	all	tags	currently	in	thecache.	If	the	CAM	indicates	a	match,	Mx
responds	to	the	memory	request	directlyby	either	reading	or	writing	the	corresponding	data	M(A).	If	A	is	not	currentlyassigned	to	Mh	then	A	is	processed	by	the	main
memory	M2,	which	responds	to	theoriginal	CPU	request	by	executing	a	700	ns	read	or	write	cycle.	At	the	same	time,M2	sends	a	four-word	block	containing	M(A)	to	Mp
which	uses	the	new	block	toreplace	the	least	recently	used	cache	block.	The	cache's	LRU	block	replacementpolicy	is	implemented	by	special	hardware	that	constantly
monitors	cache	usage.
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Figure	6.45

Associative	memory	cell:	(a)	logic	circuit	and	(b)	symbol.
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Direct	mapping.	An	alternative,	and	simpler,	address-mapping	technique	forcaches	is	known	as	direct	mapping.	Let	M,	be	divided	into	s{	=	2s	regions	Mi(0),M,(l),...,	M[(5,
-	1)	called	sets,	each	of	which	stores	a	block	of	n	consecutivewords.	Main	memory	M2	is	similarly	divided	into	one-block	regions	M2(0),M2(l),...,	M2(s2	-	1).	With	direct
mapping,	each	block	M2(/)	in	M2	is	mapped	into

WE

Word	0

Word\

Word!

Word	3

Figure	6.46

A	4	x	4-bit	associative	memory	array.

M,(0)M,(l)

M2(0)M2(l)M2(2)M2(3)

M2(62)M2(63)
Main memory M2

Cache	M[

Figure	6.47

Direct-mapped	cache	withblock	capacity	of	two.
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one	specific	set	Mj(y')	in	M,.	The	set	address	j	is	determined	from	/	by	the	rule

j	=	i	(modulo	Sj)

For	example,	if	sx	=	2	as	in	Figure	6.47,	every	even-address	(unshaded)	block	inM2	is	mapped	into	M^O)	and	every	odd-address	(shaded)	block	in	M2	is	mappedintoM^l).

The	hardware	needed	to	implement	direct	mapping	is	fairly	simple.	The	low-order	s	bits	of	each	block	address	A	form	a	set	address	that	identifies	the	uniquecache	set	that
can	store	the	block	in	question.	The	remaining	t	high-order	bits	ofA	now	constitute	the	tag,	and	only	these	bits	need	be	stored	in	the	cache's	tagmemory.	Consequently,	the
cache	tag	memory	can	be	an	ordinary	RAM	that	isaddressed	by	the	5-bit	set-address	part	of	an	incoming	memory	address	A.	If	thereare	2d	words	per	set,	then	the	low-
order	d	bits	of	A	form	the	displacement	address	ofthe	word	in	question	within	its	block.	Thus	an	incoming	address	has	three	parts:	a	t-bit	tag,	an	5-bit	set	address,	and	a	d-
b\i	displacement.

The	main	drawback	of	direct	mapping	is	that	the	cache's	hit	ratio	drops	sharplyif	two	or	more	frequently	used	blocks	happen	to	map	onto	the	same	region	in	thecache.
This	possibility	is	minimized	by	the	fact	that	such	blocks	are	relatively	farapart	in	the	memory-address	space.	For	example,	if	5,	=	26	=	64,	then	only	theblocks	with
addresses	i,	i	+	64,	/	+	128,	i	+	192,...	can	be	mapped	into	the	samecache	set	A/j(i).

EXAMPLE	6.8	DESIGN	OF	A	DIRECT-MAPPED	CACHE	[INTEGRATED

device	technology	1994].	In	this	example	we	will	use	off-the-shelf	ICs	todesign	an	add-on	direct-mapped	cache	memory	for	a	high-end	microprocessor,	such	asthe
PowerPC.	If	the	CPU	has	a	built-in	(level	1)	cache,	as	is	frequently	the	case,	thisdesign	applies	to	a	level	2	(secondary)	cache.	The	CPU	is	linked	to	a	byte-
addressableexternal	memory	via	a	32-bit	address	bus	and	a	64-bit	bidirectional	data	bus	using	thethe	look-aside	design	style	of	Figure	6.41a.	The	desired	cache	capacity	is
256	KB,	andthe	cache	block	(set)	size	is	assumed	to	be	32	bytes	(32	B).	Hence	the	cache	must	store8K	=	213	blocks,	implying	that	we	need	a	cache	tag	memory	of
capacity	8K	x	r	bits	tostore	tags	of	length	/.	We	also	need	a	cache	data	memory	of	capacity	32K	x	64	bits,where	the	64-bit	word	size	is	determined	by	the	system	data	bus.
As	shown	in	Figure6.48,	a	32-bit	address	generated	by	the	CPU	contains	a	5-bit	displacement	to	address	a
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Figure	6.48

A	256KB	direct-mapped	cache	for	a	microprocessor.

byte	within	a	32B	block	and	a	13-bit	set	address	to	address	the	8K	blocks	in	the	datamemory.	Hence	the	remaining	t	=	32	—	(13	+	5)	=	14	high-order	address	bits	form
thetag.	Since	the	cache's	data	RAM	is	accessed	one	8-byte	word	at	a	time,	it	requires	a	15-bit	address	consisting	of	the	13-bit	set	address	plus	2	bits	(the	two	high-order
bits	of	thedisplacement)	to	select	one-quarter	of	the	current	set.

The	components	selected	for	this	design	are	the	Integrated	Device	Technology(IDT)	71256,	a	32K	x	8-bit	SRAM	chip,	which	has	an	access	and	cycle	time	of	12	ns,and	the
IDT	71B74	chip,	which	is	called	a	cache-tag	RAM.	The	71B74	contains	ahigh-speed	64Kb	memory	organized	as	an	8K	x	8-bit	RAM.	The	cache-tag	RAM	isdistinguished
from	an	ordinary	SRAM	by	the	fact	that	it	has	a	built-in	8-bit	comparatorto	compare	the	addressed	data	(a	stored	tag)	to	a	word	placed	on	the	71B74's	input	databus.	A
MATCH	output	signal	is	set	to	1	if	the	stored	and	applied	data	words	match,	andto	0	otherwise;	matching	can	be	done	by	the	71B74	in	8	ns.	The	MATCH	signal	is	sup-plied
to	a	small	control	circuit	that	then	issues	the	memory	access	control	signals	(WE,CS,	etc.)	either	to	the	cache	data	RAM	(MATCH	=	1)	or	to	main	memory	(MATCH	=0).	To
accommodate	14-bit	tags,	we	need	two	71B74s.	We	also	need	eight	71256s	tostore	the	cached	data.	The	final	design	of	this	cache	unit	appears	in	Figure	6.48.

Set-associative	addressing.	A	more	general	address	mapping	method	forcaches,	called	set	associative,	includes	pure	associative	and	direct	mapping	as	spe-cial	cases.	As
in	direct	mapping,	blocks	in	main	memory	M2	are	grouped	intoequivalence	classes	determined	by	their	addresses.	M2(0	and	M20')	are	in	the	sameequivalence	class	E	if	i
=	/	(modulo	$,).	The	cache	is	divided	into	sl	multiblock

Main	memory	M2

Cache	M,

SetM,(0)	I

r

SetM,(l)	<

M2(0)

M2n;

M2(2)M2(3)

M2(62)M2(63)

Figure	6.49

Cache	with	two-way	set-associative	addressing.
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regions	M,(0),	M,(l),...,	Ml(sl	-	1)	called	sets,	each	of	which	accommodates	k	=2h	blocks.	A	block	M20)	in	M2	is	mapped	into	the	set	M,(/2),	satisfying	the	condi-tion	i	=	h
(modulo	Sj).

Each	set	My(h)	in	the	cache	is	effectively	a	small	associative	memory,	soaddress	mapping	within	each	set	is	associative.	This	k-wdy	set-associative	mappingpermits	up	to	k
members	of	the	same	equivalence	class	E	to	be	stored	in	the	cachesimultaneously,	which	is	not	possible	with	direct	mapping.	Figure	6.49	illustratesset-associative
mapping	with	cache	size	5,	=	2	sets	and	set	size	k	=	2.	This	mappingis	therefore	two-way	set-associative	and	allows	every	shaded	(unshaded)	page	inM2	to	be	mapped
into	either	of	the	two	shaded	(unshaded)	page	frames	in	M,.	Set-associative	mapping	reduces	to	direct	mapping	when	k	=	1;	it	reduces	to	fully	asso-ciative	mapping	when
s,	=	1,	implying	that	k	equals	the	block	capacity	of	thecache.	Intermediate	values	of	k	lead	to	address-mapping	methods	requiring	anintermediate	amount	of	associative
hardware.	Only	small	values	of	k,	such	as	k	=	2or	4,	are	used	in	practice,	which	makes	it	feasible	to	use	low-cost	RAMs,	ratherthan	special	associative	memories	like	that
of	Figure	6.46,	to	store	the	tags,	as	thenext	example	illustrates.



EXAMPLE	6.9	DESIGN	OF	A	TWO-WAY	SET-ASSOCIATIVE	CACHE.	We	con-sider	an	8KB	cache	with	two-way	set-associative	addressing,	which	is	intended	for	a32-bit
processor.	A	single	8KB	two-way	set-associative	cache	is	used	by	the	VAX-11/780,	an	influential	minicomputer	introduced	by	Digital	Equipment	Corp.	in	1978[Clark	1983].
The	on-chip	I-	and	D-caches	of	the	PowerPC	model	603	introduced	in1993	are	also	of	the	8KB	two-way	set-associative	type	[Burgess	et	al.	1994;	Heath1994].	The	11/780's
cache	block	(line)	contains	8	bytes,	whereas	the	PowerPC	603'scaches	have	32B	blocks.	We	use	the	smaller	8B	block	size	here,	as	in	Example	6.8.

The	organization	of	the	cache	appears	in	Figure	6.50.	The	32-bit	address	A	is	inter-preted	as	follows.	The	low-order	3-bit	displacement	identifies	a	byte	within	an	8Bcache
block.	There	are	29	=	512	sets,	each	containing	two	8B	blocks,	so	the	next	9	bitsof	A	form	the	set	address.	The	remaining	20	bits	of	A	constitute	the	tag.	(The	number
oftag	bits	needed	depends	on	the	size	of	the	real	address	space	actually	used;	we	a&sumethe	maximum	size.)	An	incoming	tag	Atag	that	matches	a	stored	tag	can	be
associated
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with	either	block	in	the	matching	set	M,(i).	The	tag	memory	is	therefore	implementedby	two	512	x	20-bit	RAMs	T0	and	T,,	each	of	which	stores	the	tag	for	one	block
fromevery	set	M,(/).	In	addition,	two	512	x	64-bit	RAMs	D0	and	Dx	form	the	cache's	datamemory.	One	of	the	64-bit	data	blocks	of	M,(0	is	stored	at	address	i	in	D0	(tagged
byT0),	while	the	other	is	at	the	same	address	i	in	Dj	(tagged	by	T,).	Consequently,	the	set-address	field	i	of	A	is	used	as	the	address	to	access	both	the	tag	and	the	data
memories.At	the	start	of	a	memory	access,	the	9-bit	set	part	of	the	address	A	is	used	as	theaddress	to	read	T0	and	T,	simultaneously,	and	the	resulting	output	data	(two
storedtags)	are	compared	simultaneously	with	A^.	If	a	match	occurs,	one	of	two	MATCHsignals,	say,	from	T,,	is	asserted	and	used	to	initiate	a	memory	access	from	the
corre-sponding	data	memory	D,.	In	a	read	operation	D,	outputs	its	stored	data	to	the	systemdata	bus;	in	a	write	operation	D,	inputs	a	data	word	from	the	data	bus.	A	64-
bit-widedata	bus	is	assumed	in	Figure	6.50,	which	allows	a	cache	block	transfer	in	a	singleclock	cycle.	If	a	smaller	data	bus	is	used,	then	a	block	must	be	transferred	in
severalcycles.	The	data	memory	can	also	use	the	3-bit	displacement	field	of	A	to	select	a	part
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An	8	KB	two-way	set-associative	cache	for	a	microprocessor.

of	the	block,	down	to	a	single	byte.	If	a	miss	occurs,	indicated	by	a	no-match	outcomefrom	both	tag	comparisons,	the	memory	controller	initiates	an	8-byte	swap	with
mainmemory	to	bring	the	desired	data	into	the	cache.	The	block	to	be	replaced	is	thenselected	according	to	some	replacement	policy	from	the	two	available	candidates.
TheVAX-ll/780's	cache	uses	a	random	replacement	policy,	whereas	the	PowerPC	603uses	LRU.	The	11/780	cache	has	the	write-through	memory	updating	policy,
whereasthe	603	implements	write-back.
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6.3.3	Structure	versus	Performance

We	next	examine	some	additional	aspects	of	cache	design:	the	types	of	informationto	store	in	the	cache,	the	cache's	dimensions	and	control	methods,	and	the	impactof	the
cache's	design	on	its	performance.

Cache	types.	Caches	are	distinguished	by	the	kinds	of	information	they	store.An	instruction	or	I-cache	stores	instructions	only,	while	a	data	or	D-cache	storesdata	only.
Separating	the	stored	data	in	this	way	recognizes	the	different	accessbehavior	patterns	of	instructions	and	data.	For	example,	programs	tend	to	involvefew	write	accesses,
and	they	often	exhibit	more	temporal	and	spatial	locality	thanthe	data	they	process.	A	cache	that	stores	both	instructions	and	data	is	referred	to	asunified.	A	split	cache,
on	the	other	hand,	consists	of	two	associated	but	largelyindependent	units:	an	I-cache	for	instructions	and	a	D-cache	for	data.	While	a	uni-fied	cache	is	simpler,	a	split
cache	makes	it	possible	to	access	programs	and	dataconcurrently.	A	split	cache	can	also	be	designed	to	manage	its	I-	and	D-cache	com-ponents	differently.

Caches	are	also	classified	by	the	level	they	occupy	in	the	memory	hierarchy.Early	computers	employed	a	single,	multichip	cache	that	occupied	one	level	of	thehierarchy
between	the	CPU	and	main	memory.	Two	developments	made	it	desir-able	to	introduce	two	or	more	cache	levels	in	high-performance	systems:	the	feasi-bility	of	including
part	of	the	real	memory	space	on	a	microprocessor	chip	andgrowth	in	the	size	(but	not	the	speed)	of	main	memory	in	typical	computers.	Alevel	1	(LI)	or	primary	cache	is
an	efficient	way	to	implement	an	on-chip	memory.An	additional	memory	level	can	be	introduced	via	an	off-chip,	level	2	(L2)	or	sec-ondary	cache.	The	desirability	of	an	L2



cache	increases	with	the	size	of	main	mem-ory,	assuming	that	the	size	of	the	on-chip,	LI	cache	is	fixed.	As	main-memory	sizeincreases	further,	even	more	cache	levels	may
be	desirable.

The	PowerPC	microprocessor	family	illustrates	some	of	the	diversity	of	com-mercial	cache	types.	The	caches	for	the	four	original	members	of	the	series	aresummarized	in
Figure	6.51.	These	models	are	classified	as	low	end	(601),	mid-range	(603	and	604),	and	high	end	(620)	in	terms	of	performance.	The	601	differsfrom	the	others	in	large
part	because	it	is	a	"bridge"	design	with	architectural	fea-tures	of	both	the	PowerPC	and	the	earlier	IBM	POWER	series;	the	other	listedmodels	are	"pure"	PowerPC
machines.	Each	model	is	a	single-chip	microprocessorwith	an	on-chip	level	1	cache.	An	external	level	2	cache	is	easily	added,	as	dis-cussed	in	Example	6.8.	All	PowerPC
models	have	an	LRU	block	(line)	replace-ment	policy,	and	the	line	size	is	either	32	or	64	bytes.	The	normal	write	policy	oncache	misses	is	write-back,	but	there	is	software
support	for	write-through.	With
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Model General type Cache	size	Sx Associativity	k Line	size/7]

601 Unified 32KB Eight	way 64B

603 D-cache 8KB Two	way 32	B

I-cache 8KB Two	way 32	B

604 D-cache 16KB Four	way 32	B

I-cache 16KB Four	way 32	B

620 D-cache 32KB Eight	way 64	B

I-cache 32KB Eight	way 64B

Figure	6.51

Cache	features	of	some	members	of	the	PowerPC	family.

the	exception	of	the	601,	all	models	have	split	caches,	with	identical	I-cache	and	D-cache	capacities.	As	indicated	in	the	figure,	the	cache	size	Sx	and	the	degree
ofassociativity	k	double	as	we	move	from	the	603	to	each	more	powerful	model.

Performance.	The	cache	is	the	fastest	component	in	the	memory	hierarchy,so	it	is	desirable	to	make	the	average	memory	access	time	tA	seen	by	the	CPU	asclose	as
possible	to	access	time	tA	of	the	cache.	To	achieve	this	goal,	M,	shouldsatisfy	a	very	high	percentage	of	all	memory	references;	that	is,	the	cache	hit	ratioH	should	be
almost	one.	A	high	hit	ratio	is	possible	because	of	the	locality-of-reference	property	discussed	earlier.	From	(6.7)	we	have	tA	=	tA	+	(1	-	H)tB,where	tB	is	the	block-transfer
time	from	M2	to	M,.	The	block	size	is	small	enoughthat,	with	a	sufficiently	wide	M2-to-M1	data	bus,	a	block	can	be	loaded	into	thecache	in	a	single	main-memory	read
operation,	making	tB	=	tA	the	main-memoryaccess	time.	Hence	we	can	roughly	estimate	cache	performance	with	the	equation

tA=tAi	+	(l-H)tA2	(6.12)

A	formula	similar	to	(6.12)	holds	for	the	average	cycle	time.

Suppose	that	M2	is	six	times	slower	than	M,.A	reduction	in	H	from	99	percentto	95	percent—approximately	a	4	percent	drop	in	the	cache-hit	rate—changes	tAfrom	rAi	+
(1	-	0.99)6rA)	=	1.06rA|	to	tAi	+	(1	-	0.95)6rA_	=	1.30tA-	that	is,	theaccess	time	increases	by	about	23	percent.	Hence	a	small	decrease	in	the	cache's	hitratio	H	has	a
disproportionately	large	impact	on	system	performance.	Consequently,considerable	design	effort	is	devoted	to	making	H	as	close	to	one	as	possible.	Thisproblem	is	often
restated	as	that	of	making	the	cache-miss	ratio	1	-	H	as	close	to	zeroas	possible.

Consider	a	&-way	set-associative	cache	Mj	defined	by	the	following	parame-ters:	the	number	of	sets	sx,	the	number	of	blocks	(lines)	per	set	k,	and	the	number	ofbytes	per
block	(also	called	the	line	size)	px.	Recall	that	the	cache	is	fully	associa-tive	when	sx	=	1	and	is	direct-mapped	when	k=	\.	The	number	of	bytes	stored	inthe	cache's	data
memory,	usually	referred	to	as	the	cache	size	Sx,	is	given	by	thefollowing	formula:

Sx	=	ksxPx	(6.13)

or,	in	words,

Cache	size	=	number	of	blocks	(lines)	per	set	x	number	of	setsx	number	of	bytes	per	block

Although	other	factors,	such	as	the	tag	memory	(directory)	size,	influence	the	over-all	cost	C]	of	the	cache,	it	is	generally	assumed	that	Cx	is	proportional	to	the
datacapacity	Sx;	that	is,	Cx	=	cxSx.

Design	process.	The	parameters	in	Equation	(6.13),	as	well	as	factors	like	theblock	replacement	and	write	policies,	influence	the	cache's	hit	ratio	H	in	ways	thatare	hard
to	quantify	because	they	depend	on	the	workloads	used	with	the	cache.Such	workloads,	in	turn,	are	application	dependent.	As	a	result,	potential	cachedesigns	are
evaluated	by	extensive	trace-driven	simulation	experiments	withaddress	traces	derived	from	representative	programs	or	benchmarks	for	the	targetapplications.
Experiments	involving	billions	of	simulated	address	references	areoften	carried	out	in	the	design	of	the	caches	for	a	new	microprocessor.

Increasing	k,	sx,	px,	or	Sx,	individually	or	collectively,	tends	to	increase	H.	Thesize	of	an	on-chip	cache	is	often	limited	by	area	considerations.	For	example,	thedesigners
of	the	PowerPC	604	found	that	its	16KB	caches	were	adequate	for	exe-cuting	the	SPEC	benchmarks	(see	Example	2.8),	but	not	the	Transaction-ProcessingPerformance
Council	(TPC)	benchmarks,	which	consist	of	programs	that	manipu-late	huge	databases	in	real	time	and	so	have	large	memory	requirements.	The	hitratios	for	the	TPC
benchmarks	running	on	the	604	continued	to	increase	signifi-cantly,	when	the	cache	size	was	increased	to	32	KB	and	beyond,	a	fact	that	influ-enced	the	larger	cache	size
of	the	620	[Ewedemi,	Todd,	and	Yen	1994].

A	general	approach	to	the	design	of	the	cache's	main	size	parameters	k,	sx,	pxfollows	[Stone	1993].

1.	Select	a	block	(line)	size	px.	This	value	is	typically	the	same	as	the	width	w	ofthe	data	path	between	the	CPU	and	main	memory,	or	it	is	a	small	multiple	of	w.

2.	Select	the	programs	for	the	representative	workloads	and	estimate	the	number	ofaddress	references	to	be	simulated.	Particular	care	should	be	taken	to	ensure	thatthe
cache	is	initially	filled	before	H	is	measured.

3.	Simulate	the	possible	designs	for	each	set	size	sx	and	associativity	degree	k	ofacceptable	cost.	Methods	similar	to	stack	processing	(section	6.2.3)	can	be	usedto
simulate	several	cache	configurations	in	a	single	pass.

4.	Plot	the	resulting	data	and	determine	a	satisfactory	trade-off	between	perfor-mance	and	cost.

The	cache	size	Sx	seems	to	dominate	all	other	design	factors	affecting	both	hitrate	and	overall	performance	[Przybylski	1990].	5!	is	usually	a	power	of	two,hence	a	basic
design	question	is:	How	does	increasing	or	decreasing	the	size	by	afactor	of	two	affect	H?	It	has	been	found	that,	in	many	cases,	doubling	the	cachesize	from	S,	to	25,
increases	H	by	about	30	percent	[Stone	1993].	This	30	percentrule	is	depicted	graphically	in	Figure	6.52,	where	both	the	horizontal	and	verticalscales	are	normalized
quantities.	These	graphs	suggest	that	beyond	a	certain	point,the	improvement	in	performance	measured	by	the	increase	in	H	does	not	justify	thesteadily	increasing	cost.

In	general,	k-way	set-associative	caches	with	values	of	k	limited	to	two,	four,or	eight	by	cost	considerations	are	preferred.	However,	it	can	be	argued	that	for	asingle-level
cache	of	moderate	size,	set-associative	addressing	seldom	performsbetter	than	direct-mapped	addressing	[Przybylski	1990].	The	most	popular	blockreplacement	policy	is
LRU,	reflecting	its	tendency	to	yield	lower	miss	rates*	than
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Normalized	cache	size	S

Figure	6.52

16	Influence	of	cache	size	on	hitratio	and	cost.

other	replacement	policies.	Write-back	and	write-through	have	both	been	widelyimplemented	in	commercial	designs.	They	offer	a	trade-off	between	the	amount	ofmemory
traffic	generated	(less	with	write-back)	and	the	amount	of	temporaryinconsistency	between	the	cache	and	main	memory	(less	with	write-through).

EXAMPLE	6.10	CACHE	DESIGN	FOR	THE	POWERPC	620	[EWEDEMI.	TODD.

and	yen	1994].	Figure	6.53	outlines	the	organization	of	a	system	based	on	thePowerPC	Model	620,	which	is	a	64-bit	superscalar	microprocessor	intended	to	be	ofuse	in
high-performance	workstations	and	multiprocessors.	As	noted	earlier	(refer	toFigure	6.51),	the	620	was	designed	with	a	split	level	1	cache	consisting	of	an	I-cacheand	a
D-cache	each	of	size	5,	=	32	KB,	set-associative	addressing	with	k	=	8,	andblock	(line)	size	p{	=	64	bytes.	The	620	also	has	a	separate	interface	with	its	own	128-bit	data
bus	to	support	an	off-chip	level	2	cache	of	up	to	128	MB.	The	size	parametersof	the	caches	are	the	result	of	simulations	carried	out	with	various	standard
workloads.Although	it	was	determined	that	some	important	workloads	such	as	the	TPC	bench-marks	would	have	benefited	from	larger	caches,	the	32KB	values	for	the	on-
chipcaches	were	selected	because	chip-area	considerations	circa	1993	made	larger	cachesuneconomical.

We	now	retrace	some	of	the	original	decisions	affecting	the	design	of	the	620'slevel	1	cache	[Ewedemi,	Todd,	and	Yen	1994].	The	block	size	/^was	chosen	to	be64	bytes
based	on	the	need	to	balance	the	time	spent	loading	a	block	into	the	cache—it	is	excessive	if/?,	is	too	large—with	the	number	of	such	loads—it	is	excessive	if	p,is	too	small.
Another	factor	influencing	the	choice	of	p}	was	the	width	of	the	systemdata	bus,	which	is	16	bytes.	With	px	-	64	bytes,	a	cache	block	can	be	refilled	or	writ-ten	back	to	the
next	level	of	memory	in	four	clock	cycles.

The	architectural	specifications	for	the	PowerPC	require	a	minimum	main-memorypage	size	of	4	KB.	The	low-order	12	bits	of	the	620's	64-bit	memory	address	word
aretherefore	reserved	for	a	displacement	address	within	a	page.	From	the	cache	perspec-tive,	the	high-order	half	of	this	12-bit	field	forms	a	convenient	set	address,	while
thelow-order	half	can	be	used	to	address	a	byte	within	a	64B	cache	block.	Six	set-addressbits	imply	that	each	cache	can	have	26	=	64	sets.	With	S,	=	32	KB	and	px	=	16	B,
a	cachecan	contain	a	total	of	512	blocks	(lines).	Hence	512/64	=	8	lines	can	be	placed	in	a	set,which	suggests	the	use	of	eight-way	set-associativity—as	was	eventually
decided.	Thisrelatively	large	degree	of	associativity	also	gave	good	performance	with	the	SPEC	andTPC	benchmark	suites.	For	instance,	simulation	with	the	TPC-A
benchmark	yielded	the
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Instruction	MMU
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Figure	6.53

Organization	of	the	PowerPC	model	620.

following	data	for	D-cache	performance:

Cache	size	Sj

Associativity	k	Relative	miss	rate

8KB Four	way 1.78

16KB Four	way 1.36

16KB Eight	way 1.29

32KB Eight	way 1.00
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Implementation	of	a	fc-way	cache	in	the	traditional	manner	illustrated	by	Figure6.50	imposes	a	speed	penalty	that	increases	rapidly	with	k.	When	k	=	8,	eight	tags	must
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be	compared	simultaneously;	the	tag	size	can	be	up	to	28	bits,	depending	on	the	size	ofthe	address	space.	Such	comparisons	can	be	quite	slow.	The	620	has	an	unusual
imple-mentation	of	eight-way	set-associative	addressing,	which	uses	several	small	CAMarrays	like	that	of	Figure	6.46	to	speed	up	accesses	within	a	set.

The	preceding	techniques	for	designing	a	single-level	cache	can	be	adapted	inmany	ways	to	add	more	cache	levels	to	a	computer.	This	task	is	of	particular	inter-est	when
designing	around	a	single-chip	microprocessor	that	already	contains	anLI	cache;	an	off-chip	L2	cache	is	a	natural	way	to	increase	memory	performance.The	look-aside
design	of	Figure	6.41a	can,	in	principle,	easily	accommodate	addi-tional	cache	levels,	as	Figure	6.54a	suggests.	Here	the	system	bus	carries	all	thememory	traffic	due	to
misses	that	must	be	processed	by	M2	(the	L2	cache)	and	M3(main	memory),	as	well	as	10	data	transfers.	Figure	6.54b	shows	a	version	of	thefaster,	look-through
organization	(Figure	6.4lb)	that	is	used	in	the	PowerPC	620(Example	6.10)	and	the	MIPS	R10000	(Example	5.8).	In	each	case	the	processorcontains	a	controller	for	a	two-
level	cache	and	a	special	external	bus,	separatefrom	the	system	bus,	to	which	an	L2	cache	can	be	connected.	Various	controlmethods,	some	very	complex,	have	been
developed	to	maximize	the	memory	sys-
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Two	ways	of	adding	an	L2	cache	to	a	microprocessor	with	an	on-chip	LI	cache	(a)	look-aside	and	(b)	look-through.

tern's	performance	and	to	ensure	the	consistency	of	the	information	stored	in	the	471three	memory	levels.

6.4SUMMARY

No	one	technology	can	supply	all	the	memory	needs	of	a	computer.	Fast	memoriesare	expensive:	cost	per	bit	increases	as	access	time	decreases.	Consequently,	sev-eral
memory	types	with	very	different	physical	properties	can	be	found	in	a	typicalcomputer	system.	Besides	cost	per	bit	and	access	time,	other	important	characteris-tics	of
memory	devices	are	data-transfer	rate,	alterability,	and	compatibility	withprocessor	technologies.

Main	memory	is	of	the	random-access	type	where	the	access	time	of	everylocation	is	constant.	RAMs	are	organized	as	two-dimensional	arrays	to	reduce	thecost	of	their
access	circuitry	and	facilitate	manufacture.	The	dominant	technologiesfor	this	application	are	semiconductor	ICs,	especially	dynamic	RAMs	(DRAMs)based	on	single-
transistor	cells.	Secondary	memories	require	a	lower	cost	per	bitand	a	higher	storage	density.	We	can	achieve	these	goals	by	using	serial-accessmemory	technologies	that
share	access	mechanisms	and	have	access	times	thatvary	with	location.	Serial-access	memories	store	information	on	tracks	that	behavesomewhat	like	shift	registers.	The
most	widely	used	technologies	in	this	group	aremagnetic-surface	memories	with	electromechanical	access	mechanisms,	for	exam-ple,	magnetic-disk	and	-tape	units.	Also
popular	are	serial	memories	that	employoptical-recording	techniques.

The	memory	units	of	a	computer	are	organized	as	a	multilevel	hierarchy	(M,,M2,	...,	M„)	in	which	M,	is	connected	to	the	CPU,	M2	is	connected	to	M,,	and	soon.	M,	has	less
capacity,	higher	cost,	but	shorter	access	time	than	M,	+	1.	The	goalof	a	memory	hierarchy	is	to	obtain	a	cost	per	bit	close	to	that	of	the	least	expensivememory	M„	and	an
access	time	close	to	that	of	the	fastest	memory	M,.	Such	amemory	system	can	be	managed	by	hardware	(a	memory	management	unit)	orsoftware	(an	operating	system)	to
behave	like	a	single	large	memory.	This	behav-ior	is	achieved	by	automatically	translating	the	virtual-memory	addresses	refer-enced	by	programs	into	real	addresses	in
the	physical-address	space	and	byautomatically	transferring	blocks	(pages)	of	information	between	the	various	lev-els	of	the	hierarchy.	Locality	of	reference	ensures	that
data	is	generally	in	M,	whenreferenced	by	the	CPU.	A	basic	measure	of	the	performance	of	a	hierarchicalmemory	system	is	the	hit	ratio	//,	which	is	the	fraction	of	all
memory	referencesthat	are	satisfied	by	M,.

Memory	space	is	a	limited	resource	of	a	computer	and	so	must	be	shared	bydifferent	applications.	Dynamic	allocation	means	determining	the	regions	of	mem-ory	assigned
to	programs	while	they	are	in	execution.	Nonpreemptive	methodsassign	space	to	incoming	blocks	only	if	an	available	region	of	sufficient	size	exists;best	fit	and	first	fit	are
two	possible	allocation	methods	of	this	type.	Preemptivemethods	assign	incoming	blocks	to	occupied	regions	of	M,	and	thereby	permitmore	efficient	use	of	memory	space.
Blocks	to	be	preempted	are	selected	accord-ing	to	some	replacement	policy.	Least	recently	used	(LRU)	is	one	of	the	mostwidely	used	replacement	policies.	The	block	types
used	to	allocate	memory	Spacealso	affect	performance.	Segments	are	blocks	of	variable	size	that	correspond	to
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472	logical	units	of	a	program.	Pages	are	fixed-sized	blocks	with	no	logical	signifi-

6	s	cance.	Memory	space	can	be	allocated	by	segments,	pages,	or	a	combination	of

Problems	k°tn	(Pa8e(*	segments).	The	use	of	fixed-size	pages	greatly	simplifies	memory



management.

To	reduce	the	speed	disparity	between	CPU	and,	main	memory,	one	or	moreintermediate	memories	called	caches	are	used.	A	cache	may	be	split	into	an	I-cacheand	a	D-
cache	that	store	instructions	and	data,	respectively;	a	unified	cache	storesboth.	Information	is	stored	in	a	cache's	data	memory	in	page-style	blocks	(lines).Each	block	is
marked	by	a	tag	address	held	in	a	special	tag	memory	(directory).When	the	CPU	outputs	a	memory	address,	the	cache	compares	it	to	the	contents	ofits	tag	memory.	If	a
match	(hit)	occurs,	the	memory	access	is	completed	by	thecache;	otherwise,	a	block	that	includes	the	addressed	item	is	transferred	from	mainmemory	to	the	cache.	The
tag	memory	of	a	£-way	set-associative	cache	is	dividedinto	k	sets,	each	of	which	can	be	searched	rapidly	via	an	expensive	technique	calledassociative,	or	content,
addressing.	A	lower-cost	direct-mapped	cache	has	only	oneblock	per	set.	The	more	powerful	microprocessor	chips	incorporate	an	LI	cacheand	provide	support	for
attaching	a	larger	but	slower	L2	cache.

6.5PROBLEMS

6.1.	List	the	main	physical	differences	between	the	following	memory	technologies:SRAMs,	flash	memories,	magnetic	floppy	disks,	optical	hard	disks,	and	CD-ROMs.

6.2.	When	a	CPU	and	its	main	memory	M	operate	at	similar	speeds,	a	one-word	load	orstore	can	be	completed	in	a	single	CPU	clock	cycle.	The	CPU	is	often	designed	to
func-tion	properly	with	slower	memory	technologies.	It	does	so	by	retaining	control	of	thesystem	bus	for	two	or	more	clock	cycles	until	a	slow	load	or	store	is	completed;
theextra	clock	cycles,	during	which	the	CPU	is	idle,	are	known	as	wait	states,	(a)	Whatchanges	must	be	made	to	the	memory's	external	signals	given	in	Figure	6.10	to
accom-modate	wait	states?	(b)	Suppose	a	slow	RAM	requiring	k	>	1	wait	states	is	used	with	afast	CPU	in	a	computer	that	achieves	a	performance	level	of	p	MIPS	while
executinga	fixed	workload	at	a	CPU	clock	frequency	of/MHz.	Assuming	that	no	other	changesare	made,	describe	in	qualitative	terms	what	happens	top	as/is	steadily
decreased	tozero.

6.3.	Consider	the	generic	1-D	RAM	organization	depicted	in	Figure	6.7.	Assume	the	stor-age	cell	unit	is	implemented	by	the	DRAM	cell	of	Figure	6.9b.	Briefly	describe
threeways	in	which	the	RAM	can	be	modified	to	double	its	data-transfer	rate.

6.4.	A	128MB	RAM	is	to	be	designed	from	2M	x	4-bit	RAM	ICs.	Assume	that	1-out-of-2k	decoder	ICs	are	also	available	for	k	<	3,	as	well	as	ICs	containing	standard
logicgates.	The	main	design	goal	is	to	minimize	the	total	number	of	ICs	used,	(a)	Carryout	the	design	assuming	that	each	RAM	chip	has	a	single	chip-select	line	CS	and
giveyour	answer	in	the	style	of	Figures	6.11	and	6.12.	(b)	Repeat	the	design	assumingthat	each	RAM	IC	has	two	chip-select	fines	C5,	and	CS2	and	is	enabled	if	and	only
ifC5,	=	C52=	1.

6.5.	Using	the	64Mb	DRAM	of	Example	6.1	as	the	basic	component,	design	a	256M	x	32-bit	DRAM.	Include	in	your	answer	a	diagram	in	the	style	of	Figures	6.11	and	6.12.

6.6.	A	16Mb	DRAM	chip	has	a	word	size	w	=	8	bits.	Like	the	8E1	of	Example	6.1,	it	has	a2-D	organization	with	multiplexed	row-column	addressing,	(a)	If	the	column
addressis	10	bits,	what	is	the	size	of	the	row	address?	(b)	How	many	copies	of	this	DRAM	areneeded	to	make	a	1G	x	32-bit	memory?

6.7.	Occasionally,	it	is	desirable	to	implement	a	small	RAM	using	a	single	RAM	IC	of	largecapacity.	For	example,	DRAM	manufacturers	sometimes	sell	RAMs	that	are
defectivebut	contain	sub-RAMs	that	are	fully	operational;	these	units	are	used	in	low-cost	appli-cations	such	as	toys.	Describe	how	the	64Mb	DRAM	of	Figure	6.13	can	be
used	as	a512Kx	4-bit	DRAM.
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6.8.	For	the	64Mb	DRAM	described	in	Example	6.1,	calculate	the	minimum	time	requiredto	read	out	the	contents	of	every	addressable	location	in	the	memory	(a)	if	the
addressesare	generated	in	a	random	sequence	and	(b)	if	page	mode	is	used.

6.9.	A	RAM	is	to	be	designed	with	a	target	capacity	of	16	MB.	Three	DRAM	ICs	of	thekind	shown	in	Figure	6.10	are	available	to	serve	as	components:	(a)	a	4M	x	1-
bitDRAM	costing	$22	per	IC;	(b)	a	1M	x	2-bit	DRAM	costing	$10;	and	(c)	a	256K	x	8-bit	DRAM	costing	$4.50.	Access	circuitry,	including	ICs	and	wiring,	is	estimated	tocost
$x	+	10>\	where	x	is	the	number	of	RAM	ICs	used	and	y	is	the	number	of	addressbits	to	be	decoded	externally.	Determine	which	type	of	DRAM	IC	would	minimize	thecost
of	the	memory.

6.10.	Consider	the	three	DRAM	types	a,	b,	and	c	defined	in	the	preceding	problem.	We	wantto	build	from	one	of	these	DRAM	types	a	memory	with	a	word	size	w	=	4	bits.
Thememory	should	have	the	largest	possible	storage	capacity	consistent	with	access	cir-cuitry	cost	of	Sx	+	lOy,	as	before,	and	a	total	system	cost	of	at	most	$475.
Determinethe	DRAM	type	to	use	and	the	maximum	capacity	that	can	be	achieved.

6.11.	A	RAM	has	N	storage	cells	organized	as	Nx	rows	and	Nv	columns.	The	number	of	ad-dress	drivers	needed	is	Nx	+	N'	(a)	If	N	=	M2,	where	M	is	an	integer—that	is,	N
is	aperfect	square-—show	that	the	number	of	address	drivers	needed	is	a	minimum	if	andonly	if	Nx	=	Ny	=	M.	(b)	If	N	is	not	a	perfect	square,	provide	an	algorithm	for
determin-ing	values	of	Nx	and	Nv	that	minimize	the	number	of	address	drivers.

6.12.	A	certain	1M	x	16-bit	RAM	has	four-way	address	interleaving	with	four	memorybanks	M0,	M,,	M2.	and	M3.	(a)	Identify	the	bank	to	which	each	of	the	following	hex-
encoded	addresses	is	assigned:	01234,	ABCDE.	91272.	and	FFFFF.	(b)	If	one	of	thememory	banks	is	busy	when	a	new	read	request	arrives	at	the	memory,	what	is
theprobability	that	the	request	will	be	delayed	due	to	memory	contention?

6.13.	List	and	discuss	briefly	three	advantages	and	three	disadvantages	of	the	Rambusmethod	(Example	6.2)	for	interfacing	main	memory	to	a	very	high	performance
work-station.

6.14.	A	moving-arm	disk-storage	device	has	the	following	specifications:

Number	of	tracks	per	recording	surface	200

Disk-rotation	speed	2400	rev/min

Track-storage	capacity	62,500	bits

Estimate	the	average	latency	and	the	data-transfer	rate	of	this	device.

6.15.	A	certain	magnetic	hard	disk	drive	has	the	following	specifications	in	its	data	sheet:

Number	of	disks	(recording	surfaces)	14	(27)

Number	of	tracks	per	recording	surface	4925

Number	of	sectors	on	all	recording	surfaces	17.755,614

474	Storage	capacity	(formatted)	of	disk	drive	9.09	GB

Disk-rotation	speed	5400	rev/min

SECTION	6.5	Average	seek	time	11.5	ms

Problems	Internal	data-transfer	rate	44	to	65	MB/s

Calculate	the	block	size	B	and	the	average	block	access	time	rB.

6.16.	The	seek	time	of	a	magnetic-disk	memory	depends	on	how	fast	the	read-write	head	canmove	between	tracks.	Suppose	there	are	N	tracks	numbered	0	through	N-	I,
and	theread-write	head	takes	time	Dt	to	move	from	track	i	to	track	i	±	D,	that	is,	across	Dtracks.	Hence	if	an	access	addressed	to	read	track	/	is	followed	by	an	access	to
trackj	=	i	±	D,	the	seek	time	of	the	second	access	is	Dt.	The	best-case	seek	time	is	0	and	theworst	case	is	Nt.	The	question	then	arises:	What	is	the	average	seek	time	ts	as
a	functionof	N	and	tl	Assuming	that	the	tracks	are	accessed	in	a	random	fashion,	demonstrate	thatfs	=	M/3;	that	is,	the	average	seek	time	is	approximately	the	time	to
move	the	read-writehead	across	one-third	of	the	tracks.	[Hint:	Enumerate	the	seek	times	for	all	the	possible(j'j)	combinations	for	a	small	case	such	as	N	-	8	and	then
attempt	to	derive	a	generalexpression	for	the	average	seek	time.]

6.17.	A	magnetic-tape	system	accommodates	2400	ft	reels	of	standard	nine-track	tape.	Thetape	is	moved	past	the	recording	head	at	a	rate	of	200	in/s.	(a)	What	must	the
lineartape-recording	density	be	in	order	to	achieve	a	data-transfer	rate	of	107	bits/s?	(b)	Sup-pose	that	the	data	on	the	tape	is	organized	into	blocks	each	containing	32K
bytes.	A	gapof	0.3	in	separates	the	blocks.	How	many	bytes	can	be	stored	on	the	tape?

6.18.	A	nine-track	magnetic	tape	has	fixed	block	and	interblock	gap	sizes.	The	gap	length	is0.6	in,	and	the	storage	density	is	1600	B/in.	(a)	If	the	space	utilization	u	is
707c,	whatis	the	block	size	in	bytes?	(b)	Let	the	start-stop	time	be	1	ms	and	let	the	measured	(ef-fective)	data-transfer	rate	be	55	KB/s	to	read	a	single	block.	What	is	the
maximum	pos-sible	data-transfer	rate?

6.19.	The	data-transfer	rate	deff	of	a	magnetic-tape	memory	with	respect	to	a	single	blocktransfer	is	given	by	Equation	(6.3).	It	is	possible	to	increase	deff	by	accessing
more	thanone	block	at	a	time,	which	spreads	the	start-stop	time	fss	over	all	the	accessed	blocks.Suppose	that	?ss	=	1.5	ms,	the	block	size	bs	=	2048	B,	the	gap	length	gl	=
0.25	in,	andthe	storage	density	s	=	1600	B/in.	If	def{	=	95,000	B/s,	how	many	blocks	must	be	ac-cessed	simultaneously	in	order	to	increase	deffto	at	least	100,000	B/s?

6.20.	Another	medium	for	secondary	memories	is	digital	audio	tape	or	DAT,	which	is	asmall	magnetic-tape	cartridge	adapted	from	videotape	technology.	High	storage
capac-ity	and	high	data-transfer	rates	are	achieved	by	storing	the	data	in	short,	multitrack	di-agonal	strips	along	the	tape	and	by	wrapping	the	tape	(which	moves



relatively	slowly)around	a	spinning	set	of	one	or	more	read-write	heads.	This	design	produces	a	veryhigh	head-to-tape	speed.	A	certain	DAT	unit	has	the	following
specifications:	Thelength	of	the	tape	is	90	m.	The	tape	moves	at	0.7	in/s	(1.79	cm/s),	but	the	head-to-tapespeed	is	270	in/s	(68.58	cm/s).	(a)	If	the	DAT's	storage	capacity	is
2	GB,	estimate	theeffective	normal	data-transfer	rate	in	KB/s.	(b)	The	DAT	drive	has	a	special	search	andrewind	speed,	which	is	200	times	the	normal	read-write	speed.
Estimate	how	long	ittakes	to	fully	rewind	the	tape.

6.21.	The	data	sheet	of	a	commercial	magneto-optical	disk	drive	includes	the	following	spec-ifications:

Formatted	storage	capacity	of	unit	with	1024-byte	sectors	650	GB

Formatted	storage	capacity	of	unit	with	512-byte	sectors	600	GB

Read	data-transfer	rate	with	1024-byte	sectors	0.87	MB/s

Read	data-transfer	rate	with	512-bvte	sectors	0.79	MB/s

Write	data-transfer	rate	with	1024-byte	sectorsWrite	data-transfer	rate	with	512-byte	sectors

0.29	MB/s0.26	MB/s

(a)	The	larger	(1024	byte)	sector	provides	greater	storage	capacity	and	higher	data-transfer	rates	than	the	smaller	(512	byte)	sector.	Explain	why.	(b)	The	larger	sectorsize
appears	to	have	all	the	advantages,	so	why	is	the	smaller	size	ever	used?	(c)	Whyis	writing	slower	than	reading?

6.22.	The	storage	hierarchy	of	the	IBM	System/390	mainframe	family	of	high-performancecomputers	has	been	described	as	a	pyramid	with	nine	levels,	with	the	internal
CPU	reg-isters	forming	the	highest	level	and	magnetic-tape	storage	forming	the	lowest	(ninth)level.	Suggest	the	memory	types	that	define	the	remaining	seven	levels	and
their	posi-tions	in	the	hierarchy.

6.23.	A	computer	has	a	two-level	virtual-memory	system.	The	main	memory	Mt	and	the	sec-ondary	memory	M?	have	average	access	times	of	10"6	and	10~3	s,
respectively.	Weknow	that	the	average	access	time	for	the	memory	hierarchy	is	10~*	s,	which	is	consid-ered	unacceptably	high.	Describe	two	ways	in	which	this	memory
access	time	could	bereduced	from	10-1	to	10"5	s	and	discuss	the	hardware	and	software	costs	involved.

6.24.	A	two-level	memory	(M,.	M->)	has	the	access	times	rA	=	10"8s	and	f»	=	10~3s.	Whatmust	the	hit	ratio	H	be	in	order	for	the	access	efficiency	to	be	at	least	65
percent	ofits	maximum	possible	value?

6.25.	In	an	«-level	memory,	the	hit	ratio	Ht	associated	with	the	memory	M,	at	level	i	maybe	defined	as	the	probability	that	the	information	requested	by	the	CPU	has	been
as-signed	to	Mj.	Assuming	that	all	information	assigned	to	M,	also	appears	inM/+1,	thenffj	<	H2	<	...	<	Ha	=	1.	Using	this	definition	of	//,-.	generalize	the	expression	for
rAgiven	in	Equation	(6.6)	to	an	?i-level	memory	hierarchy.

6.26.	A	certain	memory	configuration	has	four	levels	M,,	M2,	M3,	and	M4	with	hit	ratios	of0.8.0.95,0.99.	and	1.0.	respectively.	A	program	Q	makes	3000	references	to	this
mem-ory	system.	Calculate	the	exact	number	of	references	/?,-	made	by	Q	that	are	satisfied	byan	access	to	level	M,.

6.27.	The	residual-hit	ratio	RH,	of	a	level	M,	in	a	hierarchical	memory	system	has	been	de-fined	as	the	ratio	of	the	number	of	access	requests	that	actually	reach	M,	to	the
numberof	such	requests	that	M,	can	satisfy.	Clearly,	RHl	<	Hr	the	hit	ratio,	because	M,	can	sat-isfy	any	access	request	that	is	satisfied	by	a	higher,	faster	level	of	the
hierarchy.	Calcu-late	RH,	for	each	level	of	the	four-level	memory	and	the	program	Q	defined	in	Problem6.26.

6.28.	A	high-speed	computer	has	a	two-level	paged	virtual	memory.	Main	memory	has	a	ca-pacity	of	64	MB	and	a	cycle	time	of	50	ns.	Secondary	memory	consists	of
magnetic-disk	units	with	the	following	specifications:	an	average	seek	time	of	7	ms;	an	averagerotational	latency	of	3	ms;	and	an	internal	data	rate	of	100,000	B/s.
Essentially	all	diskaccesses	result	from	page	faults,	very	few	of	which	require	a	page	from	main	memoryto	be	copied	back	to	disk.	We	know	that	main	memory	has	a	hit
ratio	of	0.9999998	andthat	the	average	time	to	access	memory	as	a	whole	is	60	ns.	Estimate	the	page	size	P.showing	all	your	calculations.

6.29.	Let	p,	denote	the	fraction	of	memory-access	requests	that	result	in	an	access	to	levelM,	in	the	three-level	memory	of	Figure	6.55.	When	a	miss	occurs	in	M(.	a	page
swapalways	takes	place	between	M,	and	M,-+1;	the	average	time	for	this	page	swap	is	fB	.(a)	Calculate	the	average	time	fA	for	the	processor	to	read	one	word	from	the
memorysystem,	(b)	We	want	to	make	/A	<	1.1	x	10"7	s	In	other	words,	fA	should	not	exceedthe	access	time	of	M,	by	more	than	10	percent.	We	can	achieve	this
speedupvby	re-placing	M3	with	a	faster	memory	technology	that	reduces	/B	to	a	new	value	rB	.
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4/0 Page	transfertime	tB	(s)

SECTION	6.5 Level	i time	t^	(s) probability	p,

Problems M, IO"7 0.999990 0.0005

M2 10-6 0.000009 0.01

M3 KT4 0.000001

.Figure	6.55

Data	for	problem	6.29.

Memory Capacity Cost	($/B )	Access	time	(s) Hit	ratio

Cache	1 16	KB io-3 10	ns 0.990000

Cache	2 256	KB io-5 20	ns 0.999900

Main	memory 32	MB 10"6 100	ns 0.999999

Disk	memory 8	GB IO"9 10	ms 1.000000

Figure	6.56

Data	for	problem	6.30.

What	should	r^,	be?	(c)	Suggest	and	justify	a	more	cost-effective	way	of	satisfyingthe	above	requirement	on	r^than	reducing	t'By

6.30.	(a)	What	are	the	average	cost	per	bit	and	the	access	time	of	the	four-level	memory	sys-tem	specified	in	Figure	6.56?	(b)	Suppose	that,	as	a	cost-saving	measure,	the
second-level	cache	is	eliminated	from	the	system.	Determine	the	resulting	percentage	changesin	the	system's	cost	and	access	time,	showing	all	your	calculations.

6.31.	A	memory	reference	by	the	PowerPC	microprocessor	generates	a	32-bit	effective	ad-dress	Aeff	that	contains	a	16-bit	virtual	address	to	a	page	of	size	4	KB.	Address
Aeff	alsocontains	a	pointer	to	a	small	set	of	segment	registers	that	store	segment	descriptors,	(a)How	many	segment	registers	does	the	PowerPC	have?	(b)	Each	segment
descriptor	in-cludes	a	24-bit	segment	address,	called	the	virtual	segment	identifier	VSID.	How	bigis	the	PowerPC's	virtual-address	space?	(c)	As	discussed	in	the	text,	the
Pentium	hasfour	memory-address-translation	modes,	depending	on	whether	or	not	segmentation	orpaging	are	enabled.	The	PowerPC	also	has	several	address-translation
modes,	one	ofwhich,	called	real	addressing,	is	defined	as	the	mode	in	which	the	effective	and	phys-ical	addresses	are	the	same.	To	which	Pentium	mode	does	real
addressing	correspond?

6.32.	Assuming	page	size	to	be	a	function	of	average	segment	size	only,	determine	the	pagesize	2*	that	maximizes	memory	space	utilization	when	the	average	segment



size	is	5000words	and	k	must	be	an	integer.

6.33.	The	available	space	list	of	a	16KB	memory	has	the	following	entries	at	some	time	t:

Region	(base)	hex	address	Size	(bytes)

0000	2K

1000	1	K

2000	512

31FF	3K

The	following	sequence	of	allocation	and	deallocation	requests	then	occurs:

Time t	+	1 t	+	2 t	+	3 t	+	4

Size	of	block	to	be	allocatedAddress	of	block	to	be	deallocatedSize	of	block	to	be	deallocated IK 2K 2DFFIK IK
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6.34.

Determine	the	available	space	list	after	all	these	requests	have	been	serviced	using(a)	best-fit	and	(b)	first-fit	allocation.	Assume	that	the	memory	is	searched	in	ascend-
ing	address	sequence.

Consider	the	following	page-address	trace	generated	by	a	two-level	cache-main-memory	scheme	that	uses	demand	paging	and	has	a	cache	capacity	of	four	pages.

1

45143212146741317

Assume	a	"hot"	start,	in	which	the	cache	initially	has	pages	1,	2,	3,	and	4	allocated	toit.	Which	of	the	page-replacement	policies	FIFO	or	LRU	is	more	suitable	in	this	case?
Show	your	calculations,	and	give	a	short	intuitive	justification	of	your	answer.

6.35.	Computers	such	as	the	MIPS	R3000	have	caches	that	use	a	random	page-replacementpolicy	that	we	referred	to	as	RANDOM.	The	page	to	be	replaced	is	selected	by
a	fastprocess	that	approximates	truly	random	selection	and	does	not	use	any	data	on	thepage's	reference	history.	State	whether	or	not	RANDOM	is	a	stack	replacement
algo-rithm	and	justify	your	answer.

6.36.	A	variation	of	the	LRU	replacement	policy,	which	we	call	simplified	LRU	(SLRU),	hasbeen	used	in	some	virtual-memory	systems.	Every	page	P,	in	an	SLRU	page	table
hasa	reference	bit	Ri	associated	with	it.	Whenever	P,	is	accessed,	its	reference	bit	P,	is	setto	1.	If	the	access	request	for	P,	causes	a	page	fault,	then	P,	is	reset	to	0	for	all	j	*
i	andP,	is	brought	into	main	memory	M,.	When	a	page	in	M,	must	be	selected	for	replace-ment,	the	SLRU	algorithm	scans	all	the	P,'s	in	a	fixed	order.	The	first	page
encounteredwith	a	reference	bit	of	0	is	replaced.	If	all	the	reference	bits	are	1,	then	the	page	withthe	smallest	(logical)	address	is	replaced,	(a)	For	the	following	page-
address	trace,	de-termine	the	page-hit	ratio	under	both	SLRU	and	LRU,	assuming	that	M,	has	a	capacityof	three	pages	and	is	initially	empty.

242351341256

(b)	Is	SLRU	a	stack	replacement	policy?	Justify	your	answer.

6.37.	We	want	to	build	a	small	word-organized	associative	memory	using	the	4	x	4-bit	mem-ory	circuit	of	Figure	6.46	as	the	basic	building	block.	The	memory	is	to	store
ten	8-bitwords	having	the	format	shown	in	Figure	6.57.	Any	one	of	the	fields	A,	B,	and	C	maybe	selected	as	the	key.	Assume	that	all	stored	keys	are	unique.	When	a	match
occurs,the	entire	matching	word	is	to	be	fetched	(read	operation)	or	replaced	(write	operation).Draw	a	logic	diagram	for	the	memory	including	all	access	circuitry.

6.38.	Suppose	an	10	processor	(IOP)	is	attached	to	the	system	bus	of	Figure	6.416.	The	IOPcan	transfer	data	to	or	from	the	main	memory	M2	without	interacting	with	the
CPU.

A

1

B

i

C

i	i

Figure	6.57

Word	format	for	problem	6.37.
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478	while	the	CPU	transfers	data	to	and	from	the	cache	M,.	Assume	that	a	cache	write-

through	policy	is	implemented,	as	well	as	memory-mapped	10.	Devise	a	realistic	situ-ation	where	the	IOP's	interactions	with	M2	can	cause	the	CPU	to	see	stale
memorydata,	resulting	in	a	system	crash.

6.39.	Suppose	that	a	2KB	cache	has	set-associative	address	mapping.	There	are	16	sets,	eachcontaining	four	cache	blocks	(lines).	The	memory-address	size	is	32	bits,	and
the	small-est	addressable	unit	is	the	byte,	(a)	To	what	set	of	the	cache	is	the	address	000010AF]6assigned?	(b)	If	the	addresses	000010AF16	and	FFPF7xy^16	can	be
simultaneously	as-signed	to	the	same	cache	set,	what	values	can	the	address	digits	xyz	have?

6.40.	(a)	Suppose	the	system	in	Figure	6.48	has	its	address	lines	labeled	A0:A31,	where	A0	isthe	high-order	address	bit.	Identify	the	15	lines	used	to	address	the	cache's
data	RAM.(b)	Assume	that	a	single-word	transfer	over	the	system	bus	takes	15	ns.	Estimate	howlong	it	takes	the	system	to	fully	respond	to	a	memory	access	when	a	cache
miss	occurs.

6.41.	(a)	Construct	a	register-level	diagram	for	the	IDT	71B74	cache-tag	RAM	IC	used	inExample	6.8.	(b)	Cache-tag	RAMs	such	as	the	71B74	have	a	reset	input	that	clears
allthe	cache-tag	RAM's	tag-storage	locations.	Ordinary	RAM	ICs	have	no	such	reset	con-trol	line.	Why?

6.42.	An	eight-way	set-associative	cache	is	used	in	a	computer	in	which	the	real	memory	sizeis	232	bytes.	The	line	size	is	16	bytes,	and	there	are	210	lines	per	set.
Calculate	the	cachesize	and	tag	length.

6.43.	Redesign	the	direct-mapped	cache	of	Example	6.8	with	the	following	changes:	the	ca-pacity	of	the	cache	is	to	be	reduced	to	64	KB,	and	the	cache	block	size	and	the
widthof	the	system	data	bus	are	both	to	be	32	bits.

6.44.	Design	a	four-way	set-associative	cache	in	the	style	of	Example	6.9	with	the	followingparameters:	the	capacity	of	the	cache	is	64	KB;	the	cache	block	size	is	32	B;
and	thewidth	of	the	system	data	bus	is	32	bits.

6.45.	Discuss	in	qualitative	terms	the	impact	of	the	following	design	decisions	on	cache	per-formance:	(a)	selection	of	a	cache	block	(line)	size	p]	that	is	too	small;	(b)
selection	ofa	cache	block	size	that	is	too	big;	(c)	selection	of	an	associativity	level	k	that	is	toosmall.
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CHAPTER	7

System	Organization

This	chapter	considers	how	computers	and	their	major	components	are	intercon-nected	and	managed	at	the	processor	or	system	level.	It	examines	the	methods	usedfor
internal	and	external	communication,	as	well	as	the	design	of	input-output	(10)systems.	The	final	topic	is	the	use	of	multiple	processors	to	achieve	high	perfor-mance,
fault	tolerance,	or	both.

7.1

COMMUNICATION	METHODS

In	recent	years	computing	has	become	intimately	associated	with	communication.A	computer's	internal	or	local	communication	methods	significantly	affect	its	flex-ibility
and	performance.	External,	long-distance	communication	allows	computersto	be	linked	together,	for	example,	via	the	global	Internet	network.	This	sectionexamines	the
general	nature	of	the	local	and	long-distance	communication	mecha-nisms	used	with	computer	systems.

7.1.1	Basic	Concepts

The	difficulty	in	transferring	information	among	the	units	of	a	computer	largelydepends	on	the	physical	distances	separating	them.	We	distinguish	two	cases:intrasystem
communication,	which	occurs	within	a	single	computer	system	andinvolves	information	transfer	over	distances	of	less	than	a	meter;	and	intersystemcommunication,	which
can	involve	communication	over	much	longer	distances.Intrasystem	communication	is	primarily	implemented	by	groups	of	electrical	wirescalled	buses,	which	support
parallel,	that	is,	word-by-word,	data	transmission.Intersystem	communication,	on	the	other	hand,	is	realized	by	a	variety	of	physicalmedia,	including	electrical	cables,
optical	fibers,	and	wireless	(radio)	links.	Serial
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(bit	by	bit)	rather	than	parallel	data	transmission	is	preferred	for	communicationover	longer	distances.	Serial	links	cost	less,	are	more	reliable,	and	are	also	easier
tocontrol	than	parallel	links.	A	set	of	computers	and	other	system	components	thatare	linked	together	over	relatively	long	distances	constitute	a	computer	network.

Buses.	The	various	processor-level	components,	CPU,	caches,	main	memory,and	IO	(peripheral)	devices	within	a	computer	system	communicate	via	buses.	Theterm	bus	in
this	context	covers	not	only	the	physical	links	among	the	components,but	also	the	mechanisms	for	controlling	the	exchange	of	signals	over	the	bus.

Figure	7.1	depicts	the	most	basic	computer	bus	structure.	Here	a	single	bus,	thesystem	bus,	handles	all	intrasystem	communication.	All	units	share	the	system
bus.therefore	at	any	time	only	two	units	can	communicate	with	each	other.	A	typicalsystem	bus	transaction	is	a	memory	read	(load)	operation	that	involves	the	transferof
one	or	more	data	words	over	the	system	bus	from	the	memory	(cache	or	main)M	to	the	CPU.	A	memory	write	(store)	operation	transfers	data	over	the	system	busin	the
opposite	direction.	Input-output	operations	normally	involve	data	transfersbetween	an	IO	device	and	M.	In	all	the	preceding	operations	M	is	a	passive	or	slavedevice	with
respect	to	system	bus	transactions,	whereas	the	CPU	can	actively	con-trol	the	system	bus,	that	is,	serve	as	a	bus	master.	IO	devices	are	normally	thoughtof	as	slave	units,
but	they	can	be	made	into	bus	masters	via	control	units	such	asspecialized	IO	controllers	or	general-purpose	IO	processors.

As	Figure	7.1	indicates,	the	system	bus	consists	of	three	main	groups	of	lines:address,	data,	and	control.	(Not	shown	are	the	lines	that	distribute	electrical	powerto	the
bus	units.)	The	address	lines,	typically	8	to	32	in	number,	transmit	theaddresses	of	data	items	stored	in	the	system's	main	memory	or	IO	address	space.The	data	lines,
typically	16	to	128	in	number,	transmit	data	words	over	the	bus.Finally,	the	control	lines	perform	such	functions	as	identifying	the	transaction	type(memory	read,	memory
write,	IO	interrupt,	and	so	forth)	and	synchronizing	com-munication	between	fast	and	slow	units.

The	characteristics	of	a	system	bus	tend	to	closely	match	those	of	its	host	CPUand	vary	widely	between	different	microprocessor	families	and	even	betweenmembers	of
the	same	family.	The	evolution	of	CPUs	in	speed	and	word	size	hasbeen	matched	by	a	corresponding	evolution	in	their	system	buses.	For	example,	thefirst	member	of
Intel's	80X86	family,	the	8086	microprocessor,	had	internal	dataand	(real)	address	word	sizes	of	16	and	20	bits,	respectively.	The	CPU	data	wordsize	became	32	bits,	and
the	address	size	24	bits,	with	the	80286	microprocessor;
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Figure	7.1

Communication	within	a	computer	via	a	single	shared	bus.
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Figure	7.2

System	bus	of	the	PowerPC	603

microprocessor.

both	became	32	bits	with	the	80386.	The	data	and	address	sizes	used	inside	theCPU	are	often,	but	not	always,	the	same	as	those	found	in	the	external	system	bus.The	16-
bit	8088,	a	variant	of	the	8086	used	in	the	first	IBM	PC,	has	an	8-bit	exter-nal	data	bus.	On	the	other	hand,	the	Pentium's	external	data	bus	is	64	bits	wide.

Figure	7.2	outlines	the	system	bus	of	the	PowerPC	603	microprocessor,	whichis	typical	of	personal	computers.	It	has	64	data-transfer	lines	D	which	are	bidirec-tional;	that
is,	they	act	either	as	inputs	or	outputs	of	the	CPU—but	not	simulta-neously.	The	system	bus	can	transfer	from	1	to	8	bytes	at	a	time.	Its	32	addresslines	A	allow	232	=	4G
memory	or	IO	locations	to	be	specified.	Twelve	paritycheck	lines,	one	for	each	byte	of	D	and	A,	provide	error	detection.	A	large	set	ofcontrol	lines	supports	data	transfers,
exchange	of	bus	control,	interrupt	processing,and	other	bus	functions.

The	principal	use	of	the	system	bus	is	high-speed	data	transfer	between	theCPU	and	M.	Most	IO	devices	are	slower	than	the	CPU	or	M	and	present	an	exter-nal	interface
that	is	different	from	that	of	the	system	bus.	For	example,	magnetic-disk	units	and	other	secondary	memories	transfer	data	serially.	Therefore,	theyneed	to	be	connected
to	the	system	bus	via	interface	circuits	called	IO	controllersthat	perform	series-to-parallel	and	parallel-to-series	format	conversions	and	othercontrol	functions.	A	single	IO
controller	can	interface	many	IO	devices	to	the	sys-tem	bus.	This	leads	to	the	structure	shown	in	Figure	7.3	in	which	the	IO	devices	areconnected	to	a	separate	bus	called
an	IO	bus.

Computer	manufacturers	and	standards	organizations	have	standardized	vari-ous	IO	bus	types.	For	example,	the	Small	Computer	System	Interface	known	as	theSCSI
(pronounced	"scuzzy")	bus	was	adopted	as	a	standard	by	the	American
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National	Standards	Institute	(ANSI)	in	1986.	This	bus	connects	10	devices	such	ashard	disk	units	and	printers	to	personal	computers.	SCSI	was	originally	designed
totransfer	data	a	byte	at	a	time	at	rates	up	to	5	MB/s.	As	can	be	seen	from	Figure	7.4,the	SCSI	bus	is	smaller	and	simpler	than	a	system	bus	like	the	PowerPC's.	Its
datasubbus	is	only	8	bits	wide	and	is	also	used	to	transfer	addresses.	Ten	additionallines	provide	all	the	necessary	control	functions.	Recent	extensions	to	the	originalSCSI
standard	have	wider	data	buses	(16	and	32	bits),	more	control	features,	andhigher	data-transfer	rates.

Another	bus	with	a	role	similar	to	SCSI	is	the	so-called	Industry	StandardArchitecture	(ISA)	bus	originally	developed	by	Intel	for	the	IBM	PC.	Since	itallows	extra	main-
memory	units	as	well	as	10	devices	to	be	added	to	a	computer,	itis	often	referred	to	as	a	local	or	expansion	bus,	rather	than	an	IO	bus.	A	morerecent	bus	standard	that	we
examine	in	detail	later	is	the	Peripheral	ComponentInterconnect	(PCI)	bus,	which	can	transmit	4-	or	8-byte	words	at	rates	of	500	MB/sor	more.

483

CHAPTER	7

System

Organization

Long-distance	communication.	There	are	several	important	differences	be-tween	intra-	and	intersystem	communication	methods.	Whereas	intrasystem	com-munication	is
serial	by	word,	intersystem	communication	is	usually	serial	by	bitbecause	of	the	difficulty	of	synchronizing	data	bits	sent	in	parallel	over	long	dis-tances.	Serial	transfers
also	reduce	the	cost	of	the	communication	equipment.Every	long-distance	data	transfer	requires	a	substantial	amount	of	time	to	establishthe	communication	path	to	be
used,	for	instance,	the	time	associated	with	enteringa	telephone	number.	To	reduce	this	overhead,	a	sequence	of	many	bits	called	amessage,	which	corresponds	to	the
concept	of	block	or	page	in	memory	systems,	istransmitted	at	one	time.

Intrasystem	communication	is	implemented	by	transmitting	digital	signals	inthe	form	of	discrete	0	and	1	pulses	over	multiline	buses.	As	they	are	transmitted,the	pulses
are	distorted	by	variations	in	the	bus's	electrical	properties,	interferencebetween	adjacent	lines	(crosstalk),	and	similar	phenomena	collectively	known	asnoise.	The
distortion	caused	by	noise	increases	with	the	number	of	lines	in	the	busand	the	signal	transmission	frequency;	it	is	also	affected	by	the	quality	of	the	trans-mission
medium.	Beyond	some	point	the	pulses	become	unrecognizable	and	trans-mission	errors	result.	Over	long	distances,	therefore,	it	is	more	cost-effective	toembed	the	data
in	analog	signals	that	are	transmitted	serially,	in	much	the	sameway	as	voice	traffic	has	long	been	sent	over	telephone	lines.	Continuous	analogsignals	called	carriers	are
generated	and	varied	(modulated)	in	some	manner	toproduce	distinct	signal	types	that	denote	0	and	1.	A	device	called	a	modulator-

484

SECTION	7.1

Communication

Methods

Vol	I101 lo|i|o|

Computer1

Modem iwmm

•►

UlolH

mmm

Telephone	line

Modem

_TL_TL

Computer

Sender

Receiver

Figure	7.5

Long-distance	data	transmission	using	frequency-modulated	(FM)	signals.

demodulator,	or	modem,	converts	data	between	the	modulated	analog	form	usedfor	long-distance	communication	and	the	pulse	form	used	inside	the	computer.

Figure	7.5	illustrates	the	modulation	method	called	frequency	modulation(FM)	used	by	modems	that	connect	a	computer	to	a	low-speed,	"voice	grade"	tele-phone	line.	The
carrier	is	a	sine	wave	whose	frequency/can	be	shifted	slightly	tocreate	two	distinct	frequency	levels:	fQ	denoting	0	and/,	denoting	1.	Such	signalsare	heard	as	beeps	of
different	pitch.	Since	the	1980s,	complex	signal-processingtechniques	have	been	developed	to	increase	the	data-transfer	rates	over	telephonelines	from	300	bits/s—bits
per	second	is	often	denoted	bps	in	this	context—to56,000	bits/s.	which	is	close	to	the	maximum	possible.	These	techniques	includethe	assignment	of	multiple	carrier
frequencies	to	the	sender	and	receiver,	error-correcting	codes	that	mask	noise-induced	errors,	and	data	compression	that	detectsand	eliminates	redundant	information	in
the	data	being	transmitted.

Digital	communication	networks,	that	is,	networks	designed	expressly	fortransmitting	information	in	digital	form,	can	achieve	much	higher	data-transferrates.	An	example
is	the	integrated	services	digital	network	(ISDN),	an	interna-tional	standard	for	transmitting	audio,	video,	and	other	data	in	digital	form.Although	ISDN	was	originally
proposed	around	1960.	it	has	only	recently	beendeployed	worldwide.	ISDN	takes	advantage	of	fiber-optic	technology	and	fastcommunication	methods	to	achieve	data-
transfer	rates	of	600	Mb/s	or	more.	Wire-less	(radio)	transmission	using	orbiting	satellites	to	relay	messages	can	also	achievevery	high	data	rates.

Computer	networks.	Digital	communication	networks	designed	to	link	manyindependent	computers	are	called	computer	networks.	Their	rationale	is	to	permitsharing	of
computing	resources	(hardware,	software,	or	data)	that	are	widely	dis-persed.	For	communication	over	distances	of	a	few	kilometers	or	so—within	a	sin-gle	office	building,
for	instance—local-area	networks	(LANs)	are	used.	A	LAN	isa	computer	network	employing	data-transmission	links	that	are	private	to	the	net-work	in	question.	Computer
networks	spread	over	large	geographical	areas,	that	is,wide-area	networks	(WANs),	use	data-transmission	facilities	supplied	by	telecom-munications	companies,	which	in
many	countries	are	government-owned	or	-regu-lated	organizations.

Various	techniques	exist	for	sharing	the	links	of	a	computer	network	that	aimat	reducing	communication	costs.	One	such	technique	is	message	switching,	whichuses
intermediate	switching	centers	(servers)	on	long	communication	paths	to	storemessages	and	subsequently	forward	them	toward	the	final	destination;	this	processis	called
store	and	forward.	Messages	are	collected	by	each	server,	where	they	areorganized	(grouped	into	batches)	to	make	efficient	use	of	the	data	paths	connectedto	that	server.
Complete	message	transmission	is	thus	accomplished	by	a	sequence

Header	(5	bytes) Data	(48	bytes)
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Figure	7.6



Format	of	a	data	packet(cell)	used	in	asynchronoustransfer	mode	(ATM)networks.
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of	hops	through	a	variable	number	of	servers.	Message	switching	utilizes	the	avail-able	communication	links	far	more	efficiently	than	circuit	switching.

Messages	vary	greatly	in	length	so	that	short	messages	can	be	delayed	whilelonger	messages	are	being	transmitted.	This	problem	is	reduced	by	dividing	mes-sages	into
packets	of	fixed	length	and	format	and	then	transmitting	packets	fromlong	messages	interspersed	with	packets	from	short	messages.	The	store-and-forward	servers	are
then	responsible	for	sorting	the	packets	from	the	various	mes-sages	and	transmitting	them	to	their	proper	next	destinations.	Different	packagescan	be	sent	by	different
routes	dictated	by	network	traffic	conditions.	At	the	finaldestination	a	message	must	be	reassembled	from	its	constituent	packets.	This	formof	communication	is	called
packet	switching	and	is	used	for	fast	communication	oflarge	amounts	of	data.	A	type	of	packet	switching	called	asynchronous	transfermode	(ATM)	combines	voice	and
data	communication	using	short	packets	that	canbe	transmitted	very	fast.	An	ATM	packet	called	a	cell	consists	of	a	5-byte	headercontaining	the	destination	address	and
certain	control	information,	followed	by	a48-byte	data	field,	as	depicted	in	Figure	7.6.

Although	the	goal	of	a	universal	or	open	computer	network	to	which	any	man-ufacturer"	s	computers	can	be	attached	remains	elusive,	the	International
StandardsOrganization	(ISO)	has	developed	a	set	of	guidelines	that	provides	a	common	basisfor	computer	network	design.	These	guidelines	are	known	as	the	ISO
ReferenceModel	for	Open	Systems	Interconnection	(OSI)	and	define	seven	functional	levelsor	layers	through	which	users	exchange	messages	in	a	computer	network;	see
Fig-ure	7.7.	Each	layer	is	associated	with	certain	network	services—error	control,	forinstance—and	different	computers	in	a	network	can	be	thought	of	as
exchanginginformation	between	corresponding	layers.	Consequently,	a	distinct	set	of	commu-nication	rules	or	protocol	can	be	defined	for	each	layer.	In	general,	layers	1
to	3	ofthe	OSI	Reference	Model	involve	services	associated	with	data	communicationsfunctions	close	to	the	network	hardware,	while	layers	5	to	7	involve
software(operating	systems)	functions	close	to	the	network	user.	The	intermediate	transportlayer	(layer	4)	serves	to	interface	the	network's	hardware	and	software.

EXAMPLE	7.1	THE	ETHERNET	NETWORK	ACCESS	METHOD	[SIMONDS

1994).	Ethernet	is	a	popular	bus-oriented	architecture	for	LANs.	Its	specificationinvolves	only	the	physical	and	data-link	layers,	so	it	is	seen	as	primarily	an	accessmethod
for	LANs.	Computer-specific	hardware	(Ethernet	controllers)	and	software(Ethernet	drivers)	implement	the	remaining	layers	of	network	control.	At	the	physicallevel	an
Ethernet	LAN	has	the	structure	shown	in	Figure	7.8.	Up	to	1024	nodes	(com-puters)	can	be	connected	via	coaxial	cable:	their	maximum	separation	is	limited	to2.8	km.	At
the	data-link	level,	communication	is	by	messages	or	frames	that	contain

486

SECTION	7.1

Communication

Methods

Layer

Associated	services

1.	Physical	Electrical	and	mechanical	hardware	interfacing	to	the	physical	communication

medium.

2.	Data	link	Message	setup,	transmission,	and	error	control.	*

3.	Network	Establishing	message	paths	in	the	network	(message	routing	and	flow	control).

4.	Transport	Interfacing	network-independent	messages	with	the	specific	network	being	used.

5.	Session	Creation	and	management	of	communication	channels	between	the	communicating

applications	programs.

6.	Presentation	Data-transformation	services	such	as	character-code	translation	or	encryption.

7.	Application	Providing	network	support	functions	such	as	file-transfer	routines	to	application

programs	(network	users).

Figure	7.7

The	protocol	layers	of	the	Open	Systems	Interconnection	(OSI)	Reference	Model.

the	address,	control,	and	check	bits,	as	well	as	a	variable-length	data	field.	Total	mes-sage	length	can	range	from	64	to	1518	bytes.

A	technique	called	carrier	sense	multiple	access	with	collision	detection	(CSMAJCD)	controls	access	to	the	Ethernet	and	some	other	LAN	types.	A	node	wishing	to	senda
message	over	the	Ethernet	first	senses	(listens	to)	the	main	coaxial	cable	via	a	tap	unitand	transmits	the	message	only	if	it	detects	no	carrier	signal,	in	which	case	the
networkis	not	currently	in	use.	Each	message	is	broadcast	throughout	the	network,	and	its	des-tination	address	is	examined	by	all	nodes	as	it	reaches	them.	Only	the	node
whoseaddress	matches	that	of	the	message	header	actually	reads	the	message.	Since	all	com-puters	on	the	network	have	equal	access	to	the	main	cable,	it	is	possible	for
two	nodesto	begin	message	transmission	at	the	same	time.	Consequently,	as	it	transmits	a	mes-sage,	a	node	monitors	the	actual	signals	on	the	cable	and	compares	them
with	the	sig-nals	that	the	node	itself	is	transmitting.	If	the	transmitted	and	detected	signals	differ,
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Figure	7.8

Structure	of	an	Ethernet-based	LAN.

which	will	be	the	case	if	another	computer	is	transmitting	a	message	at	the	same	time,then	a	collision	is	said	to	have	occurred.	On	detecting	a	collision,	an	Ethernet
nodeceases	transmission	and	tries	to	transmit	the	same	message	again	later.	The	time	ofretransmission	is	randomly	selected	so	that	the	chance	of	another	collision	is
slight,although	repeated	collisions	do	occur.

Measurements	of	Ethernet	performance	show	that	the	CSMA/CD	access	schemeis	fair	in	that	if	n	nodes	request	continuous	access	to	the	network	over	some	period	oftime
T,	each	node	gains	access	to	the	network	for	a	period	very	close	to	T/n.	The	band-width	loss	due	to	collisions,	even	under	heavy	traffic	conditions,	is	modest—typicallyless
than	10	percent.
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Besides	the	CSMA/CD	method	used	by	Ethernet,	another	common	way	ofcontrolling	access	to	a	LAN	is	token	passing,	where	each	node	in	turn	receives	andpasses	on	the
right	to	access	the	network;	this	right	is	represented	by	a	special	shortmessage	called	a	token.	The	node	that	possesses	the	token	has	exclusive	use	of	thenetwork	for
transmitting	a	message,	after	which	it	transmits	the	token	to	another(fixed)	node.	Token	passing	is	often	used	in	ring-structured	networks	(token	rings),but	is	also	used	for
bus-structured	LANs	(token	buses).	When	a	token	ring	is	notpassing	normal	messages,	the	token	circulates	from	node	to	node	around	the	net-work.	A	node	having	a
message	to	transmit	waits	until	the	token	reaches	it.	It	thenholds	the	token	while	it	transmits	its	message.	In	a	ring	network,	a	(nontoken)	mes-sage	is	usually	passed	in
one	direction	from	node	to	node	until	it	reaches	the	desti-nation	node;	it	can	then	be	returned	to	the	source	node	to	confirm	its	receipt.	Aftertransmitting	one	message,	a
node	puts	the	token	back	into	circulation	so	that	allnodes	get	roughly	equal	access	to	the	network.

The	Internet.	As	discussed	in	section	1.3.3,	the	Internet	is	a	huge,	worldwidepacket-switched	computer	network	descended	from	the	ARPANET,	which	pio-neered	the	use
of	packet	switching	in	the	1970s.	Each	ARPANET	site	had	acomputer	called	an	interface	message	processor	(IMP),	which	performed	the	store	-and-forward	functions
required	for	packet	switching	and	connected	one	or	morehost	computers	to	the	ARPANET.	Since	many	types	of	computers	could	be	hosts,the	IMP	acted	as	a	standard
interface	controller	between	hosts	on	its	local	networkand	a	set	of	remote	network	servers.	To	ensure	some	degree	of	fault	tolerance,	thenodes	and	internode	links	were
chosen	so	that	at	least	two	disjoint	communicationpaths	existed	between	every	pair	of	IMPs.

The	Transmission	Control	Protocol/Internet	Protocol	(TCP/IP)	developed	forthe	ARPANET	is	used	by	every	Internet	server.	The	main	function	of	the	IP	proto-col	is	to
handle	the	routing	of	data	packets	over	the	Internet;	it	corresponds	to	layer3	(the	network	layer)	of	the	OSI	Reference	Model.	In	particular.	IP	breaks	mes-sages	into
packets	of	about	200	bytes	each	for	transmission	to	remote	servers.	AnInternet	address	is	4	bytes	long,	implying	a	total	of	more	than	4	billion	distinctaddresses.	It	is
normally	represented	by	a	four-part	"dotted'"	symbolic	form	likeserverl.net2.university3.edu.	Because	this	address	format	is	hierarchical	a	nodeneeds	only	limited	routing
information,	for	example,	the	possible	paths	to	all	thenetworks,	but	not	the	individual	Internet	servers,	in	the	domain	edu	assigned	toeducational	institutions.

An	Internet	packet	is	transmitted	with	a	header	containing	its	most	recentsource	address	and	its	final	destination	address	HD,	as	well	as	a	sequence	number
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indicating	its	position	in	the	original	message.	The	packets	leave	the	first	server	5Swith	consecutive	sequence	numbers	1,2,3,4,...;	however,	they	can	travel	by	differ-ent
routes	to	the	server	5D	of	the	final	destination	HD	and	arrive	there	at	differenttimes,	not	necessarily	in	the	original	order.	An	Internet	server	that	is	not	on	thelocal
network	containing	HD	retransmits	each	packet	i*	receives	to	another	server	towhich	it	is	directly	connected,	following	a	routing	algorithm	that	aims	to	find	thefastest
path	to	the	ultimate	destination.	The	actual	path	can	vary	with	network	traf-fic	conditions.	For	example,	having	sent	a	packet	to	server	S,,	the	current	servermay	decide	to
send	the	same	package	to	a	different	server	S	to	avoid	network	con-gestion,	faulty	links,	or	the	like.

An	Internet	package	can	pass	through	dozens	of	servers	before	reaching	thetarget	server	5D.	The	TCP	program	on	SD,	which	operates	within	the	OSI	transportlayer,	is
responsible	for	assembling	packets	in	their	proper	sequence	and	checkingto	see	if	any	are	missing	or	contain	errors.	If	necessary,	TCP	can	send	a	message	toa	remote
server	requesting	it	to	resend	a	missing	or	erroneous	package.	When	all	amessage's	packages	have	been	received	in	satisfactory	condition,	TCP	mergesthem	to
reconstruct	the	original	message,	which	it	forwards	over	the	local	networkto	HD.	A	higher-level	protocol	called	the	hypertext	transport	protocol	(http)enables	the	Internet
to	transfer	multimedia	files	easily	and	efficiently	and	is	thebasis	for	the	World	Wide	Web.

Interconnection	structures.	A	system's	interconnection	structure	can	be	de-fined	by	a	graph	whose	nodes	denote	components	such	as	computers,
memories,communications	controllers,	and	so	forth,	and	whose	edges	denote	communicationpaths	such	as	buses.	A	path	designed	to	link	only	two	devices	is	said	to	be
dedi-cated.	A	path	used	to	transfer	information	between	different	sets	of	devices	at	dif-ferent	times	is	said	to	be	(time)shared	or	multiplexed.

A	conceptually	simple	interconnection	method	is	to	place	dedicated	busesbetween	all	pairs	of	components	that	need	to	communicate.	The	general	case	inwhich	n	units
must	be	connected	in	all	possible	ways	needs	n(n	-	l)/2	dedicatedbuses.	Figure	7.9	shows	such	a	system	when	n	=	4.	Dedicated	buses	allow	very	fastinformation	transfer:
All	n	devices	can	send	or	receive	data	simultaneously,	andthere	is	no	delay	due	to	busy	connections.	Furthermore,	systems	with	dedicatedlinks	are	inherently	reliable
because	a	link	failure	affects	only	the	two	units	con-nected	to	that	link.	These	units	may	still	be	able	to	communicate	if	they	can	senddata	to	each	other	via	other	units.	For
example,	if	the	bus	linking	U]	and	U4	in	Fig-ure	7.9	fails,	{/,	and	U4	can	possibly	communicate	via	U2	or	t/3.	The	main	draw-

^1 Dj

z ■——, "~7	Dedicated/	bus

L 3 L 4

Figure	7.9

System	of	four	units	connected	by	sixdedicated	buses.

back	of	dedicated	buses	is	their	high	cost.	The	number	of	buses	needed	increases	asthe	square	of	the	number	of	units.	Adding	a	unit	to	the	system	is	difficult,	as	thenew
unit	must	be	physically	attached	to	each	existing	unit.

At	the	other	end	of	the	spectrum,	a	single	shared	bus	can	provide	all	communi-cations	among	n	units,	as	illustrated	by	Figure	7.1.	At	any	time	only	two	units
cancommunicate	with	each	other	via	the	bus;	the	remaining	units	are	effectively	dis-connected	from	one	another.	A	control	method	(protocol)	is	required	to
supervisesharing	of	the	bus	among	the	n	devices.	Bus	control	can	be	centralized	in	a	specialbus-master	unit,	which	can	be	one	of	the	n	communicating	units	Ur	for
example,	aCPU.	Alternatively,	several	units	can	be	designed	to	act	as	bus	masters	at	differenttimes	(decentralized	control).

In	general,	connection	to	a	shared	bus	is	established	in	two	different	ways:

•	A	unit	Uj	capable	of	acting	as	bus	master	initiates	the	connection	of	two	units	tothe	bus,	perhaps	in	response	to	an	instmction	in	a	program	being	executed	by	£/,.

•	A	slave	unit	sends	a	request	to	the	current	bus	master	for	access	to	the	sharedbus.	The	bus	master	then	connects	the	requesting	unit	to	the	link	if	it	is	not	in	use.If	the
bus	is	busy,	the	requesting	unit	must	wait	until	the	bus	becomes	available.If	several	conflicting	requests	are	received,	the	bus	master	uses	some	arbitrationscheme	to
decide	which	request	to	grant	first.

The	shared	bus	is	one	of	the	most	widely	used	connection	methods	in	computersystems.	Its	main	advantage	is	low	cost.	It	is	also	flexible	in	that	new	units	can	eas-ily	be
introduced	without	altering	the	system's	overall	structure	or	the	connectionsto	the	old	units.	However,	shared	buses	are	relatively	slow,	since	units	are	forced	towait	when
the	bus	is	busy.	The	system	is	also	sensitive	to	failure	of	the	shared	con-trol	circuits.

Between	the	extremes	of	a	set	of	dedicated	buses	and	a	single	shared	bus	lievarious	interconnection	structures	that	involve	some	sharing	of	links,	but	permitmore	than
one	word	to	be	transferred	at	a	time.	An	example	is	the	crossbar	net-work	shown	in	Figure	7.10.	A	crossbar	connects	two	groups	of	units	G,	-{UX,U2,-.-,	£/,„}	and	G2	=
{U\,U'2,...,	U'n)	so	that	any	unit	of	G,	can	be	connectedto	any	unit	of	G2,	but	two	units	in	the	same	group	need	never	be	connected.	Forexample,	G,	can	be	a	set	of	memory



banks	and	G-,	a	set	of	processors.	Crossbar	net-works	have	also	been	used	to	connect	10	processors	to	IO	devices.	As	Figure	7.10shows,	each	unit	in	G,	(G2)	is	attached	to
a	shared,	horizontal	(vertical)	bus.	Thehorizontal	and	vertical	buses	are	in	turn	connected	via	a	set	of	n	x	m	controllerscalled	crosspoint	switches,	which	can	logically
connect	any	horizontal	bus	to	anyvertical	bus.	At	any	time	only	one	crosspoint	can	be	active	in	each	row	and	column.If	k	=	min{m,	n),	then	k	units	in	G,	can	be
simultaneously	connected	to	k	units	inG2.	Hence	the	crossbar	network	allows	up	to	k	data	transfers	to	take	place	simulta-neously.	Access	conflicts	and	delays	occur	when
two	units	in	G|	attempt	to	com-municate	with	the	same	unit	in	G2,	or	vice	versa,	at	the	same	time.

Many	structures	employing	shared	or	nonshared	buses	have	been	proposed	forintra-	and	intersystem	communication	in	computer	systems.	More	links
increasecommunication	speed,	but	they	also	increase	cost	in	terms	of	the	buses	themselvesand	their	interface	circuits.	In	practice,	direct,	dedicated	connections	are
providedamong	only	a	subset	of	the	communicating	units.	Units	not	directly	connected	mustcommunicate	indirectly	via	intermediate	units	that	relay	data	in	store-and-
forwardfashion	until	the	final	destination	is	reached.	Indirect	communication	of	this	type	is
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Figure	7.10

Crossbar	connection	of	two	groups	of	units.

slow,	and	if	used	extensively,	can	significantly	reduce	performance.	The	amount	ofsuch	communication	occurring	depends	both	on	the	system's	structure	and	its	com-
munication	needs.	Interconnection	structures	are	therefore	selected	to	balancehardware	costs	against	communication	delays	for	some	broad	class	of	applications.

Figure	7.11	shows	graphs	that	abstractly	represent	some	important	computerinterconnection	structures	[Feng	1981;	Quinn	1994],	a	few	of	which	we	encoun-tered	earlier.
Here	the	nodes	denote	computers	or	processor-level	components	suchas	IO	controllers,	while	the	edges	denote	shared	or	nonshared	buses.	The	linear	orone-dimensional
array	structure	of	Figure	7.1	la	models	the	basic	system-bus	basedstructure	of	Figure	7.1,	provided	the	buses	are	shared.	The	mesh	(two-dimensionalarray)	structure
(Figure	1	A\b)	occurs	in	the	systolic	multiplier	of	Figure	4.59.	Thering	structure	of	Figure	7.11c	adds	an	extra	link	to	the	six-node	linear	structure,thereby	cutting	in	half
the	length	of	the	longest	path	between	any	two	units.	It	alsointroduces	some	tolerance	of	bus	failures	by	providing	two,	rather	than	one,	com-munication	paths	between
each	unit	pair.	The	graph	of	Figure	7.1	\d	is	called	a	starfor	obvious	reasons	and	has	a	central	or	root	node	connected	to	all	n	-	1	othernodes.	The	linear	and	star	graphs
are	special	cases	of	a	tree,	which	is	a	graph	withno	cycles.	The	three-dimensional	hypercube	is	depicted	in	Figure	1	.We,	while	thecomplete	graph	for	n	=	6	nodes	appears
in	Figure	7.11/.	The	ring,	hypercube,	andcomplete	graphs	are	considered	to	be	homogeneous	because	all	nodes	have	pre-cisely	the	same	type	of	connections,	making	them
interchangeable.	For	instance,each	node	x	has	the	same	number	d(x)	of	neighbors,	where	d(x)	is	called	the	degreeof	x	and	is	a	rough	indication	of	the	cost	of	its	bus
interface.	The	other	examples	inFigure	7.11	are	not	homogeneous,	because	all	nodes	do	not	have	the	same	degree.

Figure	7.12	summarizes	some	pertinent	properties	of	the	preceding	intercon-nection	structures.	The	number	of	edges	and	the	maximum	node	degree	serve	as	a

measure	of	the	hardware	cost	of	the	structure.	The	distance	between	two	nodes	isthe	number	of	edges	along	a	shortest	path	in	the	graph	from	one	node	to	the	other.The
maximum	of	these	distances,	called	the	diameter	of	the	graph,	is	an	indicationof	the	worst-case	communication	delays	that	can	occur.	In	the	examples	of	Figure7.12,	the
total	number	of	connecting	edges	ranges	from	approximately	n2/2	(forlarge	n)	in	the	complete-graph	case	to	the	minimum	possible	value	of	n	-	1	for	thelinear	and	star
graphs.	The	complete	graph	and	the	star	share	the	largest	nodedegrees,	while	the	linear	structure	has	the	largest	diameter.	The	other	structuresexhibit	various
compromises	between	hardware	cost	and	delay.	Of	particular	inter-est	is	the	hypercube,	which	achieves	a	reasonable	balance	between	all	three	param-eters.	Therefore,	it
has	been	used	as	the	interconnection	network	in	severalmassively	parallel	computers.
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7.1.2	Bus	Control

This	section	examines	the	methods	to	establish	and	control	intrasystem	communi-cation	via	a	shared	bus	[Thurber	et	al.	1972;	Gustavson	1984].	Two	key	issues	arethe
timing	of	transfers	over	the	bus	and	the	process	by	which	a	unit	gains	access	tothe	bus.	We	assume	the	general	structure	of	Figure	7.1,	which	applies	to	most	sys-tem	and
IO	buses.	We	also	assume	that	one	particular	unit	acts	as	the	bus	master

O—O—O—O
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(b)

(c)

(d)

(e)

Figure	7.11

Interconnection	structures:	(a)	linear;	(b)	mesh;	(c)	ring;	(d)	star;	(e)	hypercube;	(/)	complete.
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and	supervises	the	use	of	the	bus	by	the	other	units,	the	bus	slaves.	In	many	casesthe	CPU	is	the	bus	master,	while	the	memory	and	IO	interface	circuits	are	slaves;10
controllers	also	serve	as	bus	masters,	however.	Only	a	master	can	initiate	datatransfers,	although	slaves	can	request	them.	Both	master	and	slave	participateequally	in	the
data-transfer	process	after	it	is	initiated.

Basic	features.	Buses	are	distinguished	by	the	way	in	which	data	transfersover	the	bus	are	timed.	In	synchronous	buses	each	item	is	transferred	during	a	timeslot	(clock
cycle)	known	to	both	the	source	and	destination	units.	Therefore,	thebus	interface	circuits	of	both	units	are	in	step,	or	synchronized.	Synchronizationcan	be	achieved	by
connecting	both	units	to	a	common	clock	source,	which	is	fea-sible	only	over	very	short	distances.	The	rising	or	falling	edge	of	the	clock	signal,which	is	one	of	the	bus's
control	signals,	determines	when	other	bus	signals	attainstable	(valid)	states.	Alternatively,	each	bus	unit	can	be	driven	by	separate	clocksignals	of	approximately	the
same	frequency.	Synchronization	signals	must	then	betransmitted	periodically	between	the	communicating	devices	in	order	to	keep	theirclocks	in	step	with	each	other.

Synchronous	communication	has	the	disadvantage	that	data-transfer	rates	arelargely	determined	by	the	slowest	units	in	the	system,	so	some	devices	may	not	beable	to
communicate	at	their	maximum	rate.	An	alternative	approach	widely	usedin	both	local	and	(especially)	long-distance	communications	is	asynchronous	tim-ing,	in	which
each	item	being	transferred	is	accompanied	by	a	control	signal	thatindicates	its	presence	to	the	destination	unit.	The	destination	can	respond	withanother	control	signal
to	acknowledge	receipt	of	the	item.	Because	each	device	cangenerate	bus-control	signals	at	its	own	rate,	data-transfer	speed	varies	with	theinherent	speed	of	the
communicating	devices.	This	flexibility	is	achieved	at	thecost	of	more	complex	bus-control	circuitry.	In	local	communication	where	a	clocksignal	is	present,	data
transmission	can	be	asynchronous	in	the	sense	that	the	num-ber	of	clock	periods	between	bus	events	(signal	changes)	can	be	indeterminate,while	the	events	themselves
are	synchronized	by	the	clock.

A	unit	is	selected	for	connection	to	the	main	bus	in	two	ways.	The	bus	mastercan	initiate	the	selection	of	a	slave	unit	U	in	response	to	an	instruction	in	a	programor	a
condition	occurring	in	the	system	that	requires	the	services	of	U.	Alternatively,

U	itself	can	request	access	to	the	shared	bus	by	sending	a	bus-request	signal	to	thebus	master.	In	each	case	the	master	unit	must	perform	a	specific	sequence	ofactions	to
establish	a	logical	connection	between	U	and	the	bus.	If	several	units	cangenerate	requests	for	bus	access	simultaneously,	the	bus	master	needs	a	way	toselect	one	of	the
units;	this	selection	process	is	called	bus	arbitration.	The	CSMA/CD	collision	avoidance	technique	used	by	the	Ethernet	(Example	6.1)	is	an	exam-ple	of	an	arbitration
process	for	LANs.

Bus	lines	fall	into	three	functional	groups:	data,	address,	and	control	lines.The	data	lines	transmit	all	bits	of	an	n-bit	word	in	parallel.	They	consist	of	eithertwo	sets	of	n
unidirectional	lines	or	a	single	set	of	n	bidirectional	lines.	The	data-bus	width	n	is	usually	a	multiple	of	eight,	with	n	=	8,	16,	32,	or	64	being	commonvalues.	The	address
lines	identify	a	unit	to	participate	in	a	data	transfer.	Sometimesthe	same	lines	transfer	addresses	as	well	as	data,	a	method	termed	data-addressmultiplexing.	This	method
decreases	the	cost	of	the	bus,	along	with	the	number	ofexternal	connections	(pins)	of	the	units	attached	to	the	bus.	A	computer's	systembus	usually	contains	separate



address	and	data	lines,	but	its	10	buses	often	do	not;see	Figure	7.4,	for	instance.	This	difference	stems	from	the	fact	that	an	addressaccompanies	each	data-word	transfer
over	the	system	bus,	whereas	data	transfersvia	an	10	bus	tend	to	involve	long	blocks	of	consecutive	words	and	need	only	thestarting	address	of	the	block.	That	address
can	be	sent	at	the	start	of	the	data	trans-fer.	The	control	lines	convey	timing	signals	and	status	information	about	the	unitsattached	to	the	bus;	they	also	identify	the	type
of	information	present	on	the	data-address	lines.
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Bus	interfacing.	A	significant	contributor	to	the	cost	of	a	bus	is	the	numberand	type	of	circuits	required	to	transfer	signals	to	and	from	the	bus.	A	bus	line	rep-resents	a
signal	path	with	potentially	very	large	fan-in	and	fan-out.	Consequently,buffer	circuits	called	bus	drivers	and	receivers	are	needed	to	transfer	signals	to	andfrom	the	bus,
respectively.

A	special	transistor	circuit	technology	called	tristate	logic	is	often	used	in	busdesign.	It	is	characterized	by	the	presence	of	three	signal	values	0,	1,	and	Z,	wherethe	third
value	Z	is	the	high-impedance	state.	The	binary	values	0	and	1	have	theirusual	interpretation,	and	correspond	to	two	specific	electrical	states	of	a	line,	suchas	0	volts	and
3.3	volts.	The	high-impedance	state	Z,	on	the	other	hand,	denotes	thestate	of	a	line	that	is	electrically	disconnected	from	all	voltage	sources,	that	is,	anopen-circuited	or
floating	line.	Figures	7.13a	and	b	define	a	tristate	buffer,	whichserves	as	a	bus-line	driver.	The	inputs	x	and	e	are	ordinary	binary	signals	that	takethe	values	0	and	1;	the
output	z,	however,	can	take	all	three	values	0,	1,	and	Z.	Thetristate	buffer	(and	every	other	tristate	device)	has	a	special	input	line	e	called	out-put	enable,	which	when	set
to	0	disables	the	output	line	z	by	changing	it	to	thehigh-impedance	state	Z.	When	e	=	1,	the	circuit	becomes	an	ordinary	noninvertingbuffer	with	z	=	x.	Figures	7.13c	and
d	show	equivalent	circuits	corresponding	to	thebuffer	in	the	enabled	and	disabled	states.

Tristate	logic	circuits	have	two	big	advantages	in	the	design	of	shared	buses:

•	They	greatly	increase	the	fan-in	and	fan-out	limits	of	bus	lines,	permitting	verylarge	numbers	of	devices	to	be	attached	to	the	same	line.

•	They	support	bidirectional	transmission	over	the	bus	by	allowing	the	same	busconnection	to	serve	as	an	input	port	and	as	an	output	port	at	different	times.-
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,	_	2	Tristate	buffer:	(a)	logic	symbol;

(b)	truth	table;	(c)	equivalent	circuitwhen	enabled;	(d)	equivalent	circuitwhen	disabled.

Figure	7.14	shows	how	we	use	tristate	logic	to	interface	two	units	(/,	and	U2	to	aset	of	bidirectional	bus	lines.	If	ex	=	1	and	e2	=	0,	then	Ul	controls	or	drives	the	buslines
in	question;	information	is	transferred	over	the	bus	from	Ux	to	U2.	in	effectmaking	x2i	=	Zi,	for	all	i.	Conversely,	if	ex	=	0	and	e2	=	1,	then	U2	drives	the	busand
information	is	transferred	in	the	opposite	direction	from	U2	to	Ux,	makingxXi	=	z2ii	for	all	i.	If	ex	=	e2	=	0,	then	the	outputs	of	both	Ul	and	U-,	are	logically	dis-connected
from	the	bus	and	impose	only	a	minuscule	electrical	load	on	it.	Thecombination	ex	=	e2	-	1	is	invalid,	because	it	applies	two	different	signals	simulta-neously	to	each	bus
line	making	the	line's	state	indeterminate.	Proper	operation	ofthe	bus	requires	that	at	most	one	driver	connected	to	each	bus	line	be	enabled	atany	time.

The	bus	lines	that	can	be	driven	by	a	particular	bus	unit	(/,	that	is,	used	by	U	tosend	data	to	other	units,	depend	on	U's	function	in	the	system.	Bus	masters	havethe	ability
to	drive	most	bus	lines,	including	certain	lines	that	slave	units	cannot
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drive.	For	example,	a	CPU	can	drive	all	data,	address,	and	most	control	lines	of	asystem	bus.	A	main-memory	unit,	which	is	a	bus	slave,	can	drive	the	data	lines	butnot	the
address	lines,	since	it	only	needs	to	receive	information	from	the	addresslines.

Timing.	The	details	of	some	typical	data	transfers	over	a	bus	are	shown	inFigure	7.15	by	means	of	timing	diagrams.	The	CLOCK	signal	of	period	T	serves	asa	timing



reference,	making	this	type	of	transfer	synchronous.	In	this	example,	the0-to-1	transition	of	CLOCK,	that	is,	its	rising	edge,	determines	when	other	bus	sig-nals	are
recognized.	All	active	signals	must	be	set	up	with	their	new	values	beforethe	CLOCK	signal	rises.	Signal	changes	are	expected	to	propagate	along	the	bus	totheir
destinations	before	the	next	0-to-l	transition	of	CLOCK.

Figure	7.15	also	illustrates	some	typical	signal	exchanges	between	slave	andmaster	units;	these	exchanges	follow	certain	ordering	rules	called	the	bus	protocol.Consider
the	read	operation	depicted	in	Figure	7.15a.	Communication	begins	when
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Synchronous	data	transfers:(a)	read	and	(b)	write.
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the	bus	master	places	one	or	more	predetermined	signals	on	the	control	lines	speci-fying	the	desired	bus	transaction,	for	instance,	read	from	memory	(load)	or	readfrom
10	device	(input).	At	the	same	time,	the	master	places	the	address	of	thedesired	(part	of	the)	slave	on	the	bus's	address	lines.	All	potential	slave	units	thenexamine	the
active	control	and	address	signals.	The	slave	with	an	address	matchingthat	on	the	bus	responds	in	the	next	clock	cycle	by	placing	the	requested	data	wordon	the	bus's
data	lines;	it	can	also	optionally	place	status	information,	for	example,(no)	error	occurred,	on	certain	control	lines.	A	synchronous	write	operation	is	sim-ilar	except	that
the	bus	master	rather	than	the	slave	is	the	data	source;	see	Figure7.156.	Note	that	both	edges	of	CLOCK	can	be	used	as	reference	points	in	a	bustransaction,	and	the	read
or	write	transactions	of	Figure	7.15	can	be	designed	totake	place	during	one	clock	cycle	of	period	2T.

The	requirement	that	the	slave	respond	immediately	(in	the	next	clock	cycle)to	the	bus	master	is	lifted	by	providing	a	control	signal	called	an	acknowledge	sig-nal	ACK,	as
shown	in	Figure	7.16	for	a	read	bus	transaction.	ACK	is	controlled	bythe	slave	unit	and	is	not	activated	until	the	slave	has	completed	its	part	of	the	datatransfer.	The
master	therefore	waits	until	it	has	received	the	ACK	signal	for	the	cur-rent	data-word	transfer	before	initiating	a	new	one.	Thus	an	acknowledge	signalallows	a	delay	of
one	or	more	bus	cycles,	called	wait	states,	to	be	inserted	in	a	bustransaction	to	accommodate	slow	devices.	Although	ACK	may	be	activated	in	anycycle,	its	changes	are
synchronized	with	those	of	CLOCK.	This	type	of	communi-cation	is	often	used	between	main	memory	and	a	CPU.	By	inserting	a	variablenumber	of	wait	states	and
signaling	with	ACK	when	it	is	ready,	a	memory	of	essen-tially	any	speed	can	communicate	with	a	faster	CPU.

Purely	asynchronous	timing	eliminates	the	bus's	clock	signal	and	replaces	itwith	timing	control	signals	like	ACK,	which	are	generated	by	the	communicatingunits.	These
units	are	thus	self-timed,	and	units	with	quite	different	data-transfer
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Figure	7.16

Synchronous	data	transfer	(read)	with	wait	states.

rates	can	communicate	asynchronously.	We	distinguish	two	cases:

•	One-way	control	in	which	one	of	the	two	communicating	devices	supplies	alltiming	signals.

•	Two-way,	or	interlocked,	control	in	which	both	devices	generate	timing	signals.

If	one-way	control	is	employed,	a	single	signal	controls	each	address	or	datatransfer.	This	signal	can	be	activated	by	the	source	and	destination	unit,	either	oneof	which
can	be	the	bus	master.	Figure	7.17a	shows	a	source-initiated	data	transferof	this	sort.	The	source	places	the	data	word	on	the	data	bus.	After	a	brief	delay	thesource
activates	the	control	line	with	the	generic	name	DATA	READY.	The	delay	isto	prevent	the	DATA	READY	signal	from	reaching	the	destination	before	the	dataword.
Alternatively,	the	source	can	activate	DATA	READY	and	place	data	on	thedata	bus	at	the	same	time.	The	destination	unit	must	then	insert	a	delay	between	itsreceipt	of
DATA	READY	and	its	reading	of	the	data	bus.	The	data	lines	and	theDATA	READY	control	line	must	remain	in	the	active	state	long	enough	to	allow	thedestination	unit	to
copy	the	data	from	the	data	bus.	Figure	7.	lib	shows	a	data	trans-fer	initiated	by	the	destination	unit.	In	this	case	the	destination	begins	the	datatransfer	by	activating	the
control	line	DATA	REQUEST.	The	source	responds	byplacing	the	required	word	on	the	data	lines.	Again	the	data	must	remain	active	longenough	for	the	destination	unit	to
read	it.

Often	the	DATA	READY/REQUEST	signals	are	used	to	load	the	data	from	thesource	unit	to	the	bus	or	from	the	bus	to	the	destination	unit.	Such	control	signalsare	called
strobe	signals	and	are	said	to	strobe	data	to	or	from	the	bus.	For	example,the	source	may	generate	a	data	word	asynchronously	and	place	it	in	a	buffer	regis-ter	connected
to	the	bus	data	lines.	A	signal	on	DATA	REQUEST	activates	theclock	input	line	of	the	buffer,	thereby	"strobing"	the	data	onto	the	bus;	Figure	7.18illustrates	this	process.

The	disadvantage	of	one-way	control	is	that	it	does	not	verify	that	the	datatransfer	has	been	successfully	completed.	For	example,	in	a	source-initiated	datatransfer,	the
source	unit	receives	no	indication	that	the	destination	unit	has	actu-ally	received	the	data	transmitted	to	it.	If	the	destination	unit	is	unexpectedly	slowin	responding	to	a
DATA	READY	signal,	the	data	may	be	lost.	This	problem	iseliminated	by	introducing	a	second	control	line	that	allows	the	destination	unit	tosend	a	reply	signal	to	the
source	when	it	receives	a	DATA	READY	signal.	Thiscontrol	line	has	the	generic	name	DATA	ACKNOWLEDGE	or	ACK.	Figure	1	A9a
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Use	of	a	DATA	REQUEST	line	to	strobe	data.

shows	the	exchange	of	signals,	often	called	handshaking,	that	accompanies	asource-controlled	transfer	in	this	case.	The	source	unit	maintains	the	data	on	thebus	until	it
receives	the	ACK	signal.	The	destination	activates	ACK	after	copyingthe	data	from	the	bus.	This	sequence	allows	delays	of	arbitrary	length	to	occurduring	the	data
transfer.	Figure	7.1%	depicts	a	similar	technique	for	destination-initiated	communication.	The	source	unit	activates	ACK	to	indicate	that	therequested	data	is	available	on
the	bus's	data	lines.	The	source	maintains	the	dataon	the	bus	until	the	destination	unit	deactivates	DATA	REQUEST,	an	action	thatconfirms	successful	receipt	of	the	data
at	its	destination.	As	Figure	7.19	demon-strates,	a	pair	of	control	lines	can	perform	the	ready,	request,	and	acknowledgefunctions	for	all	types	of	asynchronous	bus
communications.

Bus	arbitration.	The	possibility	exists	that	several	master	or	slave	units	con-nected	to	a	shared	bus	will	request	access	to	the	bus	at	the	same	time.	A	selectionmechanism
called	bus	arbitration	is	therefore	required	to	enable	the	current	mas-

Data

DATA	READY
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ACK

(a)

Data

DATA	REQUEST

ACK

Data

Figure	7.19

Asynchronous	data	transfer	(handshaking):	(a)	source	initiated	and	(b)	destination	initiated.

ter,	which	we	will	refer	to	as	the	bus	controller,	to	decide	among	such	competingrequests.	We	discuss	three	representative	arbitration	schemes:	daisy	chaining,	poll-ing,
and	independent	requesting.	These	methods	differ	in	the	number	of	controllines	they	require	and	in	the	speed	with	which	the	bus	controller	can	respond	tobus-access
requests	of	different	priorities.	Some	bus	systems	combine	several	dis-tinct	arbitration	techniques.

Figure	7.20	illustrates	daisy-chaining	arbitration.	This	method	involves	threecontrol	signals	to	which	we	assign	the	generic	names	BUS	REQUEST,	BUSGRANT,	and	BUS
BUSY.	All	the	bus	units	are	connected	to	the	BUS	REQUESTline.	When	activated,	it	merely	serves	to	indicate	that	one	or	more	units	are	request-ing	use	of	the	bus.	The
bus	controller	responds	to	a	BUS	REQUEST	signal	only	ifBUS	BUSY	is	inactive.	This	response	takes	the	form	of	a	signal	placed	on	the	BUSGRANT	line.	On	receiving	the
BUS	GRANT	signal,	a	requesting	unit	enables	itsphysical	bus	connections	and	activates	BUS	BUSY	for	the	duration	of	its	new	busactivity.

The	main	distinguishing	feature	of	daisy	chaining	is	the	way	the	BUS	GRANTsignal	is	distributed;	it	is	connected	serially	from	unit	to	unit	as	shown	in	Figure7.20.	When
the	first	unit	requesting	access	to	the	bus	receives	BUS	GRANT,	itblocks	further	propagation	of	that	signal,	activates	BUS	BUSY,	and	begins	to	usethe	bus.	When	a
nonrequesting	unit	receives	the	BUS	GRANT	signal,	it	forwardsthe	signal	to	the	next	unit.	Thus	if	two	units	simultaneously	request	bus	access,	theone	closer	to	the	bus
controller,	that	is,	the	one	that	receives	BUS	GRANT	first,gains	access	to	the	bus.	Selection	priority	is	therefore	determined	by	the	order	inwhich	the	units	are	linked
(chained)	by	the	BUS	GRANT	lines.

Daisy	chaining	requires	very	few	control	lines	and	embodies	a	simple,	fixedarbitration	scheme.	It	can	be	used	with	an	essentially	unlimited	number	of	busunits.	Since
priority	is	wired	in,	a	unit's	priority	cannot	be	changed	under	programcontrol.	If	it	generates	bus	requests	at	a	sufficiently	high	rate,	a	high-priority	unitlike	U{	can	lock
out	a	low-priority	device	like	£/„.	A	further	difficulty	with	daisychaining	is	its	susceptibility	to	failures	involving	the	BUS	GRANT	lines	and	theirassociated	circuitry.	If	unit
(/,	is	unable	to	propagate	the	BUS	GRANT	signal,	thenno	Uj	where	j	>	i	can	gain	access	to	the	bus.

The	bus-arbitration	scheme	called	polling	replaces	the	BUS	GRANT	line	of	thedaisy-chain	method	with	a	set	of	poll-count	lines	that	are	connected	directly	to	allunits	on
the	bus,	as	depicted	in	Figure	7.21.	As	before,	the	units	request	access	tothe	bus	via	a	common	BUS	REQUEST	line.	In	response	to	a	signal	on	BUS
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Bus	arbitration	using	daisy	chaining.
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Bus	arbitration	using	polling.

REQUEST,	the	bus	controller	proceeds	to	generate	a	sequence	of	numbers	on	thepoll-count	lines.	Each	unit	compares	these	numbers,	which	may	be	thought	of	asunit



addresses,	to	a	unique	address	assigned	to	that	unit.	When	a	requesting	unit	Ulfinds	that	its	address	matches	the	number	on	the	poll-count	lines,	Ui	activates	BUSBUSY.
The	bus	controller	responds	by	terminating	the	polling	process,	and	Ul	con-nects	to	the	bus.

The	priority	of	a	bus	unit	is	determined	by	the	position	of	its	address	in	thepolling	sequence.	This	sequence	can	be	programmed	if	the	poll-count	lines	areconnected	to	a
programmable	register;	hence	selection	priority	can	be	altered	undersoftware	control.	A	further	advantage	of	polling	over	daisy	chaining	is	that	in	poll-ing	a	failure	in	one
unit	need	not	affect	the	other	units.	This	flexibility	is	achievedat	the	cost	of	more	control	lines	(k	poll-count	lines	instead	of	one	BUS	GRANTline).	Also,	the	number	of	units
that	can	share	the	bus	is	limited	by	the	addressingcapability	of	the	poll-count	lines.

The	third	arbitration	technique,	independent	requesting,	has	separate	BUSREQUEST	and	BUS	GRANT	lines	for	every	unit	sharing	the	bus.	This	approach,

u, Ui v.

Buscontroller BUS	GRANTl ♦ J \	- 11

^BUS	REQUEST]

BUS	GRANT!

^BUS	REQUEST!

BUS	GRANTn

^BUS	REQUESTn

BUS	BUSY
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Figure	7.22

Bus	arbitration	using	independent	requesting.

which	is	depicted	in	Figure	7.22,	provides	the	bus	controller	with	immediate	iden-tification	of	all	requesting	units	and	enables	it	to	respond	rapidly	to	requests	for
busaccess.	The	bus-control	unit	determines	priority,	which	is	programmable.	The	maindrawback	of	bus	control	by	independent	requesting	is	the	fact	that	In	BUSREQUEST
and	BUS	GRANT	lines	must	be	connected	to	the	bus	controller	in	orderto	control	n	devices.	In	contrast,	daisy	chaining	requires	two	such	lines,	while	poll-ing	requires
approximately	log2	n	lines.
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EXAMPLE	7.2	THE	PERIPHERAL	COMPONENT	INTERCONNECT	(PCI)	BUS

[SHANLEY	and	Anderson	1995].	The	PCI	bus,	often	referred	to	as	a	"local"	bus,was	developed	by	Intel	in	the	early	1990s	and	has	since	become	a	widely	adopted	stan-dard
for	microprocessor-based	computer	products	such	as	single-board	microcomput-ers.	Unlike	some	earlier	standard	buses,	the	PCI	bus	is	designed	to	be	easily
interfacedwith	different	microprocessor	families,	main	memory,	and	a	very	wide	range	of	10devices.	Many	of	the	PCI	bus's	lines	are	optional,	so	it	can	be	attached	to	bus
units	withas	few	as	47	pins	and	as	many	as	100.	It	can	support	either	32-bit	or	64-bit	data	trans-fers.	In	version	2.1,	the	maximum	clock	rate	is	66	MHz,	which	allows	a
data-transferrate	of	up	to	524	MB/s.

The	PCI	bus	is	basically	intended	for	attaching	10	devices	to	a	computer,	but	it	hasmany	of	the	characteristics	of	a	high-performance	system	bus.	It	can	be	configured	asan
10	bus	as	in	Figure	7.3	so	that	the	microprocessor	can	communicate	with	memoryvia	its	system	bus	while	the	PCI	bus	controller	communicates	independently	with
10devices	via	the	PCI	bus.	Figure	7.23	shows	a	different	configuration	in	which	the	PCIbus	has	a	more	central	role.	Here	the	PCI	bus	is	linked	to	the	host	CPU's	"system"
busvia	a	memory	controller	referred	to	as	a	bridge,	which	gives	it	direct	access	to	thehost's	main	memory.	This	arrangement,	unlike	that	of	Figure	7.3,	allows	CPU-cache
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Microprocessor(system)	bus

Memorycontroller(bridge)

Mainmemory

Graphics

videoterminal

SCSIcontroller

PCI	localbus

Ethernetcontroller

Local-areanetwork

]	SCSI10	bus

Hard	disk	units

Figure	7.23

Computer	system	organized	around	a	PCI	bus.
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and	IO-memory	transfers	to	take	place	simultaneously.	High-speed	devices	such	asvideo	terminals	and	fast	network	controllers	that	have	little	need	of	the	CPU	are	con-
nected	directly	to	the	PCI	bus.	IO	devices	intended	to	conform	with	other	bus	standardssuch	as	SCSI	or	ISA	can	also	be	interfaced	to	the	PCI	bus	via	appropriate	IO
control-lers,	such	as	the	SCSI	bus	controller	in	Figure	7.23.

Each	PCI	device	is	required	to	implement	a	set	of	registers	called	its	configurationregisters,	whose	format	is	defined	in	the	PCI	bus	specification.	When	the	system	is



firstpowered	up,	all	such	registers	are	accessed	by	the	system	control	software	to	determinewhich	IO	devices	are	currently	attached	to	the	PCI	bus	and	their	basic
communicationrequirements.

Figure	7.24	summarizes	the	100	lines	that	make	up	the	PCI	bus.	On	the	left	are	thesignals	required	to	support	basic	data	transfers	using	32-bit	or	smaller	words.	On
theright	are	optional	lines	that	support	64-bit	data	transfers,	interrupt	control,	and	other,less-common	functions.	To	reduce	pin	counts	and	the	size	of	the	connectors
needed	byPCI-compatible	units,	addresses	and	data	are	multiplexed	over	a	common	set	of	linesdenoted	AD.	A	typical	bus	transaction	involves	two	phases:	In	the	first
phase,	anaddress	is	sent	over	AD;	in	the	second	phase,	one	or	more	data	words	are	sent	over	AD.The	remaining	lines	of	the	bus	perform	various	control	functions,	which
are	outlinedbelow.	All	bus	operations	are	timed	by	a	clock	signal,	so	the	PCI	bus	is	considered	tobe	synchronous;	however,	ready	and	acknowledge	signals	are	provided	to
allow	slowdevices	to	insert	wait	states.	Most	lines	are	tristate	and	are	considered	inactive	in	the	Zand	0	states,	unless	they	have	an	overbar,	in	which	case	they	are
inactive	in	the	Z	and	1states.

The	command/byte-enable	lines	perform	different	functions	at	different	times.During	the	address-transmission	phase,	ClBE	defines	a	bus	command	that	the	bus	mas-ter
uses	to	tell	the	bus	slave	the	type	of	transaction	required.	The	possible	commandsinclude	memory	read,	memory	write,	IO	read,	IO	write,	interrupt	acknowledge,	and	afew
others.	During	the	data-transmission	phase,	ClBE	indicates	which	bytes	of	ADcarry	valid	data.	PAR	specifies	the	parity	of	the	36	bits	AD[3l:0]	and	ClBE	[3:0];	itserves	the
usual	function	of	single-bit	error	detection.	The	lines	designated	basic	inter-face	control	include	FRAME,	which	delimits	a	data-transfer	transaction	and	therefore
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Signals	of	the	PCI	standard	bus.

is	active	for	the	duration	of	the	entire	transaction;	a	pair	of	data-ready/acknowledgelines,	IRDY	(initiator	ready)	and	TRDY	(target	ready),	for	use	by	the	master	and
slave,respectively;	and	a	STOP	line	that	the	slave	uses	to	ask	the	master	to	halt	the	currenttransaction.	The	system	clock	signal	CLK	is	responsible	for	synchronizing	all
bus	trans-actions,	while	RST	resets	all	bus-control	registers	attached	to	the	PCI	bus.	The	twoerror-reporting	lines	indicate	parity	errors	and	related	problems.

A	pair	of	lines	REQ	(bus	request)	and	GNT	(bus	grant)	control	bus	arbitration.The	bus-arbitration	method	is	not	part	of	the	PCI	bus's	specification,	which	requiresonly	that
the	central	bus	controller	receive	a	single	request	at	a	time	on	the	REQ	lineand	that	all	attached	bus	masters	receive	their	fair	share	of	access	to	the	bus.	The	daisy-
chaining	method	discussed	earlier	is	easily	implemented.	Independent	requesting	canalso	be	implemented	without	difficulty	by	means	of	priority-encoding	logic	that
selectsone	of	several	active	requests	to	forward	to	the	PCI	bus's	REQ	line.

Figure	7.25	shows	a	representative	three-word	data	transfer	from	slave	to	mastervia	the	PCI	bus;	for	example,	an	IO	read	operation.	The	transaction	begins	when
theinitiating	master	unit	(which	is	assumed	to	already	be	in	control	of	the	bus)	activatesFRAME	by	setting	it	to	0	in	clock	cycle	1;	as	its	name	suggests,	FRAME	frames
theentire	data	transfer	sequence.	The	master	then	places	an	address	and	command	word(IO	read	in	our	example)	on	the	AD	and	C/BE	lines,	respectively;	this
informationshould	be	valid	when	clock	cycle	2	begins.	During	cycle	2	all	the	units	attached	to	thebus	try	to	decode	the	address	and	command.	In	this	instance	an	IO	unit
containing	thecurrent	address	will	be	successful	and	will	prepare	to	communicate	with	the	master.	Inthe	next	cycle	the	master	relinquishes	control	of	AD	and	places	valid
byte-enable	infor-mation	on	the	C/BE	lines	for	the	remainder	of	the	transaction.	To	avoid	conflictswhen	the	master	stops	driving	the	AD	bus	(and	certain	control	lines)	and
the	slavebegins	to	do	so,	an	idle,	turnaround	cycle—cycle	3	in	Figure	7.25—must	follow	theaddress	phase.	The	slave	can	transmit	a	sequence	of	data	words	via	AD,
beginning	incycle	4	at	the	maximum	rate	of	one	word	per	clock	cycle.	The	two	communicatingunits	control	the	actual	transfer	rate	via	the	IRDY	and	TRDY	lines,	which
permit	anynumber	of	wait	states	to	be	inserted	after	each	data-transfer	cycle.
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Figure	7.25

Data-transfer	transaction	(memory	read)	via	the	PCI	bus.
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Data	transfer	cannot	begin	until	the	master	activates	IRDY	to	indicate	that	it	isready	to	receive	data;	this	occurs	in	cycle	2.	The	slave	makes	the	data	word	1	availableand
signals	this	fact	by	making	TRDY	-	0	in	cycle	3;	the	data	transfer	takes	place	incycle	4.	In	this	example	the	slave	immediately	deactivates	its	ready	line	(TRDY	=	1)making
cycle	5	into	a	wait	state;	it	then	reactivates	TRDY	and	places	data	word	2	onAD	for	transmission	in	cycle	6.	The	slave	places	data	w€ord	3	on	AD	for	transmission	incycle
7.	This	time,	however,	the	master	decides	to	insert	a	wait	state	by	making	IRDY	=1	for	one	clock	cycle.	Consequently,	data	word	3's	transfer	is	delayed	until	cycle	8.
Themaster	deactivates	FRAME	in	cycle	7	to	signal	that	the	following	cycle	marks	the	endof	the	bus	transaction.	The	last	control	line	DEVSEL	(device	select)	shown	in	the
fig-ure	is	activated	by	the	slave	device	in	cycle	2	to	indicate	that	the	slave	has	successfullydecoded	the	address	and	is	the	target	of	the	current	bus	transaction.	No	data
transfercan	occur	until	DEVSEL	is	active,	so	this	line	serves	to	tell	the	master	when	a	bustransaction	cannot	be	completed	due	to	a	missing	or	faulty	slave	unit.

A	write	transaction	(where	the	master	is	the	data	source	rather	than	the	slave)	isvery	similar	to	that	of	Figure	7.25.	No	turnaround	cycle	is	needed	after	the	address-
transfer	phase,	because	the	master	continues	to	drive	AD	throughout	the	transaction.

7.2

IO	AND	SYSTEM	CONTROL

The	main	data-processing	functions	of	a	computer	involve	its	CPU	and	external(cache-main)	memory	M.	The	CPU	fetches	instructions	and	data	from	M,	pro-cesses	them,
and	eventually	stores	the	results	back	in	M.	The	other	system	compo-nents—secondary	memory,	user	interface	devices,	and	so	on—constitute	theinput-output	(10)	system.
In	this	section	we	discuss	the	hardware	and	softwareneeded	to	implement	10	operations.	We	also	discuss	operating	systems—thesupervisory	programs	that	manage	a
system's	major	resources	including	the	CPU,main	memory,	and	10	subsystems.

10	control	methods.	Input-output	operations	are	distinguished	by	the	extentto	which	the	CPU	is	involved	in	their	execution.	(Unless	otherwise	stated,	10	oper-ation	refers
to	a	data	transfer	between	an	10	device	and	M,	or	between	an	10device	and	the	CPU.)	If	such	operations	are	completely	controlled	by	the	CPU,	thatis,	the	CPU	executes
programs	that	initiate,	direct,	and	terminate	the	10	operations,the	computer	is	said	to	be	using	programmed	10.	This	type	of	10	control	can	beimplemented	with	little	or
no	special	hardware,	but	causes	the	CPU	to	spend	a	lotof	time	performing	relatively	trivial	IO-related	functions.	One	such	function	is	test-ing	the	status	of	10	devices	to
determine	if	they	require	servicing	by	the	CPU.

A	modest	increase	in	hardware	enables	an	10	device	to	transfer	a	block	ofinformation	to	or	from	M	without	CPU	intervention.	This	task	requires	the	10device	to	generate
memory	addresses	and	transfer	data	to	or	from	the	bus	(systemor	local)	connecting	it	to	M	via	its	interface	controller;	in	other	words,	the	10device	must	be	able	to	act	as
a	bus	master.	The	CPU	is	still	responsible	for	initiat-ing	each	block	transfer.	The	10	device	interface	controller	can	then	carry	out	thetransfer	without	further	program
execution	by	the	CPU.	The	CPU	and	10	controllerinteract	only	when	the	CPU	must	yield	control	of	the	memory	bus	to	the	10	con-troller	in	response	to	requests	from	the
latter.	This	level	of	10	control	is	called

direct	memory	access	(DMA),	and	the	10	device	interface	control	circuit	is	called	aDMA	controller.

The	DMA	controller	can	also	be	provided	with	circuits	enabling	it	to	requestservice	from	the	CPU,	that	is,	execution	of	a	specific	program	to	service	an	10device.	This	type
of	request	is	called	an	interrupt,	and	it	frees	the	CPU	from	thetask	of	periodically	testing	the	status	of	10	devices.	Unlike	a	DMA	request,	whichmerely	requests	temporary
access	to	the	system	bus,	an	interrupt	request	causes	theCPU	to	switch	programs	by	saving	its	previous	program	state	and	transferring	con-trol	to	a	new	interrupt-
handling	program.	After	the	interrupt	has	been	serviced,	theCPU	can	resume	execution	of	the	interrupted	program.	Most	computers	have	DMAand	interrupt	facilities,
which	are	supported	by	special	DMA	and	interrupt	controlunits.

A	DMA	controller	has	partial	control	of	IO	operations.	Essentially	completecontrol	of	10	operations	can	be	relinquished	by	the	CPU	if	an	10	processor	(IOP)is	introduced.
Like	a	DMA	controller,	an	IOP	has	direct	access	to	main	memoryand	can	interrupt	the	CPU;	however,	an	IOP	can	also	execute	programs	directly.These	programs,	called	10
programs,	may	employ	an	instruction	set	different	fromthe	CPU's—one	that	is	oriented	toward	10	operations.	It	is	common	for	larger	sys-tems	to	use	general-purpose
microprocessors	as	IOPs.	An	IOP	can	perform	severalindependent	data	transfers	between	main	memory	and	one	or	more	10	deviceswithout	recourse	to	the	CPU.	Usually
the	IOP	is	connected	to	the	devices	it	con-trols	by	a	separate	bus	system,	the	IO	bus,	as	illustrated	in	Figure	7.3.
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7.2.1	Programmed	IO

First	we	examine	programmed	10,	a	method	included	in	every	computer	for	con-trolling	IO	operations.	It	is	most	useful	in	small,	low-speed	systems	where	hard-ware	costs
must	be	minimized.	Programmed	10	requires	that	all	IO	operations	beexecuted	under	the	direct	control	of	the	CPU;	in	other	words,	every	data-transferoperation	involving
an	IO	device	requires	the	execution	of	an	instruction	by	theCPU.	Typically	the	transfer	is	between	two	programmable	registers:	one	a	CPUregister	and	the	other	attached
to	the	10	device.	The	10	device	does	not	have	directaccess	to	main	memory	M.	A	data	transfer	from	an	IO	device	to	M	requires	theCPU	to	execute	several	instructions,
including	an	input	instruction	to	transfer	aword	from	the	IO	device	to	the	CPU	and	a	store	instruction	to	transfer	the	wordfrom	the	CPU	to	M.	One	or	two	additional
instructions	may	be	needed	for	addresscomputation	and	data-word	counting.

10	addressing.	In	systems	employing	programmed	10,	the	CPU,	M,	and	10devices	usually	communicate	via	the	system	bus.	The	address	lines	of	the	systembus	that	are
used	to	select	memory	locations	can	also	be	used	to	select	10	devices.An	10	device	is	connected	to	the	bus	via	an	10	port,	which,	from	the	CPU's	per-spective,	is	an
addressable	data	register,	thus	making	it	little	different	from	a	main-memory	location.



A	technique	used	in	many	machines,	such	as	the	Motorola	680X0	series,	is	toassign	a	part	of	the	main-memory	address	space	to	IO	ports.	This	technique	iscalled	memory-
mapped	10.	A	memory-referencing	instruction	that	causes	data	to
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device	B

Figure	7.26

Programmed	IO	with	shared	memory	and	IO	address	space	(memory-mapped	IO).

be	fetched	from	or	stored	at	address	X	automatically	becomes	an	IO	instruction	if	Xis	made	the	address	of	an	IO	port.	The	usual	memory	load	and	store	instructions
areused	to	transfer	data	words	to	or	from	IO	ports;	no	special	IO	instructions	areneeded.	Figure	7.26	shows	the	essential	structure	of	a	computer	with	this	type	of
IOaddressing.	The	control	lines	READ	and	WRITE,	which	are	activated	by	the	CPUwhen	processing	a	memory	reference	instruction,	are	used	to	initiate	either	a	mem-ory
access	cycle	or	an	IO	transfer.

In	the	organization	shown	in	Figure	7.27,	sometimes	called	IO-mapped	IO,	thememory	and	IO	address	spaces	are	separate.	This	scheme	is	used,	for	example,	inthe	Intel
80X86	microprocessor	series.	A	memory-referencing	instruction	activatesthe	READ	M	or	WRITE	M	control	line	which	does	not	affect	the	IO	devices.	TheCPU	must
execute	separate	IO	instructions	to	activate	the	READ	IO	and	WRITE	IOlines,	which	cause	a	word	to	be	transferred	between	the	addressed	IO	port	and	theCPU.	An	IO
device	and	a	memory	location	can	have	the	same	address	bit	patternwithout	conflict.	A	minor	modification	of	the	circuit	of	Figure	7.27	can	merge	thememory	and	IO
address	spaces,	if	desired.

DataAddress

—< }	1 1	1 i	1 ►	< >

i READM / READ	IO

'	' WRITE	M 1 I	i WRITE	IO

'	' r i U ,i T	1 ' ♦	T r	i r

Mainmemory CPU IO	port	1 IO	port	2 IO	port	3

IOdevice	A IOdevice	B

Figure	7.27

Programmed	IO	with	separate	memory	and	IO	address	spaces	(IO-mapped	IO).

10	instructions.	As	few	as	two	10	instructions	can	implement	programmed10.	For	example,	members	of	the	Intel	80X86	series	have	two	IO	instructionscalled	IN	and	OUT.
The	instruction	IN	X	causes	a	word	to	be	transferred	from	IOport	X	to	the	80X86'	s	accumulator	register	A.	The	instruction	OUT	X	transfers	aword	from	the	A	register	to
IO	port	X.	The	CPU	assigns	no	special	meaning	to	thewords	transferred	to	IO	devices,	but	the	programmer	can	do	so.	Some	words	mayindicate	IO	device	status	and	others
may	be	control	information	(commands)	forthe	IO	device.

When	the	CPU	executes	an	IO	instruction	such	as	IN	or	OUT,	the	addressedIO	port	is	expected	to	be	ready	to	respond	to	the	instruction.	Therefore,	the	IOdevice	must
transfer	data	to	or	from	the	CPU-IO	data	bus	within	a	specifiedperiod.	To	prevent	loss	of	information	or	an	indefinitely	long	IO	instruction	execu-tion	time,	the	CPU	must
know	the	IO	device's	status	so	that	the	transfer	is	carriedout	only	when	the	device	is	ready.	With	programmed	IO	the	CPU	can	be	pro-grammed	to	test	the	IO	device's
status	before	initiating	an	IO	data	transfer.	Oftenthe	status	is	specified	by	a	single	bit	of	information	that	the	IO	device	makes	avail-able	on	a	continuous	basis,	for
example,	by	setting	a	flip-flop	connected	to	the	datalines	at	some	IO	port.

The	CPU	must	perform	the	following	steps	to	determine	the	status	of	an	IOdevice:

1.	Read	the	IO	device's	status	bit.

2.	Test	the	status	bit	to	determine	if	the	device	is	ready	to	begin	transferring	data.

3.	If	not	ready,	return	to	step	1;	otherwise,	proceed	with	the	data	transfer.

Figure	7.28	shows	an	80X86-style	program	to	transfer	a	data	word	from	an	IOdevice	to	the	CPU's	A	register.	It	is	assumed	that	the	device	is	connected	to	ports	1and	2	like
device	A	in	Figure	7.27.	The	IO	device's	status	is	assumed	to	be	contin-uously	available	at	port	1,	while	the	required	data	is	available	at	port	2	when	thestatus	word	has
the	value	READY.

If	programmed	IO	is	the	primary	method	of	input-output	control	in	a	com-puter,	additional	IO	instructions	can	be	provided	to	augment	the	IN	and	OUTinstructions
discussed	so	far.	For	example,	the	Digital	PDP-8,	an	early	minicom-puter,	has	an	IO	instruction	called	TSK	that	tests	the	status	of	the	IO	device	andmodifies	the	CPU
program	counter	based	on	the	test	outcome.	TSK,	which	means"test	IO	device	status	flag	and	skip	the	next	instruction	if	the	status	flag	is	set,"	canbe	implemented	by	two
control	lines	linking	the	CPU	and	the	IO	device,	as	shownin	Figure	7.29.	On	executing	TSK,	the	CPU	sends	a	signal	called	TEST	STATUS
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WAIT:
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JNZIN

1READY

WAIT2

Read	IO	device	status	into	A	register

Compare	immediate	word	READY	to	A,	if	equal,	set	flag	Z	=	1.

otherwise	set	Z	=	0

If	Z	*■	1	(IO	device	not	ready),	jump	to	WAIT

Read	data	word	into	A	register

Figure	7.28

Program	to	read	one	word	from	an	IO	device.

508

SECTION	7.210	and	SystemControl

to	the	10	device.	If	the	device	status	flag	is	set,	a	return	pulse	is	sent	on	the	SKIPline,	which	increments	the	program	counter,	thereby	skipping	the	next	instruction.Given
an	instruction	of	this	type,	the	10	program	of	Figure	7.28	can	be	reduced	tothe	following:

WAIT:

TSK	1JMP	WAITIN	2

A	common	10	programming	task	is	the	transfer	of	a	block	of	words	betweenan	10	device	and	a	contiguous	region	of	memory.	Figure	7.30	shows	an	inputblock-transfer
program	written	in	assembly	code	for	the	Intel	8085	microproces-sor.	(The	8085	is	described	in	problems	1.31	and	1.32.)	We	assume	here	that	theinput	device	generates
data	at	the	rate	required	by	the	CPU,	so	no	status	testing	isneeded.	The	Zilog	Z80,	another	early	microprocessor	that	is	software	compatiblewith	the	8085,	has	a	single
instruction	INIR	(input,	index,	and	repeat)	that	per-forms	all	the	functions	specified	by	the	last	five	instructions	in	Figure	7.30.	INIRinputs	a	word	from	the	10	port
addressed	by	the	C	register	and	transfers	it	to	thememory	location	addressed	by	the	HL	address	register.	INIR	then	increments	HL;decrements	B	(which	is	used	as	a
word-count	register);	and	repeats	the	transfer,increment,	and	decrement	steps	until	B	=	0.	Thus,	ignoring	minor	differencesbetween	the	8085	and	Z80	instruction	names,
the	program	of	Figure	7.30	reduces

TEST	STATUS

Instructionregister TSK v	D 10	device

SKIP I

n

v. 1 StatusliD-flor

Programcounter

INC 10

CPU port

Figure	7.29

Implementation	of	the	test	status	and	skip	(TSK)	10	instruction.

Instruction

Comment

LOOP:

LXI H,10

MVI B.100

IN 7

MOV M,A

INX H

DCR B

JNZ LOOP

Load	memory	address	register	H.L	with	10Load	(move	immediate)	register	B	with	100Read	word	from	input	port	7	into	register	AStore	contents	of	A	in	memory	location
M(H.L)Increment	memory	address	register	H.LDecrement	register	B	(used	as	a	byte	counter)If	B*0.	jump	to	LOOP

Figure	7.30

Program	to	input	a	block	of	data	from	an	10	device.

to	the	following	Z80	program:

LXI H,	10

MVI B,	100

MVI C,7

INIR



It	is	interesting	to	compare	these	instructions	to	the	INPUT	and	OUTPUT	instruc-tions	of	the	IAS	computer	mentioned	in	section	1.2.2.

10	interface	circuits.	The	task	of	connecting	an	10	device	to	a	computer	sys-tem	is	greatly	eased	by	the	use	of	standard	ICs	variously	known	as	10	interface	cir-cuits,
peripheral	interface	adapters,	and	the	like.	These	circuits	allow	10	devices	ofwidely	different	characteristics	to	be	connected	to	a	standard	bus	with	a	minimumof	special-
purpose	hardware	or	software.	The	simplest	interface	circuit	is	a	one-word,	addressable	register	that	serves	as	an	10	port.	The	major	microprocessorfamilies	contain
various	general-purpose	and	special-purpose	10	interface	circuits.They	are	called	programmable	if	they	can	be	modified	under	program	control	tomatch	the
characteristics	of	different	IO	devices.

Among	the	most	basic	10	interface	circuits	are	programmable	circuits	intendedto	act	as	serial	or	parallel	ports.	Serial	ports	accommodate	many	types	of	slowperipheral
devices	ranging	from	secondary	memory	units	to	network	connections.Parallel	ports	are	designed	to	interface	with	10	devices	employing	multibit,	bidi-rectional	data
paths.	A	small	interface	circuit	of	the	parallel	type	is	discussed	in	thenext	example.

EXAMPLE	7.3	THE	INTEL	8255	PROGRAMMABLE	PERIPHERAL	INTER-FACE	circuit	[Intel	1993].	This	IC,	whose	structure	is	shown	in	Figure	7.31,was	designed	for
interfacing	10	devices	with	the	Intel	8085	and	other	small	micropro-cessors.	It	is	housed	in	a	40-pin	package:	8	pins	connect	the	8255	to	an	8-bit	bidirec-tional	CPU	data
bus;	24	IO	pins	can	be	attached	to	several	10	devices.	These	10	pinsare	programmable	in	that	the	functions	they	perform	are	determined	by	a	control	wordissued	by	a
CPU	instruction	and	stored	internally	in	the	8255.	This	control	word	canspecify	a	variety	of	operating	modes	involving	either	synchronous	or	asynchronousdata	transfers.

The	24	pins	on	the	IO	side	of	the	8255	are	divided	into	8-bit	groups	designated	A,B,	and	C,	each	of	which	can	act	as	an	independent	10	port.	The	C	lines	are	further	sub-
divided	into	two	4-bit	groups	CA	and	CB.	They	are	commonly	used	as	status	or	hand-shaking	lines	in	conjunction	with	the	A	and	B	ports.	Two	address	lines	A0	and	A,
selectone	of	the	three	ports	A,	B,	and	C	for	use	in	an	IO	operation.	The	fourth	address	combi-nation	is	used	in	conjunction	with	an	output	instruction	of	the	form	OUT	CW
to	storean	8-bit	user-specified	control	word	CW	in	the	8255's	internal	control.	This	controlword	has	two	principal	functions:

•	It	specifies	whether	the	A,	B,	and	C	ports	are	to	act	as	input,	as	output	or,	in	thecase	of	A	and	B	only,	as	bidirectional	10	ports.

•	It	programs	certain	C	lines	to	generate	handshaking	and	interrupt	signals	auto-matically	in	response	to	actions	by	an	IO	device.

Figure	7.32a	shows	one	of	the	many	possible	configurations	in	which	the	-4,	B,and	C	lines	are	programmed	as	simple	10	ports	with	no	handshaking	or	interrupt	capa-
bility.	Figure	7.32b	shows	another	configuration	in	which	the	A	port	is	programmed	to
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Figure	7.31

The	8255	programmable	peripheral	interface	circuit.

be	an	input	port	with	asynchronous	timing	signals	generated	by	the	C	lines.	The	linecalled	DATA	READY	is	used	by	the	IO	device	to	strobe	a	word	into	the	buffer
registerat	port	A.	The	8255	then	automatically	generates	a	response	signal	on	another	C	line,which	can	be	sent	to	the	IO	device	as	an	ACK	signal	if	the	IO	device	requires
two-waycontrol.	A	third	C	line	generates	an	interrupt	signal,	which	is	sent	to	the	CPU	to	indi-cate	the	presence	of	data	at	IO	port	A.

The	Intel	8256	IC,	defined	as	a	multifunction	microprocessor	support	control-ler,	combines	a	number	of	useful	IO	interfacing	functions	in	a	single	IC	[Intel1993].	As	Figure
7.33	shows,	the	8256	contains	two	parallel	8-bit	IO	ports	1	and	2,which	we	can	program	for	synchronous	or	asynchronous	data	transfers	in	the	same

(a)

Inputport	A

CPU	gdata	—?-bus

READWRITEINTERRUPTREQUEST'

8255

IO	data	bus

DATA	READYDATA	ACK

(b)



Figure	7.32

Two	possible	configurations	of	the	8255	programmable	peripheral	interface	circuit.

way	as	we	program	ports	A	and	C,	respectively,	of	the	8255.	The	universal	asyn-chronous	receiver-transmitter	(UART)	module	controls	a	communications	portthat
supports	serially	transmitted	data	with	various	character	lengths	and	transmis-sion	speeds,	such	as	a	modem	might	need.	An	interrupt	controller	handles	up	toeight
interrupt	requests.	We	can	program	a	set	of	five	8-bit	counters	called	timersto	realize	some	useful	timing	functions.	For	example,	timer	5	is	designed	to	operateas	a
watchdog	timer,	which	means	that	we	can	program	it	to	generate	an	interruptto	the	CPU	if	a	particular	IO	event	fails	to	occur	within	a	specified	time	T.	Thistimer	is
(re)loaded	with	value	T	whenever	a	specific	input	line	on	the	8256's	IOinterface	is	activated.	The	system	clock	then	decrements	the	timer	automaticallyuntil	it	reaches
zero,	at	which	point	the	timer	automatically	sends	an	interruptrequest	to	the	CPU.	Hence	as	long	as	the	IO	device	in	question	triggers	the	reload-ing	of	timer	5	within	the
specified	period	T,	no	interrupt	is	generated.
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7.2.2	DMA	and	Interrupts

The	programmed	IO	method	discussed	in	the	preceding	section	has	two	limita-tions:

•	The	speed	with	which	the	CPU	can	test	and	service	IO	devices	limits	IO	data-transfer	rates.
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Figure	7.33

The	Intel	8256	multifunction	IO	interface	circuit.
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•	The	time	that	the	CPU	spends	testing	10	device	status	and	executing	10	datatransfers	can	often	be	better	spent	on	other	tasks.

The	influence	of	the	CPU	on	10	transfer	rates	is	twofold.	First,	a	delay	occurswhile	an	10	device	needing	service	waits	to	be	tested	by	the	CPU.	If	there	are	many10
devices	in	the	system,	each	device	may	be	tested	infrequently.	Second,	pro-grammed	10	transmits	data	through	the	CPU	rather	than	allowing	it	to	be	passeddirectly	from
main	memory	to	the	10	device,	and	vice	versa.

DMA	and	interrupt	circuits	increase	the	speed	of	10	operations	by	eliminatingmost	of	the	role	played	by	the	CPU	in	such	operations.	In	each	case	special	controllines,	to
which	we	assign	the	generic	names	DMA	REQUEST	and	INTERRUPTREQUEST,	connect	the	10	devices	to	the	CPU.	Signals	on	these	lines	cause	theCPU	to	suspend	its
current	activities	at	appropriate	breakpoints	and	attend	to	theDMA	or	interrupt	request.	Thus	these	special	request	lines	eliminate	the	need	forthe	CPU	to	execute
routines	that	determine	10	device	status.	DMA	further	allows10	data	transfers	to	take	place	without	the	execution	of	10	instructions	by	the	CPU.

A	DMA	request	by	an	IO	device	only	requires	the	CPU	to	grant	control	of	thememory	(system)	bus	to	the	requesting	device.	The	CPU	can	yield	control	at	theend	of	any
transactions	involving	the	use	of	this	bus.	Figure	7.34	shows	a	typicalsequence	of	CPU	actions	during	execution	of	a	single	instruction.	The	instructioncycle	is	composed	of
a	number	of	CPU	cycles,	several	of	which	require	use	of	thesystem	bus.	A	common	technique	is	to	allow	the	machine	to	respond	to	a	DMArequest	at	the	end	of	any	CPU
clock	cycle.	Thus	during	the	instruction	cycle	of	Fig-ure	7.34	there	are	five	points	in	time	(breakpoints)	when	the	CPU	can	respond	to	aDMA	request.	When	such	a	request
is	received	by	the	CPU,	it	waits	until	the	nextbreakpoint,	releases	the	system	bus,	and	signals	the	requesting	10	device	by	acti-vating	a	DMA	ACKNOWLEDGE	control	line.

Interrupts	are	requested	and	acknowledged	in	much	the	same	way	as	DMArequests.	However,	an	interrupt	is	not	a	request	for	bus	control;	rather,	it	asks	theCPU	to	begin
executing	an	interrupt	service	program.	The	interrupt	program	per-forms	tasks	such	as	initiating	an	10	operation	or	responding	to	an	error	encounteredby	the	10	device.
The	CPU	transfers	control	to	this	program	in	essentially	the	sameway	it	transfers	control	to	a	subroutine.	The	CPU	responds	to	interrupts	onlybetween	instruction	cycles,
as	indicated	in	Figure	7.34.

CPU

-«—	clock—»■cycle
Instruction	cycle ►



Fetchinstruction Decodeinstruction Fetchoperand Executeinstruction Storeresult

Interruptbreakpoint

Figure	7.34

DMA	and	interrupt	breakpoints	during	instruction	processing.

Direct	memory	access.	The	hardware	needed	to	implement	DMA	is	shown	inFigure	7.35.	assuming	that	all	access	to	main	memory	is	via	a	shared	system	bus.The	10
device	is	connected	to	the	system	bus	via	a	special	interface	circuit,	a	DM4controller,	which	contains	a	data	buffer	register	IODR.	as	in	the	programmed	10case;	it	also
controls	an	address	register	IOAR	and	a	data	count	register	DC.	Theseregisters	enable	the	DMA	controller	to	transfer	data	to	or	from	a	contiguous	regionof	memory.	IOAR
stores	the	address	of	the	next	word	to	be	transferred.	It	is	auto-matically	incremented	or	decremented	after	each	word	transfer.	The	data	counterDC	stores	the	number	of
words	that	remain	to	be	transferred.	It	is	automaticallydecremented	after	each	transfer	and	tested	for	zero.	When	the	data	count	reacheszero,	the	DMA	transfer	halts.	The
DMA	controller	is	normally	provided	with	aninterrupt	capability,	in	which	case	it	sends	an	interrupt	to	the	CPU	to	signal	the	endof	the	10	data	transfer.	The	logic
necessary	to	control	DMA	can	easily	be	placed	ina	single	IC	with	other	10	control	circuits.	A	DMA	controller	can	be	designed	tosupervise	DMA	transfers	involving	several
10	devices,	each	with	a	different	prior-ity	of	access	to	the	system	bus.

Data	can	be	transferred	in	several	different	ways	under	DMA	control.	In	aDMA	block	transfer	a	data-word	sequence	of	arbitrary	length	is	transferred	in	a	sin-gle	burst
while	the	DMA	controller	is	master	of	the	memory	bus.	This	DMA	modeis	needed	by	secondary	memories	like	disk	drives,	where	data	transmission	cannotbe	stopped	or
slowed	without	loss	of	data,	and	block	transfers	are	the	norm.	BlockDMA	transfer	supports	the	fastest	10	data-transfer	rates,	but	it	can	make	the	CPUinactive	for
relatively	long	periods	by	tying	up	the	system	bus.	An	alternative	tech-nique	called	cycle	stealing	allows	the	DMA	controller	to	use	the	system	bus	to
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Circuitry	required	for	direct	memory	access	(DMA).
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transfer	one	data	word,	after	which	it	must	return	control	of	the	bus	to	the	CPU.Consequently,	long	blocks	of	10	data	are	transferred	by	a	sequence	of	DMA
bustransactions	interspersed	with	CPU	bus	transactions.	Cycle	stealing	reduces	themaximum	IO	transfer	rate,	but	it	also	reduces	the	interference	by	the	DMA	control-ler
in	the	CPU's	memory	access.	It	is	possible	to	eliminate	this	interference	com-pletely	by	designing	the	DMA	interface	so	that	bus	cycles	are	stolen	only	when	theCPU	is	not
actually	using	the	system	bus;	this	is	transparent	DMA.	Thus	varyingdegrees	of	overlap	between	CPU	and	DMA	operations	are	possible	to	accommo-date	the	many
different	data-transfer	characteristics	of	IO	devices.

DMA	transfers	proceed	as	follows	for	the	system	depicted	in	Figure	7.35.

1.	The	CPU	executes	two	10	instructions,	which	load	the	DMA	registers	IOARand	DC	with	their	initial	values.	IOAR	should	contain	the	base	address	of	thememory	region
to	be	used	in	the	data	transfer.	DC	should	contain	the	number	ofwords	to	be	transferred	to	or	from	that	region.

2.	When	the	DMA	controller	is	ready	to	transmit	or	receive	data,	it	activates	theDMA	REQUEST	line	to	the	CPU.	The	CPU	waits	for	the	next	DMA	breakpoint.It	then
relinquishes	control	of	the	data	and	address	lines	and	activates	DMAACKNOWLEDGE.	Note	that	DMA	REQUEST	and	DMA	ACKNOWLEDGE	areessentially	BUS	REQUEST
and	BUS	GRANT	lines	for	control	of	the	system	bus.Simultaneous	DMA	requests	from	several	DMA	controllers	are	resolved	by	oneof	the	bus-priority	control	techniques
discussed	earlier.

3.	The	DMA	controller	now	transfers	data	directly	to	or	from	main	memory.	Aftera	word	is	transferred,	IOAR	and	DC	are	updated.

4.	If	DC	has	not	yet	reached	zero	but	the	10	device	is	not	ready	to	send	or	receivethe	next	batch	of	data,	the	DMA	controller	releases	the	system	bus	to	the	CPUby
deactivating	the	DMA	REQUEST	line.	The	CPU	responds	by	deactivatingDMA	ACKNOWLEDGE	and	resuming	control	of	the	system	bus.

5.	If	DC	is	decremented	to	zero,	the	DMA	controller	again	relinquishes	control	ofthe	system	bus;	it	may	also	send	an	interrupt	request	signal	to	the	CPU.	TheCPU	responds
by	halting	the	10	device	or	by	initiating	a	new	DMA	transfer.

DMA	can	be	subsumed	under	a	general	method	for	system-bus	arbitration.	InMotorola	680X0-series	computers,	for	example,	the	system	bus	accommodatesvarious	types
of	bus	masters	including	DMA	controllers	and	certain	coprocessorsdesignated	DMA	coprocessors.	Three	control	lines	are	provided	for	bus	arbitration:bus	request	BR,	bus
grant	BG,	and	bus	grant	acknowledge	BGACK.	The	BR	lineis	an	input	control	lineto	the	CPU	and	is	wire-ORed	to	all	other	potential	bus	mas-ters.	It	is	activated	(BR	=	0)
when	one	of	those	devices	U—a	DMA	controller,	forinstance—requires	control	of	the	system	bus.	The	CPU	responds	by	activating	BGand	relinquishing	control	of	the
system	bus	at	the	end	of	its	current	bus	cycle,which	it	does	by	driving	the	data,	address,	and	certain	control	lines	to	the	high-impedance	state	Z.	The	requesting	unit	U
detects	the	end	of	the	bus	cycle	by	moni-toring	these	control	lines,	at	which	point	U	activates	BGACK	and	deactivates	itsBR	signal.	The	CPU	responds	to	BGACK	by
deactivating	BG.	This	step	com-pletes	bus	arbitration.	U	is	the	new	bus	master	and	can	carry	out	any	number	ofDMA	read	or	write	operations.	It	returns	the	system	bus	to
the	CPU	by	deactivatingBGACK.

CPUs	such	as	the	680X0	have	no	internal	mechanisms	for	resolving	multipleDMA	requests;	this	must	be	done	by	external	logic.	Passing	the	DMA	(bus)	grant



signal	from	the	CPU	through	appropriate	priority	logic	to	the	potential	bus	masterscontrols	bus-access	priority.	External	logic	may	also	be	needed	to	implement
cyclestealing	by	forcing	the	requesting	device	to	deactivate	its	DMA	request	signal	aftersome	number	of	bus	cycles.	In	680X0-based	computers	these	and	other	DMA	con-
trol	functions	are	implemented	by	the	Motorola	68450	DMA	controller	IC,	whichsupports	up	to	four	independent	and	concurrent	DMA	operations	via	the	68000system
bus.	The	68450	contains	four	copies	of	the	basic	DMA	controller	logic	ofFigure	7.35,	each	constituting	a	separate	DM4	channel.	Other	registers	in	eachDMA	channel	store
the	priority	assigned	to	the	channel	and	the	data-transfermodes	to	be	used.	A	"chaining"	mode	of	operation	is	supported	that	allows	a	chan-nel	to	reinitialize	its	address
register	IOAR	and	data-count	register	DC	automati-cally	at	the	end	of	the	current	block	transfer.	This	approach	enables	the	68450	tocarry	out	a	sequence	of	DMA	block
transfers	without	reference	to	the	CPU.	Whenits	current	data	count	reaches	zero,	a	DMA	channel	that	has	been	programmed	forchained	DMA	fetches	new	values	of	DC
and	IOAR	from	a	memory	region	MR	thatstores	a	set	of	DC-IOAR	pairs.	An	address	register	in	each	DMA	channel	holds	thebase	address	of	MR.

By	reducing	the	CPU's	need	to	access	main	memory,	a	cache	can	greatlyreduce	conflicts	between	CPU	and	IO	data	transfers.	High-performance	micropro-cessors	often
have	separate	cache-CPU	and	IO-main-memory	access	paths,	whichmeans	that	a	DMA	transfer	involving	main	memory	can	proceed	in	parallel	withCPU-cache	operations.
In	the	system	of	Figure	7.23,	for	instance.	DMA	operationsuse	the	PCI	local	bus.	while	the	CPU	communicates	with	the	cache	via	the	systembus.	Only	when	the	CPU	needs
access	to	main	memory—in	response	to	a	cachemiss,	for	example—does	it	come	into	conflict	with	DMA	controllers;	such	con-flicts	are	resolved	by	the	PCI	bridge	unit.
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Interrupts.	The	word	interrupt	is	used	in	a	broad	sense	for	any	infrequent	orexceptional	event	that	causes	a	CPU	to	temporarily	transfer	control	from	its	currentprogram
to	another	program—an	interrupt	handler—that	services	the	event	inquestion.	Interrupts	are	the	primary	means	by	which	IO	devices	obtain	the	servicesof	the	CPU.	They
significantly	improve	a	computer's	IO	performance	by	giving	IOdevices	direct	and	rapid	access	to	the	CPU	and	by	freeing	the	CPU	from	the	need	tocheck	the	status	of	its
IO	devices.

Various	sources	internal	and	external	to	the	CPU	can	generate	interrupts.	IOinterrupts	are	external	requests	to	the	CPU	to	initiate	or	terminate	an	IO	operation,such	as	a
data	transfer	with	a	hard	disk.	We	include	in	this	category	interruptscaused	by	a	main-memory	miss	in	a	virtual	memory	system,	which	requires	amain-secondary	memory
page	swap	involving	one	or	more	IO	operations.	Inter-rupts	are	also	produced	by	hardware	or	software	error-detection	circuits	that	invokeerror-handling	routines	within
the	operating	system.	A	power-supply	failure,	forinstance,	can	generate	an	interrupt	that	requests	execution	of	an	interrupt	handlerdesigned	to	save	critical	data	about
the	system's	state.	An	attempt	by	an	instructionto	divide	by	zero,	or	to	execute	a	privileged	instruction	when	not	in	the	priv	ilegedstate,	are	examples	of	software-
generated	interrupts.	An	operating	system	will	alsodeliberately	interrupt	a	user	program	that	has	exceeded	its	allotted	time.

The	basic	method	of	interrupting	the	CPU	is	by	activ	ating	a	control	line	withthe	generic	name	INTERRUPT	REQUEST	that	connects	the	interrupt	source	to	theCPU.	An
interrupt	indicator	is	then	stored	in	a	CPU	register	that	the	CPU	tests
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periodically,	usually	at	the	end	of	every	instruction	cycle.	On	recognizing	the	pres-ence	of	the	interrupt,	the	CPU	executes	a	specific	interrupt-handling	program.Normally,
each	interrupt	source	requires	execution	of	a	different	program,	so	theCPU	must	determine	or	be	given	the	address	of	the	interrupt	program	to	be	used.The	presence	of
two	or	more	interrupt	requests	at	the	same	time	causes	a	furtherproblem.	Priorities	must	be	assigned	to	the	interrupts/and	the	one	with	the	highestpriority	selected	for
handling.

The	CPU	responds	to	an	interrupt	request	by	a	transfer	of	control	to	an	inter-rupt	handler	in	a	manner	similar	to	a	subroutine	call.	The	following	steps	are	taken:

1.	The	CPU	identifies	the	source	of	the	interrupt,	for	example,	by	polling	10devices.

2.	The	CPU	obtains	the	memory	address	of	the	required	interrupt	handler.	Thisaddress	can	be	provided	by	the	interrupting	device	along	with	its	interruptrequest.

3.	The	program	counter	PC	and	other	CPU	status	information	are	saved	as	in	asubroutine	call.

4.	The	PC	is	loaded	with	the	address	of	the	interrupt	handler.	Execution	proceedsuntil	a	return	instruction	is	encountered,	which	transfers	control	back	to	theinterrupted
program.

Instruction	sets	usually	include	instructions	to	selectively	disable	or	maskinterrupt	requests,	thereby	causing	the	CPU	to	ignore	certain	interrupts.	Withoutsuch	control,	an
10	device	that	generates	interrupts	rapidly	might	require	too	muchof	the	CPU's	time	and	interfere	with	the	CPU's	other	tasks.	When	a	high-priorityinterrupt	is	being
serviced,	it	is	desirable	that	all	interrupts	of	lower	priority	be	dis-abled.	An	interrupt	enable	instruction	must	subsequently	be	executed	to	give	thelower-priority	interrupts
access	to	the	CPU.

Interrupt	selection.	The	problem	of	selecting	one	10	device	to	service	fromseveral	that	have	generated	interrupts	strongly	resembles	the	arbitration	process	forbus	control
discussed	in	section	7.1.2.	Indeed,	some	interrupt	methods	require	thatthe	interrupting	device	be	given	control	of	the	system	bus.	The	techniquesemployed	for	bus
arbitration—daisy	chaining,	polling,	and	independent	request-ing—can	all	be	readily	adapted	to	interrupt	handling	and	can	be	realized	by	soft-ware,	hardware,	or	a
combination	of	both.

The	interrupt	selection	method	requiring	the	least	hardware	is	the	single-linemethod	that	appears	in	Figure	7.36.	All	10	ports	share	a	single	INTERRUPT
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REQUEST	line.	On	responding	to	an	interrupt	request,	the	CPU	must	scan	all	the10	devices	to	determine	the	source	of	the	interrupt.	This	procedure	requires	activat-ing
an	INTERRUPT	ACKNOWLEDGE	line	(corresponding	to	BUS	GRANT)	that	isconnected	in	daisy-chain	fashion	to	all	10	devices.	The	connection	sequence	of	thisline
determines	the	interrupt	priority	of	each	device.	Alternatively,	the	CPU	canexecute	a	program	that	polls	each	10	device	in	turn	requesting	interrupt	statusinformation.
Polling	has	the	advantage	of	allowing	the	interrupt	priority	to	be	pro-grammed.

Figure	7.37	depicts	another	common	interrupt	selection	method	called	multiple-line	or	multilevel	interrupts,	which	amounts	to	independent	requesting	of	interruptservice.
Each	interrupt	request	line	is	assigned	a	unique	priority.	The	source	of	theinterrupt	is	immediately	known	to	the	CPU,	thus	eliminating	the	need	for	a	hard-ware	or
software	scan	of	the	10	ports.	Unless	further	measures	are	taken,	the	CPUmay	still	have	to	execute	a	program	that	fetches	the	address	of	the	interrupt-serviceprogram	to
be	used.	This	step	can	be	eliminated	by	another	technique	called	vec-toring	of	interrupts.
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Vectored	interrupts.	The	most	flexible	response	to	interrupts	is	obtainedwhen	an	interrupt	request	from	a	particular	device	causes	a	direct,	hardware-imple-mented
transition	to	the	correct	interrupt-handling	program.	The	interruptingdevice	must	then	supply	the	CPU	with	the	starting	address	or	interrupt	vector	ofthat	program.

Figure	7.38	shows	a	basic	way	to	derive	interrupt	vectors	from	multiple	inter-rupt	request	lines.	Each	interrupt	request	line	generates	a	unique	fixed	address,which	is



used	to	modify	the	CPU's	program	counter	PC.	Interrupt	requests	arestored	on	receipt	in	an	interrupt	register.	The	interrupt	mask	register	can	disableany	or	all	of	the
interrupt	request	lines	under	program	control.	By	setting	bit	i	ofthis	register	to	1	(0),	interrupt	request	line	i	is	disabled	(enabled).	The	k	maskedinterrupt	signals	are	fed
into	a	priority	encoder	that	produces	a	[log-,	&~]-bitaddress,	which	is	then	inserted	into	PC.

To	see	how	program	control	is	transferred	using	this	type	of	vectored	inter-rupt,	suppose	that	three	devices	are	connected	to	four	10	ports	as	shown	in	Figure7.39a.
Assume	that	when	an	interrupt	request	from	10	port	/	is	accepted,	the	2-bitaddress	i	is	generated	by	the	priority	encoder	and	inserted	into	the	program	counter
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1NTREQX

INTREQO

10	port	0 10	port	1 IO	port	2 10	port	3

^ T" y

CPU 10	c V ices

Figure	7.37

Multiple-line	interrupt	system.
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A	vectored	interrupt	scheme.

PC.	For	example,	if	memory	M	is	addressed	by	byte	and	addresses	are	4	bytes	(oneword)	long,	then	i	might	be	placed	in	bits	3:2	of	PC	and	the	remaining	30	bits	ofPC	(bits
31:4	and	1:0)	can	be	set	to	0.	This	results	in	assigning	the	first	four	word-storage	locations	of	M	to	interrupt	vectors,	as	shown	in	Figure	139b.	The	contentsof	these
locations	are	the	user-assigned	start	addresses	of	the	interrupt-handling
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(a)	A	system	with	vectored	IO	interrupts	and	(b)	location	of	the	interrupt	han-dlers	in	memory.
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Another	implementation	of	vectored	interrupts.

routines.	The	routines	themselves	are	of	arbitrary	length	and	can	be	located	any-where	in	M.

The	foregoing	scheme	has	a	one-to-one	correspondence	between	interruptrequest	lines	and	interrupt	handlers.	Hence	if	an	IO	device	requires	the	services	ofk	distinct
programs,	it	needs	k	distinct	interrupt	request	lines.	Figure	7.40	showsanother,	more	general,	vectored	interrupt	scheme	that	does	not	have	this	restriction:Each	IO	port
can	request	the	services	of	many	different	programs.	Again	multipleinterrupt	request	lines	are	used,	but	each	IO	port	now	has	its	own	interruptacknowledge	line.	When
the	CPU	activates	an	acknowledge	line	in	response	to	aninterrupt	request,	the	IO	port	in	question	places	the	address	of	the	desired	interrupthandler	on	the	main	data	bus,
which	transfers	the	address	to	the	CPU,	where	itmodifies	the	program	counter.	This	approach	requires	the	interrupting	IO	port	to	beable	to	generate	at	least	partial
memory	addresses	and	to	act	as	a	bus	master.

Another	possibility	is	for	an	IO	device	to	send	the	CPU	an	interrupt	vector	inthe	form	of	a	CPU	instruction.	The	CPU	removes	this	instruction	from	the	data	busand
executes	it	in	the	normal	manner.	Thus	if	the	IO	device	sends	the	instructionCALL	PROG	to	the	CPU,	execution	of	this	instruction	saves	essential	CPU	infor-mation,	such
as	the	program	counter,	and	transfers	control	to	an	interrupt-handlingroutine	named	PROG.	8085-based	microcomputers	use	this	technique	to	imple-ment	vectored
interrupts.

To	reduce	the	number	of	external	connections	to	the	CPU—an	important	con-sideration	in	the	case	of	microcontrollers—the	interrupt-priority	control	logic	canbe	external
to	the	CPU	as	in	Figure	7.40.	An	interrupt	request's	priority	is	deter-mined	by	the	priority	circuit	input	line	to	which	it	is	connected.	An	interruptacknowledge	signal	from
the	CPU	is	transmitted	to	the	highest-priority	IO	portwith	an	active	interrupt	request.

PCI	interrupts.	The	PCI	local	bus	discussed	in	Example	7.1	provides	generalsupport	for	interrupt	handling;	details	such	as	the	vectoring	method	used	are	archi-tecture
specific	and	depend	on	the	particular	devices	using	the	bus.	The	PCI	bus
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has	four	interrupt	request	lines	named	INTA:D	among	its	optional	lines	(refer	toFigure	7.24).	A	single-function	10	device	with	interrupt	capability	must	use	INTAas	its
interrupt	request	line;	multifunction	10	devices	can	use	all	four	lines.	A	par-ticular	pattern	on	the	PCI	bus's	command	lines	denotes	interrupt	acknowledge.Together,	the
INTx	interrupt	request	lines	and	the	interrupt	acknowledge	com-mand	can	implement	the	request-acknowledge	signal	exchange	needed	during	aninterrupt	transaction
over	the	PCI	bus.

Every	PCI-compatible	device	must	have	a	standard	set	of	addressable	configu-ration	registers	CR	that	identify	the	device	and	its	communication	needs.	When	thesystem	is
powered	up.	the	system	controller	(operating	system)	reads	the	CR	regis-ters	to	determine,	among	other	things,	the	device's	interrupt	connections.	Its	8-bit"interrupt	pin"
register	in	CR	tells	the	system	controller	which	interrupt	requestline	INTx	the	10	device	is	using.	A	second	8-bit	register	in	CR	called	the	"inter-rupt	line"	register
specifies	the	system	controller's	input	line	that	is	connected	toINTx	so	that	the	routing	of	the	interrupt	request	lines	is	programmable.	The	systemcontroller	can	use	this
fact	to	determine	the	10	device's	interrupt-request	priorityand	to	access	its	interrupt	vectors.	The	CR	registers	form	a	small	address	space	thatis	separate	from	the	main-
memory	and	10	address	spaces,	as	indicated	by	the	exist-ence	of	configuration	read	and	configuration	write	in	the	command	set	specifiedfor	the	PCI	bus.

EXAMPLE	7.4	INTERRUPT	CONTROL	IN	THE	MOTOROLA	680X0	[TRIEBEL

and	singh	1991].	Interrupts	in	680X0-series	computers	are	referred	to	as	excep-tions	and	include	program-generated	traps	and	hardware-induced	errors,	as	well
asexternal	IO	interrupts.	Each	exception	has	an	associated	8-bit	vector	N,	which	points	toa	main-memory	location	M(4A/)	that	stores	the	address	(the	exception	vector)	of
a	ser-vice	program	for	that	exception.	Memory	locations	0:1023	form	an	interrupt	vectortable	storing	256	thirty-two-bit	addresses	used	for	interrupt	processing.	(Figure
739bhas	a	four-member	vector	table	of	this	type.)	Most	of	the	680X0's	vector	table(addresses	256:1023)	is	reserved	for	up	to	192	user-supplied	interrupt	vectors;
theremaining	locations	are	preassigned	by	Motorola	to	specific	interrupt	types.	For	exam-ple,	on	encountering	a	divide-by-zero	instruction,	the	680X0	executes	a	trap
sequencethat	transfers	control	to	the	program	whose	start	address	is	stored	in	locationsM(20:23),	corresponding	to	exception	vector	N	=	5.	Two	types	(modes)	of
vectoredinterrupts	are	supported:	a	general	mode	in	which	the	interrupting	device	supplies	an8-bit	vector	number	referring	to	an	entry	in	the	exception	vector	table	and	a
simpler"autovector"	mode	that	allows	the	10	device	to	request	any	of	seven	fixed	exceptionvectors	whose	addresses	are	generated	internally	by	the	CPU.

Interrupts	are	processed	in	the	following	way	in	680X0-based	computers:	At	theend	of	each	instruction	cycle	the	CPU	checks	to	see	whether	any	interrupt	request
ispending	and	tests	its	priority	as	described	below.	If	the	CPU	accepts	the	request,	it	sus-pends	normal	instruction	processing	and	enters	an	interrupt-response	sequence.



TheCPU	first	saves	the	old	contents	of	the	status	register	SR	in	a	temporary	register	andthen	sets	the	system	state	to	the	supervisor	mode.	It	then	either	reads	a	vector	N
pro-vided	by	the	interrupt	source	(general	interrupt	mode)	or	generates	N	internally(autovector	mode),	as	specified	by	control	signals	from	the	interrupt	source.	The
CPUproceeds	to	save	the	contents	(return	address)	of	the	program	counter	PC,	the	old	con-tents	of	SR,	and	certain	internal	information	by	pushing	them	into	the
supervisor	stack,one	of	two	stacks	maintained	by	680X0	CPUs	in	main	memory.	Next,	using	4A7	as	theaddress,	the	CPU	executes	a	memory	read	to	fetch	the	exception
vector	M(4A0	which	itloads	into	PC;	normal	instruction	processing	is	then	resumed.

Figure	7.41	shows	a	representative	hardware	interface	used	for	680X0	10	inter-rupts.	Three	control	lines	called	IPL	(interrupt	priority	level)	serve	both	for
makinginterrupt	requests	and	indicating	their	priority	level.	IPL	=	0	means	that	there	is	nointerrupt	request,	while	IPL	=	i,	where	i	ranges	from	one	to	seven,	means
that_an	inter-rupt	of	priority	level	i	is	being	requested.	On	receiving	an	interrupt	request	(IPL	&	0).the	CPU	compares	the	number	IPL	with	three	interrupt	mask	bits	I
stored	in	its	statusregister	SR.	If	IPL	>	I,	the	CPU	responds	to	the	interrupt	request	at	the	end	of	its	cur-rent	instruction	cycle;	if	IPL	<	I,	the	interrupt	request	is	ignored.
Since	SR	can	bealtered	by	certain	privileged	instructions,	whether	or	not	the	CPU	responds	to	inter-rupts	is	under	software	control.	Setting	the	interrupt	mask	I	to	zero
enables	all	interruptrequests.	If	I	is	set	to	seven,	all	interrupts	are	rejected	except	those	of	highest	priority(IPL	=	7).	which	are	nonmaskable.	Interrupt	sources	can	thus
use	up	to	192	vectors,each	of	which	can	be	assigned	to	any	of	seven	priority	levels.

The	CPU	acknowledges	an	interrupt	request	by	setting	each	of	its	FC	(functioncode)	output	lines	to	one	to	form	a	3-bit	signal	denoting	interrupt	acknowledgment.	Italso
places	the	priority	level	of	the	interrupt	being	acknowledged	on	address	linesAl:3.	In	the	general	interrupt	mode,	the	interrupt	controller	responds	by	placing	aninterrupt
vector	number	N	on	data	lines	D0:7.	In	the	circuit	of	Figure	7.41	with	the
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Interrupt	requests(general	mode)

Figure	7.41

Interfacing	interrupts	to	the	Motorola	68000	CPU.
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68000	CPU,	the	FC	signals	are	used	directly	to	strobe	the	interrupt	vector	N	onto	thedata	bus.	To	indicate	the	autovector	mode,	the	interrupt	controller	responds	to	FC	=
7by	activating	a	special	control	line	(VPA	for	the	68000	and	A	VEC	for	the	68020).causing	the	CPU	to	generate	N	internally	according	to	the	formula	N	=	24	+	1PL.

Pipeline	interrupts.	After	an	interrupt	occurs,	the	controlling	CPU	must	beable	to	identify	the	interrupting	instruction	and	the	register	contents	needed	forany	corrective
actions.	This	is	not	a	problem	when	instructions	are	executed	insequence	and	only	one	is	active	at	any	time.	However	in	a	pipelined	processor	withseveral	instructions	in
process	concurrently,	it	is	possible	for	instructions	to	finishout	of	sequence;	that	is,	an	instruction	can	finish	sooner	than	another	instructionthat	was	issued	earlier.	This
condition	is	illustrated	in	Figure	7.42,	where	threefloating-point	instructions,	a	7-cycle	multiply	and	two	4-cycle	adds,	are	being	pro-cessed	by	one	or	more	pipelined	units.
Figure	7.42a	shows	a	situation	that	corre-sponds	to	maximum	throughput	and	where	the	first	add	instruction	addl	iscompleted	before	the	multiply	instruction,	even
though	the	latter	was	issued	onecycle	earlier.	Assuming	no	hazards	occur	due	to	data	dependencies,	this	comple-tion	order	is	acceptable	as	far	as	the	main	computation	is
concerned.

Suppose,	however,	that	addl	generates	an	interrupt	due	to,	say,	a	result	(sum)that	overflows	in	its	execution	stage	EX	corresponding	to	cycle	4.	Control	mustthen	be
transferred	to	an	interrupt	handler	designed	to	service	adder	overflow.	It	ispossible	that	the	ongoing	multiply	instruction	will	generate	another	interrupt,	say,in	cycle	6.
This	second	interrupt	can	change	the	CPU's	state	in	ways	that	preventproper	processing	of	the	first	interrupt.	In	particular,	registers	affected	by	addl	canbe	further
modified	by	the	multiply	interrupt	so	that	proper	recovery	from	the	addlinterrupt	may	not	be	possible.	In	this	situation	the	CPU	state	is	said	to	have	becomeimprecise.

We	define	a	precise	interrupt	to	be	one	where	the	system	state	information	orcontext	needed	both	for	correct	transfer	of	control	to	the	interrupt	handler	and	forcorrect
return	to	the	interrupting	program	is	always	preserved.	A	more	restricteddefinition	requires	the	system	state	when	the	interrupt	occurs	to	be	the	same	as	thatin	a
nonpipelined	CPU	that	executes	instructions	in	sequential	order.	In	that	case	aninterrupt	occurring	during	the	execution	of	an	instruction	/	is	precise	if	the	follow-

Multiply	IF	RD	EX1	EX2	EX3	EX4	WB IF	RD	|eXi|eX2||eX3|	EX4||wB

Addl	IF	RD	EX	WB |F	3ULD0H

Add2	IF	RD	EX	WB H0DEDE	-

Clock	cycle	12	3	4	5	6	7(a) 1	23456789

Figure	7.42



Instruction	processing	in	a	pipeline	with	(a)	out-of-order	completion	and	(b)	in-order	completion.

ing	conditions	are	met	[Moudgill	and	Vassilliadis	1996]:

•	All	instructions	issued	prior	to	/	have	completed	their	execution.

•	No	instruction	has	been	issued	after	/.

•	The	program	counter	PC	contains	/'s	address.

We	can	solve	the	imprecise-interrupt	problem	illustrated	by	Figure	7.42a	inseveral	ways.	The	most	direct	is	to	make	all	interrupts	precise	by	forcing	allinstructions	to
complete	in	the	order	in	which	they	are	issued.	This	approach	isillustrated	in	Figure	7A2b,	where	the	add	instructions	are	delayed	so	that	they	com-plete	after	the	multiply
instruction.	The	undesirable	result	of	this	forced,	in-orderexecution	method	is	that	the	combined	processing	time	for	the	three	instructionsincreases	from	seven	to	nine
cycles,	so	some	of	the	performance	benefit	of	pipelin-ing	is	lost.

An	alternative	solution	is	to	allow	the	state	to	become	imprecise	as	in	Figure7.42a,	that	is,	allow	out-of-order	completion	but	provide	a	mechanism	to	recoverthe	precise
state	or	context	of	the	processor	at	the	time	of	the	interrupt.	A	small	reg-ister	set,	sometimes	known	as	a	history	buffer	HB,	is	introduced	to	store	tempo-rarily	the	initial
state	of	every	register	that	is	overwritten	by	each	executinginstruction	/.	Hence	if	an	interrupt	occurs	during	/'s	execution,	the	correspondingprecise	CPU	state	can	be
recovered	from	the	values	stored	in	HB,	even	if	a	second,conflicting	interrupt	is	generated	by	a	still-completing	instruction.
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7.2.3	IO	Processors

The	IO	processor	(IOP)	is	a	logical	extension	of	the	IO	control	methods	consideredso	far.	In	systems	with	programmed	IO,	peripheral	devices	are	controlled	directlyby	the
CPU.	The	DMA	concept	extends	limited	control	over	data	transfers	to	IOdevices.	An	IOP	has	the	ability	to	execute	instructions,	which	gives	it	fairly	com-plete	control	over
IO	operations.	Like	a	CPU,	an	IOP	is	an	instruction-set	proces-sor,	but	it	has	a	more	restricted	instruction	set.	IOPs	are	primarily	communicationcontrol	units	designed	to
link	IO	devices	to	a	computer.	They	have	also	been	calledperipheral	processing	units	(PPUs)	to	emphasize	their	subsidiary	role	with	respectto	the	central	processing	unit
(CPU).

IO	instruction	types.	In	a	computer	with	an	IOP,	the	CPU	does	not	normallyexecute	IO	data-transfer	instructions.	Such	instructions	are	contained	in	IO	pro-grams	that	are
stored	in	M	and	are	fetched	and	executed	by	the	IOP.	The	CPU	doesexecute	a	few	IO	instructions	that	allow	it	to	initiate	and	terminate	the	execution	ofIO	programs	via	the
IOP	and	also	to	test	the	status	of	the	IO	system.	The	IOinstructions	executed	by	the	IOP	are	primarily	associated	with	data-transfer	opera-tions.	A	typical	IOP	instruction
has	the	form:	READ	(WRITE)	a	block	of	n	wordsfrom	(to)	device	X	to	(from)	memory	region	Y.	The	IOP	is	provided	with	directaccess	to	M	(DMA)	and	so	can	control	the
memory	bus	when	the	CPU	does	notrequire	that	bus.	Like	the	more	sophisticated	DMA	controllers	examined	in	the	pre-ceding	section,	an	IOP	can	execute	a	sequence	of
data-transfer	operations	involv-ing	different	regions	of	M	and	different	IO	devices	without	CPU	intervention.Other	instruction	types	such	as	arithmetic,	logical,	and	branch
are	included	in	the
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IOP's	instruction	set	to	facilitate	the	calculation	of	addresses,	10	device	priorities,and	so	on.	A	third	category	of	10	instructions	are	those	executed	by	10	devices.These
instructions	control	functions	such	as	REWIND	(for	a	magnetic-tape	unit),SEEK	ADDRESS	(for	a	hard	disk	unit),	or	PRINT	PAGE	(for	a	printer).	Instruc-tions	of	this	type
are	fetched	by	the	IOP	as	data	and	passed	on	to	the	appropriate	10device	for	execution.	'

Figure	7.43	shows	the	formats	used	for	IO	instructions	in	the	IBM	System/360series	and	its	successors,	which	have	IOPs	that	are	referred	to	as	channels	[IBM1974].	The
CPU	supervises	10	operations	by	means	of	a	small	set	of	privilegedinstructions	with	the	format	of	Figure	7.43a.	The	address	field	(bits	16:31)	speci-fies	a	base	register	B
and	a	displacement	(offset)	D,	which	identify	both	the	IOdevice	to	be	used	and	the	IOP	to	which	it	is	attached.	There	are	three	major	instruc-tions	of	this	type:	START	IO,
HALT	IO,	and	TEST	IO.	The	START	10	instructioninitiates	an	IO	operation.	It	provides	the	IOP	it	names	with	the	memory	address	ofthe	10	program	to	be	executed	by	the
IOP.	The	instruction	HALT	10	causes	theIOP	to	terminate	IO	program	execution,	while	TEST	10	allows	the	CPU	to	deter-mine	the	status	of	the	named	10	device	and	IOP.
Status	conditions	of	interestinclude	available,	busy,	not	operational,	and	(masked)	interrupt	pending.

The	instructions	executed	by	the	IOP	are	called	channel	command	words(CCWs)	and	have	the	format	shown	in	Figure	7.43b.	They	are	of	three	types:

•	Data-transfer	instructions.	These	include	input	(read),	output	(write),	and	sense(read	status).	They	cause	the	number	of	bytes	in	the	data	count	field	to	be	trans-ferred
between	the	specified	memory	region	and	the	previously	selected	10device.

•	Branch	instructions.	These	cause	the	IOP	to	fetch	the	next	CCW	from	the	speci-fied	memory	address	rather	than	from	the	next	sequential	location.

•	10	device	control	instructions.	These	are	transmitted	to	the	10	device	and	specifyfunctions	peculiar	to	that	device.

The	opcode	of	a	data-transfer	instruction	can	be	transmitted	directly	to	the	10device	as	the	"command"	byte	while	the	10	operation	is	being	set	up.	If	the	10device
requires	more	control	information,	it	is	supplied	via	an	output	data	transfer.

16	20

31

Opcode B D

VIOP/IO	device	address

(a)

32	37

4b

63

Opcode Memory	address Flags Data	count	(bytes)

(*)

Figure	7.43

Formats	of	System/360	IO	instructions	executed	(a)	by	a	CPU	and	(b)	by	an	IOP	(channel).

Instruction Comments

CCW	X'07', ,	X'40', Rewind	tape

CCW	X'37', ,	X'40', Skip	first	record

ccw	x'or, BUFFER1	,X'40', 100 Write	second	record	from	BUFFER	1

CCW	X'lF, ,	X'40', Write	tape	mark

CCW	X'07', ,	X'OO', Rewind	tape	and	stop



Figure	7.44

A	System/360	10	program	to	write	a	record	on	a	magnetic	tape.

The	flags	field	of	the	CCW	modifies	the	operation	specified	by	the	opcode.	Forexample,	a	program	control	flag	PCI	can	be	set	to	instruct	the	IOP	to	generate	an10
interrupt	and	make	the	current	IOP	status	available	to	the	CPU.	Another	flagspecifies	command	chaining,	which	means	that	the	current	CCW	is	followed	byanother	CCW
that	is	to	be	executed	immediately.	If	this	flag	is	not	set,	the	IOPceases	10	program	execution	after	executing	the	current	CCW.

Figure	7.44	lists	a	small	10	program	written	in	System/360	assembly	languagethat	writes	a	100-byte	record	on	a	magnetic	tape.	The	tape	is	assumed	to	alreadycontain
two	records,	the	second	of	which	is	being	replaced.	Every	CCW	containsfour	fields	separated	by	commas,	which	correspond	to	the	opcode,	memory	address,flags,	and
data	count	fields	of	Figure	7.43b.	This	program	contains	only	one	data-transfer	instruction,	which	transfers	100	bytes	to	the	tape	from	the	memory	regioncalled	BUFFER
1.	The	other	CCWs	control	operations	that	are	peculiar	to	magnetictapes	and	do	not	use	the	memory	address	or	data	count	fields.	In	all	CCWs	theopcode	and	flags	have
been	defined	by	hexadecimal	numbers	indicated	by	the	pre-fix	X.	The	flag	field	X'40'	causes	the	command	chaining	flag	to	be	set.	In	the	lastCCW	no	flags	are	set,	so	the
IOP	stops	after	execution	of	this	CCW.

IOP	organization.	The	essential	structure	of	a	system	containing	an	IOPappears	in	Figure	7.45a.	The	IOP	and	CPU	share	access	to	a	common	memory	Mvia	the	system
bus.	M	stores	separate	programs	for	execution	by	the	CPU	and	theIOP;	it	also	contains	a	communication	region	IOCR	for	passing	information	in	theform	of	messages
between	the	two	processors.	The	CPU	can	place	there	the	param-eters	of	an	10	task,	for	example,	the	addresses	of	the	10	programs	to	be	executed,and	the	identity	of	the
IO	devices	to	be	used.	The	CPU	and	IOP	also	communicatewith	each	other	directly	via	control	lines.	Standard	DMA	or	bus	grant/acknowledgelines	are	used	for	arbitration
of	the	system	bus	between	the	two	processors,	as	dis-cussed	earlier.	The	CPU	can	attract	the	IOP's	attention,	for	instance,	when	execut-ing	an	10	instruction	like	START
10,	by	activating	the	ATTENTION	line.	Inresponse	the	IOP	begins	execution	of	an	IOP	program	whose	specifications	havebeen	placed	in	the	IOCR	communication	area.
Similarly	the	IOP	attracts	the	CPU'sattention	by	activating	an	INTERRUPT	REQUEST	line,	causing	the	CPU	to	exe-cute	an	interrupt	handler	that	typically	responds	to	the
IOP	by	identifying	a	new	10program	for	the	IOP	to	execute.	Figure	7.45b	summarizes	the	overall	behavior	ofthe	IOP	and	its	interaction	with	the	CPU.
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EXAMPLE	7.5	THE	INTEL	8089	IO	PROCESSOR	[EL-AYAT	1979].	The	8089

is	a	one-chip	IOP	for	use	in	systems	based	on	the	Intel	8086	microprocessor.	As	sr^own
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Figure	7.45

Computer	containing	an	IOP:	(a)	system	organization	and	(£>)	CPU-IOP	interaction.

in	Figure	7.46,	it	has	two	"DMA	channels,"	each	of	which	can	control	an	independent10	operation.	In	addition	to	the	usual	address	and	data-count	registers	found	in
DMAcontrollers,	the	8089's	DMA	channels	have	their	own	program	counters	and	other	cir-cuits	necessary	to	execute	an	instruction	set	that	is	specialized	toward	IO
operations.Thus	the	8089	can	execute	two	unrelated	IO	programs	concurrently	and	logicallyappears	to	the	CPU	like	two	independent	IOPs.	The	DMA	channels	share	a	20-
bit	ALUintended	mainly	for	processing	memory	addresses.	They	also	share	bus	interface	cir-cuits	for	communication	with	memory	and	IO	devices.	Partly	because	of	pin
con-straints—the	8089	is	packaged	in	a	40-pin	package—the	channels	also	share	a	20-bitbidirectional	external	bus	that	is	used	to	multiplex	data	and	address	transfers	to
or	fromIO	devices;	the	same	lines	also	transfer	addresses	and	data	between	the	IOP	and	mem-ory.	Both	8-	and	16-bit	data	words	can	be	transmitted	and	received	by	the
8089,	whichcontains	the	necessary	assembly-disassembly	circuits	for	conversion	between	thesetwo	data	formats.	If	desired,	external	circuits	can	be	used	to	create
separate	system	andIO	buses,	as	in	Figure	7.45.	If	the	8089	is	configured	with	a	local	IO	bus,	then	its	IOprograms	can	be	placed	in	a	private	memory	attached	to	that	bus.
thus	reducing	theinstruction	traffic	on	the	shared	system	bus.



The	CPU	and	IOP	communicate	via	several	message	regions	in	memory,	whichare	illustrated	in	Figure	7.47.	Each	DMA	channel	has	an	associated	parameter	blockPB
containing	a	pointer	to	the	channel's	current	IO	program,	that	is,	a	channel	addressword.	PB	also	contains	application-specific	input	parameters	for	the	IO	program,	as
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Figure	7.46

Structure	of	the	Intel	8089	IOP.

well	as	output	parameters	for	variables	that	the	channel	is	to	return	to	the	CPU.	Theseparameters	identify	10	buffer	regions	in	main	memory,	10	device	names,
dataaddresses	in	secondary	memory	devices,	and	so	on.	The	locations	of	the	two	PBs	arestored	in	a	channel	control	block	CB.	which	is	created	by	the	CPU	when	the
system	ispowered	up	or	reset.	CB	stores	status	information	and	a	command	from	the	CPU	foreach	channel.	These	1-byte	commands	fill	essentially	the	same	role	as	the
START.TEST,	and	HALT	10	instructions	of	the	System/360-370	series.	The	CPU	also	usesthem	to	enable,	disable,	or	deactivate	the	channel's	interrupt	request	line.	Thus
theCPU	supervises	each	IOP	channel	by	writing	into	its	PB	region	and	into	its	portion	ofCB.	Once	it	has	set	up	the	necessary	control	information	in	main	memory,	the
CPUdispatches	a	DMA	channel,	that	is,	it	initiates	an	10	operation,	by	executing	a	data-transfer	instruction	such	as	OUT	or	MOVE	that	activates	the	8089's	channel-
attentionline	CA	and	a	second	line	SEL	that	indicates	which	of	the	two	channels	is	to	be	dis-patched.	The	selected	channel	then	proceeds	to	read	its	command	word	from
CB,	forexample,	'"start	IO	program	execution."	which	makes	the	channel	load	the	10	programpointer	from	PB	into	its	program	counter,	thereby	launching	execution	of	the
10	pro-gram.	The	channel	then	executes	the	program	in	much	the	same	way	as	a	CPU.	The8089	uses	DMA	to	fetch	10	instructions	from	main	memory	and.	of	course,	for
mem-ory	data	transfers.	Each	DMA	channel	has	a	programmable	channel	control	(CC	)	reg-ister	that	defines	the	type	of	DMA	transfer	to	be	used.
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Figure	7.47Memory	organizationfor	the	8089	IOP.

The	8089's	instruction	set	and	the	corresponding	assembly	language	(which	arequite	different	from	those	of	the	host	CPU)	contain	about	50	different	instruction
types.The	instructions	are	broadly	similar	to	those	of	a	general-purpose	CPU	but	have	only	afew	simple	data	and	address	types	and	limited	data-processing	and	program-
controlcapabilities.	For	example,	the	arithmetic	instructions	consist	only	of	add,	increment,and	decrement	with	unsigned	or	twos-complement	fixed-point	operands.	No
provisionis	made	for	overflow	detection	in	signed	arithmetic	operations.	The	major	instructiontypes	are	data-transfer	instructions	that	move	data	or	address	words
between	the	8089'sinternal	registers	and	its	external	memory-IO	bus.	Note	that	in	addition	to	10	opera-tions,	the	8089	can	execute	memory-to-memory	block	transfers
very	efficiently.	The8089's	specialized	IO	control	instructions	include	WID	(set	bus	width),	which	definesthe	word	size	for	data	transfers	as	either	8	or	16	bits;	XFER
(transfer),	which	prepares	achannel	for	a	DMA	transfer;	and	SINTR	(set	interrupt),	which	activates	the	channel'sinterrupt	request	line,	thus	enabling	an	IO	program	to
interrupt	the	CPU.

Microcontrollers	as	IOPs.	Developments	in	IC	technology	in	recent	yearshave	made	it	attractive	to	use	general-purpose	microprocessors	as	IOPs	by	equip-ping	them	with
specialized	IO	interface	circuits	and	support	software.	An	exampleis	the	Intel	i960	RP	input-output	processor	introduced	in	1995	as	a	single-chip

"intelligent	IO	subsystem"	[Intel	1996].	Figure	7.48	indicates	the	complexity	ofthis	IC.	The	IOP	is	built	around	the	80960	microprocessor,	a	member	of	the	i960family	of
pipelined	32-bit	RISCs.	The	80960*s	instruction	set	is	noteworthy	for	itsfast	implementation	of	call	and	return	instructions,	its	high-performance	integerALU,	and	its	large
register	file.	The	core	processor	also	contains	a	4KB	two-wayset-associative	I-cache	and	a	2KB	direct-mapped	D-cache.	To	provide	quickresponse	to	interrupts,	the	i960	RP
allows	the	programmer	to	permanently	lockcritical	IO	routines	such	as	interrupt	handlers	in	its	I-cache.

The	i960	RP	IOP	supports	a	pair	of	32-bit	PCI	buses:	a	primary	bus	for	con-nection	to	the	host	CPU	and	a	secondary	bus	for	IO	devices.	It	also	has	a	32-bitinternal	"local"
bus—the	80960's	system	bus—to	which	IO	devices	can	beattached,	as	well	as	some	specialized	IO	buses	such	as	the	I"C	(inter-integrated	cir-cuit)	bus,	a	serial	IO	bus
developed	by	Philips	Semiconductor.	Not	surprisingly,this	single-chip	device	has	a	very	large	number	of	IO	pins—352	in	all.	The	i960	RPIOP	has	controllers	for	three
independent	DMA	channels,	two	dedicated	to	the	pri-mary	PCI	bus	and	one	to	the	secondary	PCI	bus.	It	also	has	flexible	controllers	tosupport	vectored	interrupts,
including	the	advanced	programmable	interrupt	con-trol	(APIC)	interface	used	by	the	Pentium	and	other	Intel	microprocessors.
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7.2.4	Operating	Systems

Except	when	it	is	dedicated	to	a	single	task,	a	computer	is	usually	managed	by	asupervisory	program	called	an	operating	system,	which	provides	a	uniform	soft-ware
interface	for	other	system	programs	and	for	applications	programs.	In	mul-tiuser	environments	the	operating	system	controls	such	shared	resources	as	CPUtime,	memory
space,	IO	devices,	utility	programs,	and	databases	[Silberschatz1994].
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Structure	of	the	Intel	i960	RP	input-output	processor.
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Introduction.	Programs	use	a	computer's	resources	in	various,	and	oftenunpredictable,	ways.	Resource	requirements	also	change	dynamically	during	theexecution	of	a
single	program.	For	example,	programs	often	alternate	betweencomputations	that	use	the	CPU	and	IO	operations	that	use	IOPs	and	peripheraldevices	but	do	not	require
the	CPU.	If	several	programs	are	available	for	executionat	the	same	time,	then	the	computer's	performance	as'measured	by	overall	through-put	can	be	improved	by
assigning	one	program	to	the	CPU	while	others	areassigned	for	execution	by	IOPs.	The	scheduling	of	CPU	and	IO	processing	is	a	typ-ical	function	of	an	operating	system.



Another	important	shared	resource	is	mem-ory,	both	main	and	secondary,	whose	management	is	also	typically	an	operatingsystem	task.

Several	types	of	operating	systems	have	evolved	over	the	years.	The	earliestsystem	control	programs	(batch	monitors	and	spooling	systems)	were	mainly	con-cerned	with
reducing	the	time	required	for	IO	operations	involving	user	programs.Modern	operating	systems	attempt	to	manage	a	wide	range	of	computer	resourcesefficiently—not
just	IO	devices.	They	provide	textual	or	graphical	interfaces	thatallow	users	to	interact	directly	with	the	operating	system	by	specifying	theresources	needed	for	a
particular	job.	Current	operating	systems	have	their	originsin	several	influential	systems	developed	in	the	1960s,	such	as	IBM's	OS/360,which	became	a	de	facto	standard
for	mainframe	computers.	Early	work	atManchester	University	(Atlas),	MIT	(Multics),	and	elsewhere	led	to	the	UNIXoperating	system,	which	was	developed	at	Bell
Laboratories	in	the	mid-1970s	andis	now	in	wide	use,	especially	in	workstations.

Processes.	The	basic	unit	of	computing	managed	by	an	operating	system	is	aprocess,	which	is	loosely	defined	as	a	program	module	in	the	course	of	execution.The
resources	needed	by	a	process,	including	processors	and	memory	space,	areallocated	to	it	dynamically	during	execution.	Examples	of	processes	are	a	proce-dure	executed
by	a	CPU	and	an	IO	program	executed	by	an	IOP.	A	process	can	becreated	in	response	to	a	user	command	to	the	operating	system.	Processes	can	alsobe	created	by	other
processes,	for	example,	in	response	to	interrupts.	When	nolonger	needed,	a	process	(but	not	the	underlying	program)	is	deleted	by	the	operat-ing	system,	and	the
resources	currently	allocated	to	the	process	are	released.	Whilein	existence,	a	process	has	three	major	states:	ready,	running,	and	blocked,	asdepicted	in	Figure	7.49a.	In
the	ready	state	a	process	is	waiting,	perhaps	in	a	queuewith	other	processes,	for	the	resources	that	it	needs	to	enter	the	running	or	activestate.	A	blocked	process	is
waiting	for	some	event	to	occur,	such	as	completion	ofanother	process	that	provides	it	with	input	data.	A	transition	from	one	process	stateto	another	is	triggered	by
conditions	such	as	interrupts	and	user	instructions	to	theoperating	system.

Figure	7.49b	shows	the	state	behavior	of	a	typical	user	process	P	in	a	systemwith	an	independent	IOP.	It	is	assumed	that	P	runs	on	the	CPU	until	an	IO	instruc-tion	is
encountered,	at	which	point	the	operating	system	intervenes	and	changes	Pfrom	running	to	blocked.	P	can	also	be	terminated	by	a	timer-generated	interrupt,which	the
operating	system	uses	to	limit	the	amount	of	time	that	any	one	process	isassigned	to	the	IOP.	In	this	case	P	is	returned	to	the	ready	state,	where	it	remainsuntil
rescheduled	for	execution	by	the	operating	system	via	the	CPU.	A	new	pro-cess	P'	can	now	be	created	to	run	on	an	IOP	and	carry	out	the	required	IO	opera-

tion.	Completion	of	P1	results	in	an	IO	interrupt	that	causes	the	CPU	to	transfer	Pfrom	blocked	to	ready.	At	this	point	f	can	be	deleted	if	it	is	no	longer	needed	by	Por	other
active	processes.	As	soon	as	the	CPU	is	available	to	execute	P,	that	is.when	there	are	no	CPU	processes	of	higher	priority	ready	for	execution,	P	is	trans-ferred	once	more
to	the	running	state.	It	continues	running	until	it	encountersanother	IO	instruction,	exceeds	its	allocated	time,	or	completes	execution.	In	thelast	case	a	call	is	made	to	the
operating	system,	which	can	then	delete	P.
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Kernel.	An	operating	system	comprises	many	resource	management	pro-grams,	including	processor	scheduling	routines,	virtual	memory	management	rou-tines,	and	IO
device	control	programs	(device	drivers).	Common	utility	programs,such	as	compilers,	text	editors,	and	the	like,	often	form	part	of	the	operating	sys-tem.	Thus	operating
systems	tend	to	contain	more	software	than	can	fit	comfort-ably	in	main	memory.	The	part	of	an	operating	system	that	resides	more	or	lesscontinuously	in	main	memory
and	consists	of	its	most	frequently	used	parts	istermed	the	kernel	or	nucleus.	The	other,	less	frequently	used	parts,	such	as	filemanagement	routines,	reside	in	secondary
(disk)	memory	and	are	transferred	tomain	memory	when	needed.

The	kernel	of	an	operating	system	is	responsible	for	the	creation,	deletion,	andstate	switching	of	the	many	processes	that	define	a	computer's	behavior.	The	ker-nel
performs	its	tasks	by	quickly	responding	to	a	steady	flow	of	interrupt	requests.These	requests	have	many	sources	such	as	user-generated	requests	for	operatingsystem
services;	CPU-generated	process	time-outs;	memory	faults;	IO	operations:and	hardware	or	software	errors.	The	kernel	achieves	rapid	response	by	brieflydisabling	other
interrupts	while	responding	to	the	current	one	and	then	dispatchingor,	if	necessary,	creating	a	system	process	to	execute	the	appropriate	interrupt-handling	routine.	The
performance	and	reliability	of	the	kernel	can	be	improvedby	implementing	its	more	basic	functions	in	hardware	or	firmware.

Trap	on	IOinstruction(START	IO)

(a)

Figure	7.49

Process	behavior:	(a)	general	case	and	(b)	CPU	process	in	system	with	iOP.

(b)
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The	kernel	keeps	track	of	each	process	by	means	of	a	data	segment	called	aprocess	control	block	PCB,	which	defines	the	most	recent	execution	state	or	con-text	of	the
process.	The	PCB	typically	contains	all	the	programmable	registersassociated	with	a	process,	including	its	program	counter,	stack	pointers,	status	reg-ister,	and	general-
purpose	data	and	address	registers.	The	PCB	normally	resides	inmain	memory.	When	the	process	is	about	to	be	executed,	its	PCB	is	transferred	tothe	corresponding
processor	registers.	The	transfer	of	control	from	one	process	toanother	{context	switching)	is	implemented	by	saving	the	context	of	the	old	processin	its	PCB	in	memory
and	loading	the	PCB	of	the	new	process	into	the	processor	inits	place.

Figure	7.50	shows	the	PCB	used	by	the	VMS	operating	system	for	the	DigitalVAX	computer	series.	This	PCB	contains	several	stack	pointers	used	by	the	oper-ating	system,
the	CPU's	general	registers,	the	program	counter	PC,	and	the	pro-gram	status	word	PSW.	The	latter	stores	CPU	status	(flag)	bits	and	the	interruptpriority	level	of	the
process.	The	last	entries	in	the	PCB	specify	the	base	addressand	length	of	two	page	tables:	one	for	the	user	program	and	one	for	the	user	stack.Page	tables	play	an
essential	role	in	the	firmware-implemented	address	mappingthat	manages	the	VAX's	virtual	memory.	Two	VAX	instructions	SVPCTX	(saveprocess	context)	and	LDPCTX
(load	process	context)	support	context	switching	bytransferring	the	complete	PCB	to	and	from	memory,	respectively.

An	operating	system	supervises	a	potentially	large	set	of	processes	that	func-tion	asynchronously	and	concurrently.	Many	of	the	more	subtle	problems	indesigning	an
operating	system	are	due	to	attempts	by	concurrent	processes	to	useshared	resources	in	undesirable	or	improperly	synchronized	ways.	Next	we	con-sider	two	basic
problems	in	concurrency	control—mutual	exclusion	and	dead-lock—and	their	solutions.
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Figure	7.50

Process	control	block	PCB	for	the	VMS

operating	system.

Mutual	exclusion.	Suppose	that	two	concurrent	processes	Px	and	P2	shareread	and	write	access	to	a	data	region	R	in	main	memory.	It	is	generally	necessaryto	prevent
one	process	from	writing	into	R	while	the	other	process	is	reading	fromit.	Unless	precautions	are	taken,	P2	can	modify	a	variable	X	of	R	immediately	afterPx	has	read	its
old	value;	in	this	case	subsequent	processing	decisions	will	be	basedon	a	wrong	value	of	X.	This	problem	is	solved	by	enforcing	certain	rules	for	mutualexclusion	so	that,
in	the	present	instance,	Px	has	exclusive	access	to	R	for	as	long	asit	needs	it,	without	interference	from	other	processes.	Shared	resources	like	R	thatrequire	mutual
exclusion	are	termed	critical.

A	software	solution	to	the	mutual	exclusion	problem	is	to	associate	with	eachcritical	resource	R	a	control	variable	S	called	a	flag	that	indicates	when	R	is	busy.Before
attempting	to	take	control	of	R,	a	process	P	first	reads	R's	flag	5.	If	S	=	1(busy),	indicating	that	R	is	already	in	use,	P	does	not	attempt	to	use	it.	If,	on	theother	hand,	P
finds	that	5	=	0,	implying	that	R	is	available,	P	immediately	sets	5	to1	(busy)	and	proceeds	to	access	R.	When	it	has	finished	with	R,	the	process	P	resetsS	to	0	so	that
other	processes	can	use	R.

For	the	foregoing	control	mechanism	to	work,	mutual	exclusion	must	beenforced	for	accessing	the	flag	S	to	determine	the	state	of	R.	Some	processors	pro-vide	a	test-and-
set	instruction	to	implement	flag	control	in	the	kernel	of	the	operat-ing	system.	To	guarantee	mutual	exclusion,	this	instruction	is	designed	to	beindivisible	in	the	sense
that	all	the	steps	of	its	instruction	cycle	must	be	completedwithout	interference	by	other	instructions.	The	8089	IOP	(Example	7.5)	has	suchan	instruction	called	TSL	(test
and	set	while	locked).	In	the	following	8089	assem-bly-language	code	fragment	TSL	causes	the	flag	5	to	be	read	from	memory	andcompared	with	0.

R:

TSL	S,	LWAIT

MOV	S,	0

(7.1)

ENDR

If	S	=	0,	TSL	writes	the	specified	1	value	into	5	and	control	is	transferred	to	theroutine	R,	which	uses	the	resource	protected	by	S.	If	TSL	finds	that	S	*	0,	then	ittransfers
control	to	the	branch	address	WAIT.	To	ensure	mutual	exclusion,	TSLactivates	a	special	output	signal	called	LOCK	on	the	8089	chip.	This	signal	drives	abus-lock	line	of	the
bus	to	which	the	memory	storing	S	is	attached;	the	PCI	bus(Example	7.1)	has	such	a	line	called	LOCK.	Activating	the	lock	signal	preventsother	instruction	from	using	the
bus	while	the	TSL	instruction	is	being	executed;consequently,	TSL	has	the	required	exclusive	access	to	5.	The	final	move	instruc-tion	in	the	preceding	8089	code
implements	S	:=	0	to	reset	the	flag.	The	routine	R	isan	example	of	a	critical	section	of	an	assembly-language	program,	which	is	pro-tected	by	the	flag	S.	If	the	initial	TSL
statement	is	replaced	by

WAIT:	TSL	S,	1,WAIT

(7.2)

then	the	test-and-set	operation	is	executed	repeatedly	until	5	becomes	available.	Ineffect,	the	process	requesting	R	waits	until	5	changes	from	busy	to	not	busy.

The	preceding	flag-control	mechanism	has	several	deficiencies.	It	uses	a	busyform	of	waiting	in	which	a	processor	spends	a	great	deal	of	time	simply	testing	the
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flag	5.	Moreover,	a	particular	process	P	may	never	find	5	=	0	and	gain	access	to	Rbecause	of	competition	from	other	processes.	These	problems	are	addressed	by	aspecial
resource	control	variable	S	called	a	semaphore,	which	is	a	nonnegativeinteger	serving	as	the	control	flag	for	a	resource	R.	It	has	two	indivisible	proce-dures,	WAIT(S)	and
SIGNAL(S),	which	can	be	defined	as	follows,	where	P	is	theprocess	calling	WAIT	or	SIGNAL:

WAIT(S):SIGNAL(S):

if	5>	0	then	S	:=	S	-	1else	suspend	P	and	place	it	in	queue	Q	for	R:

if	Q	is	nonempty	then	dispatch	one	process	from	Qelse	S	:=	S	+	1;

(7.3)

(7.4)

The	semaphore	S	is	used	to	encapsulate	the	code	R	for	a	critical	resource	withWAYT(S)	and	SIGNAL(S)	operations	thus:

WAIT(S)

R

SIGNAL(S)

(7.5)

and	initializing	5	to	1.	The	first	requesting	process	gains	access	to	R	and	sets	S	to	0.Subsequent	processes	attempting	to	enter	R	are	queued.	Hence	only	one	processcan
use	the	critical	region	R,	thereby	ensuring	that	mutual	exclusion	is	preserved.By	initializing	5	to	a	larger	value	k	>	1,	the	number	of	processes	in	the	criticalregion	can	be
limited	to	k.	Although	(7.1)	and	(7.5)	are	superficially	similar,	thesemaphore	in	(7.5)	avoids	busy	waiting;	the	queueing	by	WAIT	and	releasing	bySIGNAL	of	requests	for	R
ensure	that	all	requesting	processes	eventually	get	to	useR	in	some	sequence—for	instance,	FIFO—determined	by	the	queueing	disciplinefor	blocked	processes.

Deadlock.	Another	common	synchronization	problem	in	system	managementis	deadlock;	that	is,	a	process	is	waiting	for	an	event	such	as	the	release	of	a	sharedresource,
but	the	event	in	question	never	occurs.	Suppose	that	processes	Px	and	P2both	require	the	use	of	two	resources	R}	and	R2	that	can	only	be	controlled	by	oneprocess	at	a
time.	Let	/?,	be	allocated	to	P,,	which	then	requests	R2	while	stillretaining	control	of	Rv	At	the	same	time,	let	P2	control	R2	and	be	requesting	con-trol	of/?,.	If	neither
process	can	continue	until	it	obtains	control	of	both	processes,then	a	deadlock	results	in	which	each	process	ends	up	waiting	for	the	other	torelease	a	resource,	a	circular
waiting	situation	that	is	characteristic	of	deadlocks.	Asingle	process	can	also	become	deadlocked	while	waiting	for	an	external	eventsuch	as	an	acknowledgment	signal
that	fails	to	appear	in	an	IO	bus	transaction.Deadlocks	can	result	from	hardware	faults	as	well	as	from	hardware	or	softwaredesign	errors.

Three	basic	ways	to	deal	with	deadlock	are	prevention,	avoidance,	and	faulttolerance.	The	prevention	approach	tries	to	eliminate	the	possibility	of	a	deadlockoccurring.
Less	stringent	approaches	do	not	completely	eliminate	the	possibility	ofa	deadlock,	but	try	to	ensure	that	all	potential	deadlock	situations	are	avoided.	Thethird	approach
allows	deadlocks	to	take	place	but	provides	mechanisms	for	detect-ing	them	and	recovering	from	their	effects.	In	practice,	all	these	techniques	areused	in	various	parts	of
a	typical	operating	system,	with	deadlock	prevention	tech-niques	playing	the	major	role.

For	deadlock	to	exist,	the	processes	and	resources	involved	must	meet	severalconditions:

1.	Mutual	exclusion.	Each	process	must	have	exclusive	access	to	the	resources	itcontrols.

2.	Resource	waiting.	A	process	can	hold	the	resources	already	allocated	to	it	whilewaiting	for	access	to	another.

3.	Nonpreemption.	A	process	cannot	be	preempted;	it	never	releases	its	resourcesuntil	it	has	completely	finished	with	them.

4.	Circularity.	A	circular	chain	of	processes	must	exist;	each	process	controls	aresource	that	is	being	requested	by	the	next	process	in	the	chain.

Deadlocks	are	avoided	by	designing	the	relevant	parts	of	an	operating	systemso	that	one	or	more	of	the	above	conditions	cannot	occur.	Condition	1	usually	can'tbe
eliminated	without	severely	restricting	resource	sharing;	however,	the	otherdeadlock	conditions	can	be	avoided	in	various	ways.	For	example,	no	deadlock	canoccur	if	a
process	P	is	blocked	until	all	the	resources	it	needs	become	available.Blocking	circumvents	condition	2	(resource	waiting),	but	it	leads	to	inefficient	useof	available
resources.	The	partial	set	of	resources	tied	up	by	P	can	be	freed	byrequiring	P	to	release	them	and	rerequest	them	later	along	with	the	other	resourcesnot	yet	available.
This	latter	step	preempts	P's	resources,	therefore	denying	condi-tion	3	(nonpreemption).	Eliminating	conditions	2	or	3	in	this	way	can	cause	someprocess	requests	to	be
blocked	indefinitely.	The	circularity	condition	can	beremoved	by	assigning	a	unique	number	p(R)	to	each	resource	R	and	enforcing	therule	that	if	P	holds	R,	it	can	only



request	additional	resources	with	numbers	higherthan	p(R).	This	technique	works	well	if	the	normal	order	in	which	the	processesrequest	the	resources	closely	matches
the	order	in	which	they	are	numbered;	other-wise,	P	may	need	to	acquire	and	hold	low-numbered	resources	long	before	it	actu-ally	uses	them.

The	detection	of	deadlock	situations,	either	to	avoid	them	or	to	eliminate	themafter	they	occur,	implies	the	ability	to	check	for	the	circular	wait	condition	definedabove.	To
do	so,	the	system	manager	must	maintain	a	list	of	all	the	resources	heldby	each	process	and,	for	each	resource,	the	names	of	the	processes	waiting	to	use	it.These
resource	assignments	and	requests	can	be	represented	by	a	resource	alloca-tion	graph,	an	example	of	which	appears	in	Figure	7.51.	Here	the	circles	denoteprocesses
{/',■},	and	the	squares	denote	resources	{/?•}.	An	edge	or	arrow	fromresource	/?■	to	process	P,	implies	that	R.	has	been	allocated	to	P;,	while	an	arrowfrom	Pj	to	Rj
means	that	P,	is	requesting	Rj.	The	existence	of	a	closed	loop	in	whichall	arrows	go	in	the	same	direction,	in	this	case,	P2^>	R4^>	P5^>	R6^>	P4^>	R{^>P2,	indicates
that	the	given	allocation	satisfies	the	circularity	condition	for	a	dead-lock.	Note	that	the	mutual	exclusion	condition	is	satisfied	by	requiring	that	onlyone	arrow	leave	each
resource	in	the	resource	allocation	graph.

Figure	7.52	gives	a	recursive	procedure	CHECK(P,R)	to	test	for	the	circularityconditions	that	lead	to	deadlock;	in	effect,	it	finds	closed	loops	in	a	resource	allo-cation
graph.	CHECK(P,R)	is	intended	to	be	executed	whenever	a	process	Pmakes	a	request	for	resource	R;	it	reports	a	deadlock	if	the	requested	allocationresults	in	a	closed
loop.	Suppose	that	the	procedure	is	applied	to	the	system	of	Fig-ure	7.51	when	P2	makes	a	new	request	for	control	of	R5.	Assume	that	processesand	resources	are
scanned	in	ascending	numerical	order	determined	by	the	P	and	Rsubscripts.	On	entering	CHECK(P2,R5),	the	resources	allocated	to	P2,	namely,
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Figure	7.51p6	)	Example	of	a	resource	allocationgraph.

procedure	CHECK	(P:	process;	R:	resource);

begin

for	all	resources	{/?,}	allocated	to	P	do

begin

for	all	processes	{P,j}	waiting	for/?,	do

if	PQ	holds	R	then	REPORT	(deadlock)	else	CHECK	(Pp	/?);

end;end;

Figure	7.52

Procedure	for	deadlock	detection.

{/?lvr?2,/?3},	are	scanned.	Then	the	processes	waiting	for	R{,	namely,	{P4},	areidentified.	Since	P4	does	not	have	R5	allocated	to	it,	CHECK(P4,R5)	is	nowinvoked.	On
reentering	the	CHECK	procedure	with	P	=	P4	and	R	=	R5,	theresources	{R6}	held	by	P4	are	identified.	Then	the	processes	{P5}	waiting	for	R6are	considered.	It	is	found
immediately	that	P5	holds	R5,	leading	to	the	conclusionthat	a	deadlock	exists.	This	deadlock	corresponds	to	the	loop	P2^>	R4~*	P5—>R6^P4^R{^P2.

EXAMPLE	7.6	THE	UNIX	OPERATING	SYSTEM	[SOUTHERTON	1993].	The	goal

of	UNIX	is	to	provide	a	relatively	simple,	interactive	operating	system	aimed	at	ageneral-purpose	time-shared	environment.	Simplicity	is	achieved	by	keeping	the	oper-
ating	system	quite	small	so	that	it	can	easily	be	installed	in	small	computers,	especiallyworkstations.	The	kernel	of	UNIX	consists	of	about	10,000	lines	of	source	code
writtenmainly	in	C,	a	programming	language	developed	specifically	to	implement	UNIX.	Theuse	of	C	as	the	source	language,	and	the	general	availability	of	its	source
code,	givesUNIX	a	high	degree	of	portability	among	different	computer	types.	The	functions	pro-vided	by	UNIX	for	managing	processes,	IO,	and	so	on,	are	quite	general,
which	keepsits	kernel	small	and	enables	UNIX	to	address	a	wide	range	of	operating	system	tasks.UNIX	has	associated	with	it	a	large	set	of	general-purpose	programs
(utilities),	includ-ing	compilers,	debuggers,	and	text	editors.	These	utilities,	most	of	which	are	also	writ-ten	in	C,	are	considered	an	integral	part	of	UNIX	and	have	done
much	to	enhance	its

popularity.	UNIX	has	a	textual	user	interface	called	the	shell,	which	provides	a	com-mand	language	for	process	management,	as	well	as	access	to	the	UNIX	utilities.

UNIX	recognizes	two	main	types	of	processes:	system	(supervisor)	and	user.Each	active	program	or	user-created	task	is	treated	as	a	user	process.	When	such	a	pro-cess
requires	an	operating	system	function	because	of	an	interrupt,	a	system	process	isinvoked	and	then	becomes	the	running	process.	System	processes	execute	in	the
hostprocessor's	supervisor	or	privileged	state,	while	user	processes	execute	in	the	nonpriv-ileged	user	state.	(Note	that	these	two	processor	states	have	hardware	support
in	manycomputers	ranging	from	the	System/360	to	the	680X0.)	The	information	associatedwith	a	process,	termed	an	image	in	UNIX	parlance,	consists	of	the	contents	of
thememory	locations	used	by	the	process	along	with	the	processor	status	and	registerinformation	constituting	a	process	control	block.	The	process	image	is
constructedfrom	several	dynamic	segments	for	instruction,	data,	and	control	stack	storage.	A	pro-cess's	image	resides	in	main	memory	while	it	is	being	executed,	but	can
—except	forthe	process	control	block—be	swapped	out	of	memory	when	the	process	is	inactive	oranother	process	needs	the	space.	UNIX	employs	a	FIFO	algorithm	to
allocate	bothmain	and	secondary	memory	space.

UNIX	makes	extensive	use	of	the	process	concept	and	has	many	mechanisms	formanipulating	processes.	The	kernel	deals	with	each	new	task	by	creating	a	process
tohandle	it	so	that	at	any	time	many	processes	are	being	executed	concurrently.	VariousUNIX	operations	invoked	by	shell	commands	exist	for	managing	processes.
Figure7.53	lists	some	representative	commands	available	to	the	user	for	process	control.	Pro-cesses	communicate	and	synchronize	their	activities	by	means	of	events,
which	typi-cally	are	control	flags	set	by	the	occurrence	of	some	specified	condition.	A	process	issuspended	by	instructing	it	to	wait	for	an	event	to	occur;	it	is	subsequently
dispatchedby	signaling	the	occurrence	of	the	event	in	question.

In	a	uniprocessing	UNIX	environment	only	one	process	can	be	executed	at	a	time.Processes	are	executed	in	time-shared	fashion	with	each	process	receiving	a	slice	ofCPU
time	of	no	more	than	a	second	or	so	before	it	is	suspended	and	a	new	process	dis-patched.	UNIX	assigns	a	priority	number	to	every	process;	the	number	determines
theprocess	to	run	next.	System	processes	receive	execution	priorities	based	on	theirexpected	response	needs.	For	example,	processes	to	control	disk	transfers	receive
highpriority,	while	processes	that	service	user	terminals	receive	low	priority.	User	pro-cesses	have	lower	priority	than	the	lowest	system-process	priority.	To	ensure
reason-ably	rapid	response,	user	processes	that	have	received	relatively	little	processor	timeare	given	higher	priority	than	processes	that	have	received	a	lot	of	processor
time.	Pro-cesses	with	the	same	priority	are	run	in	round-robin	fashion.	If	a	suspended	process	ofhigher	priority	wakes	up,	it	preempts	a	running	process	of	lower	priority.
To	preventsome	processes	from	being	indefinitely	suspended,	UNIX	increases	the	priority	of	pro-cesses	that	have	been	ignored	for	a	long	time.

A	UNIX	file	is	a	one-dimensional	array	of	characters	(bytes)	and	is	the	basic	unitfor	information	storage	on	secondary	memory.	Unlike	the	records	found	in	other	file
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Command

Function	performed

fork	Create	a	new	(child)	process



kill	Destroy	process

pause	Suspend	process	until	a	specified	event	occurs

ps	Print	status	information	on	active	processes

sleep	Suspend	process	execution	for	a	specified	time

wait	Wait	for	a	child	process	to	terminate

wake	Resume	a	suspended	process

Figure	7.53

Some	UNIX	commands	■

for	process	management.
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systems,	UNIX	files	do	not	have	internal	structures.	There	are	no	restrictions	on	thelength	or	contents	of	a	file	as	seen	by	the	user.	Files	are	stored	physically	in
pages(blocks)	of	a	fixed	size,	initially	512	bytes,	but	larger	block	sizes	are	used	in	laterUNIX	versions.	UNIX	maintains	a	set	of	internal	tables	to	keep	track	of	the	disk-
fileusage.

The	logical	organization	of	UNIX	files	as	seen'by	a	user	is	that	of	a	tree-struc-tured	hierarchy.	This	structure	facilitates	both	file	management	and	the	protection	offiles
from	unauthorized	access.	Special	files	called	directories	store	related	files;	a	useraccesses	a	file	by	naming	the	directory	that	contains	it.	A	directory	can	contain
otherdirectories,	leading	to	the	file	organization	depicted	in	Figure	7.54.	The	directory	at	thehighest	level	of	the	tree	is	known	as	the	root	and	is	denoted	by	the	special
name	"/".The	nondirectory	files	are	at	the	lowest	levels	of	the	tree.	The	level	below	the	root	con-tains	major	system	directories	such	as	bin,	which	stores	the	UNIX	utilities;
dev,	whichcontains	files	used	to	access	10	devices;	and	usr,	which	contains	users'	files.	A	file	ordirectory	is	identified	by	specifying	the	sequence	of	directories	that	contain
it,	withdirectory	names	separated	by	a	slash.	For	example,	the	file	"mail"	in	Figure	7.54	isreferred	to	by	lusrltomlmail,	which	is	the	file's	path	name.	UNIX	provides	many
opera-tions	to	manipulate	files,	for	example,	create,	close,	copy,	open,	read,	and	write.

An	unusual	feature	of	UNIX	is	its	extension	of	the	file	concept	to	10	manage-ment.	10	devices	are	treated	as	special	types	of	files,	with	device-specific	IO	driverroutines
serving	to	create	a	filelike	interface	to	UNIX.	Hence	all	IO	operations	can	bemanipulated	by	file	management	operations	such	as	open,	close,	read,	and	write,which
implement	START	IO,	HALT	10,	INPUT,	and	OUTPUT,	respectively.	Thisapproach	makes	UNIX	unusually	independent	of	the	characteristics	of	the	10	devicesattached	to
the	host	system	and	enhances	this	operating	system's	hardware	indepen-dence.	File	concepts	are	also	used	for	more	general	interprocess	communication.	Aprocess	can
send	(write)	information	to	one	end	of	the	special	queuelike	file	called	apipe,	and	the	information	can	be	received	(read)	from	the	other	end	by	a	second	pro-cess.

Directory

/usr/lerrie

File/usr/lom/mail

Figure	7.54

Organization	of	the	UNIX	file	system.

7.3

PARALLEL	PROCESSING

Computer	performance	can	be	increased	by	executing	many	instructions	simulta-neously	or	in	parallel.	This	section	examines	processor-level	parallelism	in	com-puters,
focusing	on	the	use	of	multiple	CPUs	to	achieve	very	high	throughput	andfault	tolerance.
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7.3.1	Processor-Level	Parallelism

Although	computer	performance	has	increased	steadily	thanks	to	faster	hardwaretechnologies	and	processor	designs,	many	important	computational	problemsremain
beyond	the	capabilities	of	the	fastest	current	machines	[Hwang	1993].Some	computer	designers	believe	that	processor	and	memory	technologies	areapproaching	physical
limits	on	their	size	and	speed.	Size	reductions	and	speedincreases	well	beyond	present	levels	are	feasible,	but	their	cost	may	not	be	accept-able.	One	way	to	address	these
issues	is	to	exploit	processor-level	parallelism,	forexample,	by	building	computers	containing	large	numbers—perhaps	hundreds	orthousands—of	low-cost	processors	that
can	work	in	parallel	on	common	tasks.Suppose	that	such	a	computer	P(n)	is	constructed	by	combining	n	copies	of	a	single(sequential)	computer	P(\).	If	a	task	T	can	be
partitioned	into	n	subtasks	of	similarcomplexity	and	Pin)	can	be	programmed	so	that	its	n	processors	execute	the	n	sub-tasks	in	parallel,	then	we	would	expect	Pn	to
process	T	about	n	times	faster	thanP(l)	can	process	it.	In	contrast,	instruction-level	parallelism	(section	6.3)	aims	atspeeding	up	the	single	processor	P(	1)	and	can
increase	performance	only	by	a	fac-tor	of	10	or	so.

A	further	advantage	of	processor-level	parallelism	is	tolerance	of	hardwareand	software	faults.	While	failure	of	its	CPU	is	almost	always	fatal	to	a	sequentialcomputer,	a
parallel	computer	can	be	designed	to	continue	functioning,	perhaps	ata	reduced	performance	level,	in	the	presence	of	defective	CPUs.

Illustration.	Consider	the	application	of	parallel	processing	to	the	smallnumerical	problem	of	computing	the	sum	SUM	of	N	numbers	(constants)	bx,b2,...,bN.	A
straightforward	algorithm	for	solving	this	problem	can	be	expressed	asfollows:

SUM	:=	0:

for	/	=	1	to	Ndo	SUM	:=	SUM	+	b[i]:

(7.6)

If	this	summation	algorithm	is	implemented	on	a	conventional	computer,	N	con-secutive	add	operations,	each	taking	time	7~add,	are	required.	Certain	other	book-keeping
operations	are	necessary,	such	as	initializing	SUM	to	zero,	and	theindexing	operations	implied	by	the	for-do	loop.	These	operations	depend	onimplementation	details	and
so	are	often	omitted	when	estimating	the	overall	com-plexity	of	the	computation.	Thus	N	x	Tadd	serves	as	a	rough	indication	of	the	time	asequential	computer	needs	to
execute	(7.6).	We	now	consider	in	detail	a	parallelprocessing	approach	to	this	problem.

KXAMPLE	7.7	SUMMATION	BY	\	ONE-DIMENSIONAL	ARRAY	MlLTIPttO-CESSOR.	Consider	a	hypothetical	computer	containing	n	identical	processors	Pr	each
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P,

Figure	7.55



One-dimensional	(linear)	array	of	n

processors.

of	which	is	a	small	sequential	computer	with	its	own	CPU	and	memory,	for	example,	anetwork	of	n	workstations.	The	n	processors	are	assumed	to	be	interconnected	in
thelinear	(one	dimensional)	array	configuration	depicted	in	Figure	7.55.	Each	P:	is	con-nected	by	dedicated	buses	to	its	left	and	right	neighbors,	/>,_,	and	P,	+	,	(where
theyexist),	and	communicates	with	them	by	means	of	two	10	operations	called	send	andreceive.	The	command	send(NEIGHBOR,	MESSAGE)	causes	P,	to	output	some
datacalled	MESSAGE,	typically	the	result	of	a	computational	step,	either	to	Pi_i	(whenNEIGHBOR	=	LEFT)	or	else	to	Pi+,	(when	NEIGHBOR	=	RIGHT).	When	P,	exe-cutes
receive(NEIGHBOR,	MESSAGE),	it	waits	for	MESSAGE	to	be	sent	to	it	fromthe	designated	neighbor;	then	Pi	inputs	MESSAGE	into	its	local	memory,	send	andreceive	can
be	programmed	by	message-handling	procedures	whose	implementationdetails	are	not	of	concern	here.	We	assume	that	the	processor	array	also	has	10	facili-ties
connecting	it	to	the	outside	world	via	the	right-most	processor	Pn,	as	suggested	inFigure	7.55.	By	repeated	execution	of	send	and	receive,	data	can	be	transferredbetween
any	processor	in	the	array	and	external	devices.

The	summation	(7.6)	can	be	solved	in	parallel	on	this	computer	as	follows:	Sup-pose	that	N	=	kn,	where	k	is	an	integer.	The	TV	input	numbers	to	be	summed	are
dividedinto	n	sets	of	k	numbers,	and	each	set	is	loaded	into	the	local	memory	of	one	of	the	navailable	processors.	Every	processor	is	provided	with	a	copy	of	a	summation
program,which	it	executes	on	its	k	numbers.	Since	all	processors	can	operate	in	parallel,	nk	addi-tions	resulting	in	n	partial	sums	can	be	performed	in	the	time	required	to
do	k	add	oper-ations.	The	partial	sums	must	then	be	summed	to	give	the	final	result.	We	assume	thateach	processor	Pt	transmits	its	result	to	its	right	neighbor	Pi+i,	which
then	adds	thereceived	sum	to	its	own	sum	and	transmits	the	new	result	to	Pi+2-	Thus	after	n	-	1sequential	summation	and	data-transfer	operations,	the	final	result	is
stored	in	Pn.

A	program	to	implement	the	foregoing	parallel	summation	scheme	appears	in	Fig-ure	7.56.	It	is	placed	in	the	local	memory	of	each	processor	P,	and	is	executed	usingthat
processor's	particular	data	set	(k	of	the	nk	numbers	to	be	summed).	Processor	Pi

{Each	processor	Pi	computes	the	sum	of	its	local	numbers	b[l:£]}SUM:=0

for	i:	=	1	to	k	do	SUM	:=	SUM	+	b[i];{Processor	P,	sends	its	local	result	SUM	to	P2)if	INDEX	=1	then

begin

if	n	>	1	then	send(RIGHT,	SUM);

end	else{Every	remaining	P,	waits	to	receive	an	external	result	from	P,_,}

begin

receive(LEFT,	LEFTSUM);

SUM	:=	SUM	+	LEFTSUM;

{Each	P,	except	Pn	sends	its	new	value	of	SUM	to	P,■	+	,}

if	INDEX	<	n	then	send(RIGHT,	SUM);

end,*

Figure	7.56

Parallel	summation	code	forthe	machine	of	Figure	7.55.

also	stores	a	variable	INDEX,	which	is	P,'s	own	address	i\	in	other	words,	each	P,"knows"	its	location	within	the	array	of	processors.	Similarly,	the	processor	Pn	at	theend	of
the	array	knows	that	it	has	only	one	neighboring	processor,	and	it	interprets	theprogram	of	Figure	7.56	accordingly.	The	communication	between	the	processors	issuch
that,	on	encountering	receive,	P,	waits	until	P,_,	has	completed	transmission	ofits	result	SUM,	which	P,	then	stores	internally	as	LEFTSUM.

The	time	T(n)	needed	to	execute	the	parallel	summation	algorithm	on	n	processorshas	two	main	components.	There	is	a	local	computation	time	TL	due	primarily	to	thek	=
N/n	sequential	additions	performed	in	parallel	by	each	of	the	n	processors.	Thistime	can	be	written	KxN/n,	where	Kx	is	some	constant	depending	on	the	time	needed	bythe
add	instructions	and	any	associated	bookkeeping	operations.	The	second	compo-nent	Tc	of	T(n)	is	the	communication	time	to	send	n	-	1	intermediate	results	from	leftto
right	and	the	time	needed	to	perform	the	final	n	-	1	additions.	Tc	can	be	written	asK2(n	-	1),	where	K2	is	a	constant	representing	interprocessor	communication
delays.Thus,	ignoring	minor	constant	terms,	the	n-processor	execution	time	is	approximatedby

T(n)	=	TL+TC	=	KxN/n	+	K2{n	-	1)

(7.7)

Since	K2	measures	the	time	for	a	slow	message-passing	IO	operation,	K2	is	much	largerthan	Kx.	Thus	the	reduction	in	computation	time	TL	due	to	increasing	the	number
ofprocessors	n	is	offset	by	the	increase	in	communication	time	Tc.	Trade-offs	of	this	kindbetween	computation	and	communication	times	are	common	to	parallel
processingtasks.	The	time	for	a	comparable	sequential	computer	to	solve	the	summation	isobtained	by	setting	n	to	one	in	Equation	(7.7),	yielding

T(l)	=	TL	=	KxN

(7.8)

As	expected,	the	local	processing	time	TL	increases	by	a	factor	of	n,	and	the	interpro-cessor	communication	time	Tc	reduces	to	zero.
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A	problem	closely	related	to	the	foregoing	one	is	to	compute	all	N	partial	sumsdefined	by	the	recurrence	relation

X:	=	x	_,	+	b	for	i	=	1,	2,...,	N

(7.9)

Comparing	this	to	(7.6),	we	see	that	the	latter	is	designed	to	compute	only	onenumber	SUM	=	xN.	However,	with	a	small	modification,	(7.6)	and	the	program	ofFigure
7.56	can	compute	and	store	the	ordered	set	or	vector	of	N	values	denoted(*!,	x2,...,	xN)	in	place	of	the	single,	or	scalar,	value	xN.	The	relation	(7.9)	can	berewritten	as	a
set	of	N	equations	thus:

-x,	+	x-,

-x2	+	x3

=	b2=	b3

(7.10)

-x

.V-l

+	xv	=	bx

The	solution	of	these	equations	is	the	required	vector	of	N	partial	sums.

Now	(7.10)	is	a	special	case	of	a	set	of	linear	equations,	which	have	the	follow-ing	general	form:
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01,1*1	+a\,2x2+	■■■	+	al,mxm	=	b\a2,lx\+a2.2x2+-+a2,nrXm	=	b2	0711)

Here	the	a,7's	and	b,'s	can	denote	either	integer	(fixed-point)	or	real	(floating-point)	numbers,	and	the	x^'s	are	integer	or	real	variables	whose	values	are	to	becomputed.
Equations	(7.11)	can	be	expressed	more	concisely	as



AxX	=	B

where	A	denotes	the	two-dimensional	matrix,	the	operator	x	denotes	matrix	multi-plication,	and	X	and	B	denote	(column)	vectors.	The	matrix	A	can	be	decomposedinto	a
set	of	n	row	vectors	or	m	column	vectors	so	that	the	solution	of	sets	of	equa-tions	like	(7.10)	and	(7.11)	is	essentially	a	vector-processing	task.	Problems	of	theforegoing
type	occur	frequently	in	scientific	computation,	and	their	regular	struc-ture	makes	them	well	suited	to	solution	by	parallel	processing.

Dependencies.	The	main	benefit	of	parallel	processing	is	faster	computation.A	price	is	paid,	however,	in	the	need	for	a	significant	amount	of	extra	hardware.Roughly
speaking,	increasing	the	number	of	processors	by	a	factor	of	n	makes	an/7-fold	increase	in	computing	performance	possible.	In	practice,	this	maximumspeedup	is	rarely
achieved	because	it	is	difficult	to	keep	all	members	of	a	set	ofparallel	processors	continually	working	at	their	maximum	rates.	Dependenciesamong	subtasks	can	force	a
processor	to	wait	until	other	processors	supply	resultsthat	it	needs.	In	the	parallel	summation	algorithm	for	the	linear	processor	array(Figure	7.56),	for	instance,	the
processors	must	wait	for	data	from	their	left	neigh-bors.	The	processors	in	a	parallel	computer	often	share	resources	such	as	memorybanks,	10	devices,	or	operating
system	routines,	which	can	be	used	by	only	oneprocessor	at	a	time.	A	major	issue,	therefore,	in	designing	and	programming	paral-lel	systems	is	to	avoid	conflicts	in	the
use	of	shared	resources.	The	extent	to	whichall	processors	can	be	kept	busy	depends	on	the	computer	architecture,	the	tasksbeing	performed,	and	the	way	in	which	the
tasks	are	programmed.

Parallel	computers	are	far	more	difficult	to	program	than	sequential	ones.	Asillustrated	by	Figure	7.56,	the	parallel	machines	require	special	programming	con-structs
that	allow	processors	to	communicate	with	one	another	and	to	specify	com-plex	actions	like	vector	operations.	Because	parallel	programming	is	still	poorlydeveloped,
achieving	an	acceptable	level	of	performance	requires	a	costly	softwaredevelopment	effort,	especially	when	programming	for	tasks	that,	unlike	Example7.7,	have	little
overt	parallelism.	Ordinary	programs	tend	to	contain	significantnumbers	of	inherently	sequential	operations	that	cannot	be	processed	in	parallel.As	discussed	later,	even	a
small	percentage	of	sequential	operations	can	have	alarge	negative	effect	on	the	performance	of	a	parallel	computer.	Removal	of	thesesequential	features	is	a	major
challenge	in	the	design	of	algorithms,	programminglanguages,	and	compilers	for	parallel	processing.

Classification	methods.	A	processor	such	as	a	CPU	operates	by	fetchinginstructions	and	operands	from	memory	M	(main	memory	or	cache),	executing	the

Processor	P Instruction Memory'	M

streamData

" stream

Figure	7.57

Instruction	and	data	streams	in	a	sequential

computer.

instructions,	and	placing	the	final	results	in	M.	The	instructions	form	an	instructionstream	flowing	from	M	to	the	processor,	while	the	operands	form	another	stream,the
data	stream,	flowing	to	and	from	the	processor,	as	suggested	in	Figure	7.57.Michael	J.	Flynn	has	proposed	a	broad	classification	of	processor-level	parallelismbased	on	the
number	of	simultaneous	instruction	and	data	streams	seen	by	the	pro-cessor	during	program	execution	[Flynn	1966].	Suppose	that	processor	P	is	operat-ing	at	maximum
capacity	so	that	its	full	degree	of	parallelism	is	being	exercised.Let	m{	and	mD	denote	the	minimum	number	of	instruction	and	data	streams,	respec-tively,	that	are	active.
ml	and	mD	are	termed	the	instruction-	and	data-stream	multi-plicities	of	P	and	measure	its	degree	of	parallelism.	Note	that	mx	and	mD	are	definedby	the	minimum,
instead	of	by	the	maximum,	number	of	streams	flowing	at	anypoint,	since	the	most	limiting	components	of	the	system—its	bottlenecks—deter-mine	the	overall	parallel
processing	abilities.

Flynn's	classification	divides	computers	into	four	broad	groups	based	on	thevalues	of	mx	and	mD	associated	with	their	CPUs.

•	Single	instruction	stream	single	data	stream	(SISD):	mx=	mD	=	1.	Conventionalmachines	with	a	single	CPU	capable	only	of	scalar	arithmetic	fall	into	this	cate-gory.
SISD	computers	and	sequential	computers	are	synonymous.

•	Single	instruction	stream	multiple	data	stream	(SIMD):	mx	=	1,	mD	>	1.	This	cat-egory	includes	such	early	parallel	computers	as	ILLIAC	IV	that	have	a	singleprogram-
control	unit	and	many	independent	execution	units.

•	Multiple	instruction	stream	single	data	stream	(MISD):	m{>	1.	mD	=	1.	Few	par-allel	computers	fit	well	in	this	class.	Fault-tolerant	computers	where	severalCPUs
process	the	same	data	using	different	programs	are	MISD.

•	Multiple	instruction	stream	multiple	data	stream	(MIMD):	m,	>	1,	mD	>	1.	Thiscategory	covers	multiprocessors,	which	are	computers	with	more	than	one	CPUand	the
ability	to	execute	several	programs	simultaneously.	An	example	exam-ined	later	in	this	chapter	is	the	Symmetry	multiprocessor	from	Sequent	Com-puter	Systems	Inc.

The	foregoing	classification	depends	on	a	somewhat	subjective	distinctionbetween	control	(instructions)	and	data.	It	is	also	essentially	behavioral	in	that	itsays	nothing
about	a	computer's	structure.	We	turn	next	to	some	ways	of	classify-ing	parallel	computers	based	on	their	interconnection	structure.	Every	computer

consists	of	a	set	of	n	>	1	processors	(CPUs)	P,,	P2	P„	and	m	>	0	shared	(main)

memory	units	A/,,	A/,,...,	Mm	communicating	via	an	interconnection	network	N,	asillustrated	in	Figure	7.58.	For	simplicity,	we	do	not	consider	IOPs	or	10	devices	inthe
classification	process.	In	a	conventional	SISD	computer	n	-	m	-	1,	and	N	is	thesystem	bus	over	which	processor-memory	communication	takes	place.	The	mem-ory	units
then	constitute	a	global	main	memory	that	provides	a	convenient	messagedepository	for	processor-to-processor	communication.	A	system	with	this	organi-zation	is	called
a	shared-memory-	computer.
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Processors Memories

Pi Pi Pn W, M2 Mm

Interconnection	network	A'

Figure	7.58

General	structure	of	a	computer	with	n	processors	and	m

memory	units.

A	global	shared	memory	can	be	a	serious	bottleneck,	particularly	when	theprocessors	share	large	amounts	of	information,	since	normally	only	one	processorcan	access	a
given	memory	module	at	a	time.	If	the	processors	have	their	ownlocal	memories,	then	the	global	memory	can	be	reduced	in	size,	or	even	elimi-nated	completely.	To
separate	the	functions	of	processing	(computation)	andmemory,	we	will	refer	to	a	CPU	or	IOP	with	no	associated	main	memory,	but	withother	temporary	storage	units
such	as	register	files	and	caches,	as	a	processing	ele-ment	or	PE.	A	processor	is	then	the	combination	of	a	PE	and	a	local	memory;	itcan	also	include	10	facilities	forming,
in	effect,	a	self-contained	computer.	In	asystem	with	little	or	no	global	memory,	the	processors	communicate	via	messagestransmitted	between	their	local	memories,	as	in
the	system	of	Figure	7.55.	In	thiscase	the	main	memory	is	the	sum	of	the	local	memories,	and	the	system	is	referredto	as	a	distributed-memory	computer.	The	term
message-passing	computer	is	alsoused	for	such	machines.	Figure	7.59	illustrates	the	main	structural	differencesbetween	shared-memory	and	distributed-memory
computers.

The	internal	structure	of	the	interconnection	network	N	is	also	used	to	classifyparallel	computers.	A	selection	of	interconnection	topologies	appears	in	Figure7.60.
Because	of	the	ease	with	which	it	can	be	designed	and	controlled,	the	singleshared	bus	(Figure	7.60a)	is	widely	used	in	parallel	as	well	as	sequential	comput-ers.	When	n,
the	number	of	PEs,	and	m.	the	number	of	memory	units,	are	large,very	fast	buses	are	required,	and	special	design	precautions	must	be	taken	to	mini-mize	contention	for
access	to	the	bus.	Bus	contention	can	be	relieved	(but	not	elim-inated	completely)	by	providing	several	independent	buses.	The	crossbarinterconnection	network	of	Figure
1.60b	is	a	special	kind	of	multiple-bus	system	inwhich	each	PE	has	a	(horizontal)	bus	linking	it	to	all	memories,	or	equivalently,each	memory	has	a	(vertical)	bus	linking	it
to	all	PEs.	Annxm	crossbar	allows	upto	min{n,m}	bus	transactions	to	take	place	simultaneously.	However,	in	the	worstcase	where	all	the	processors	attempt	to	access	the



same	memory	unit	Af,	simulta-neously,	the	number	of	bus	transactions	drops	to	one.	Although	crossbar	networkshave	often	been	employed	in	computer	systems,	their
hardware	complexity	quicklybecomes	very	high	as	m	and	n	increase.

Figures	7.60c	and	7.60a1	illustrate	networks	that	use	high-speed,	dedicated	con-nections	(uni-	or	bidirectional	buses)	to	link	the	system	components,	each	of	whichis	an
independent	processor	with	its	own	memory	and	a	small	group	of	neighbors.The	neighboring	processors	are	physically	close	and	cooperate	in	the	processing	ofcommon
tasks.	They	communicate	with	one	another	via	send	and	receive	IO	oper-ations	of	the	type	discussed	in	Example	7.7.	While	neighboring	processors	can

Processing	elements

Processors	with	local	memories

M,

PE,

PE?

Interconnectionnetwork	N
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(a)

Figure	7.59

(a)	Shared-memory	and	(b)	distributed-memory	computers.

(b)

communicate	rapidly	via	their	dedicated	bus	links,	communication	between	non-neighboring	processors	is	slower	and	requires	intermediate	processors	to	act	asstore-and-
forward	message-transfer	stations.	For	example,	to	transmit	data	D	fromPooo	to	P011	in	Figure	7.60c	requires	the	following	two	steps:	First	send	D	fromPqoo	to	a
neighbor	processor	such	as	P00l	and	store	D	there	temporarily.	Then	sendD	from	PQOl	to	its	neighbor	P011.Various	interconnection	structures	other	thanthose	of	Figure
7.60	have	been	proposed	for	parallel	computers,	but	few	have	beenimplemented	commercially.

The	computer	structure	in	Figure	7.60c	is	an	n-dimensional	hypercube,	alsocalled	a	{binary)	n-cube.	It	contains	2"	processors,	each	of	which	is	connected	to	nimmediately
adjacent	(neighboring)	processors.	In	the	example	n	=	3,	so	eight	pro-cessors	are	used,	and	the	cubelike	interconnection	structure	is	clear.	If	each	proces-sor	is	indexed	by
an	n-bit	binary	address	as	shown	in	Figure	7.60c,	then	P,	is	aneighbor	of	P}	if	and	only	if	their	addresses	i	and	j	differ	by	one	bit.	The	intercon-nection	structure	of	Figure
7.60d	is	that	of	a	tree,	in	this	case	a	binary	tree,	becauseeach	processor	(except	those	in	the	bottom	row)	is	connected	to	two	processors—its	"children"—in	the	row
beneath.	The	name	tree	derives	from	the	fanciful	resem-blance	of	Figure	7.60<i	to	an	upside-down	tree	in	which	processor	P{	x	is	the	"root,"and	processors	Ppy-PpjP~x
^Q	the	"leaves."	This	binary	tree	computer	contains	n	=2P-	1	processors,	so	the	number/?	of	levels	of	the	tree	is	approximately	log2«.	Asin	the	hypercube	case,
communication	between	neighboring	processors	(a	parentand	a	child)	is	fast,	while	communication	between	nonneighboring	processors	ismuch	slower.

Like	most	multiprocessors	with	specialized	interconnection	structures,-treecomputers	are	well	suited	to	certain	kinds	of	parallel	processing.	Consider	again
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Figure	7.60

Interconnection	network	structures:	(a)	single	bus;	(b)	crossbar;	(c)	hypercube	(3-cube);(d)	tree.
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the	summation	problem

SUM	=	bx	+	b2	+	...	+	bN

where	N	=	2P~	'.	It	can	be	solved	by	the	following	tree-oriented	parallel	algorithm:Load	the	input	operands	bl,b2,...,bN	into	the	2P	~	'	leaf	processors	of	the	binary
tree(Figure	1.60d).	Then	for	each	pair	bj	and	bJ+	,	stored	in	the	children	of	some	level-(p	-	1)	processor	P	{i,	transfer	bj	and	bj+	:	to	Pp_	Xi,	compute	the	sum	y7	=	bj
+bj+l,	and	store	it	in	the	parent	processor	Pp.ij.	This	reduces	the	number	of	operandsto	be	added	in	half,	and	all	are	now	stored	in	level-(p	-	1)	processors.	These
N/2operands	are	then	added	in	parallel	by	the	processors	in	level	p	-	2,	and	so	on.Eventually,	the	final	result	SUM	is	computed	by,	and	stored	in,	the	root	node	PlvThe
entire	summation	process	requires	p	-	1	~	log2	N	addition	times.

We	can	further	distinguish	computers	on	the	basis	of	the	unit-to-unit	connec-tion	paths	provided	by	their	interconnection	networks.	These	paths	can	be	static,that	is,	fixed
and	unchangeable,	or	dynamic,	that	is,	reconfigurable	under	systemcontrol.	The	single-bus	and	crossbar	interconnections	of	Figure	7.60	arc	examplesof	dynamic
interconnection	networks,	whereas	the	hypercube	and	tree	have	staticinterconnections.	The	system	bus	(Figure	7.60a)	allows	any	of	the	n	processors	toconnect	to	any	of
the	m	memories	for	one	or	more	bus	cycles,	for	example,	to	fetchan	instruction.	In	a	subsequent	cycle	some	other	processor-memory	pair	can	usethe	bus,	so	the
communicating	bus	units	vary	dynamically.	In	contrast,	each	pro-cessor	in	the	binary	tree	(Figure	7.60J)	has	dedicated	buses	to	its	nearest	neighborsand	must
communicate	with	other	processors	indirectly.

It	is	clear	from	the	preceding	discussion	that	the	same	computer	can	often	beclassified	in	several	ways,	depending	on	the	aspects	of	its	parallelism	that	are	sin-gled	out	for
attention.	A	computer	in	the	nCUBE	series,	for	example,	can	be	calleda	(distributed	memory)	multiprocessor,	an	MIMD	computer,	a	hypercube	com-puter,	or	a	(massively)
parallel	computer.
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Performance.	The	performance	of	a	parallel	computer	depends—often	incomplex	and	hard-to-define	ways—on	the	parallelism	inherent	in	its	architectureand	the	programs
it	executes.	Several	basic	performance	measures	encounteredearlier	in	the	context	of	pipelining	(section	5.3.2)	also	apply	to	processor-level	par-allelism.	An	example	is
the	speedup	S(n)	defined	by	the	ratio	of	total	executiontime	7(1)	on	a	sequential	computer	to	the	corresponding	execution	time	T(n)	on	thecomputer	whose	degree	of
parallelism	is	n.

S(n)	=

7X1)T(n)

(7.12)

In	Example	7.7,	where	N	numbers	are	summed	by	an	^-processor	array,	T(n)	and7/(1)	are	defined	by	Equations	(7.7)	and	(7.8),	respectively,	yielding	the	speedupformula:

S(n)	=

k,n

KlN/n	+	K2(n-	1)	l	+	Kn/k

Here	K	=	K2/Kl	is	a	system	constant,	and	k	=	N/n.	If	the	interprocessor	communica-tion	delays	are	ignored	by	setting	K2	to	zero,	then	S(n)	becomes	/?,	which	is	obvi-ously
the	maximum	speedup	achievable	with	n	processors.	On	the	other	hand,	if	K2

548	is	large	relative	to	/;,	it	is	possible	for	S(n)	to	become	less	than	one,	in	which	case	a

n	.	single	sequential	processor	with	no	interprocessor	communication	requirements	is

Parallel	Processing	faStef	than	an	"-Pressor	System!

A	related	performance	measure	expressed	as	a	single	number	(a	fraction	or	apercentage)	is	the	efficiency	E(n),	which	is	the	speedup	per	degree	of	parallelism,and	is
defined	as	follows:

E{n)	=	~Y	(7-13)

E{n)	is	also	an	indication	of	processor	utilization	and	may	be	so	named.	In	general,speedup	and	efficiency	provide	rough	estimates	of	the	performance	changes	thatcan	be
expected	in	a	parallel	processing	system	by	increasing	the	parallelismdegree	n—by	adding	more	processors,	for	instance.	These	measures	should	be	usedwith	caution,
however,	since	they	depend	on	the	programs	being	run	and	canchange	dramatically	from	program	to	program,	or	from	one	part	of	a	program	toanother.

The	influence	of	program	parallelism—or	the	lack	thereof—on	performancecan	be	seen	from	the	following	analysis.	Suppose	that	all	computations	of	intereston	a	parallel
processor	are	divided	into	two	groups	involving	arithmetic	operationsonly:	vector	operations	employing	vector	operands	of	some	fixed	length	TV	and	sca-lar	operations
where	all	operands	are	scalars	(N	=	1).	Let	F	be	the	fraction	of	allfloating-point	operations	that	are	executed	as	scalar	operations,	and	let	1	-	F	be	thefraction	executed	as
vector	operations.	Hence	1	-	F	is	a	measure	of	the	degree	ofparallelism	in	the	programs	being	executed	and	varies	from	one,	corresponding	toall-vector	operations,	to	zero
(all-scalar	operations).	Suppose	that	vector	and	scalaroperations	are	performed	at	throughput	rates	of	bv	and	bs,	respectively.	Let	theaverage	system	throughput	be	b	in
suitable	units	such	as	MFLOPS	(millions	offloating-point	operations	per	second).	Then	b,	by,	and	b%	are	related	by	the	follow-ing	useful	formula:



b	bs	bv

The	execution	time	for	a	single	TV-element	vector	operation	is	Tv	=	N/bv,	while	thatof	a	single	scalar	operation	is	Ts	=	\/bs.	These	parameters	are	related	by

NT.

o

where	T0	is	some	fixed	setup	time	that	is	independent	of	vector	length	and	n	is	thecomputer's	parallelism	degree.	When	TV	is	large,	T0	can	be	ignored	so	that
thisequation	reduces	to	Tv	=	N	TJn.	Substitution	into	Equation	(7.14)	yields

b	=	nb>	(7.15)

l	+	(/i-l)F

Since	b%,	the	scalar	throughput,	and	n,	the	processor	parallelism,	can	be	taken	to	beconstants,	Equation	(7.15)	defines	b	as	a	function	of	F.

Suppose	for	example	that	bs	=	10	MFLOPS	and	n	=	100.	Equation	(7.15)	thenbecomes	b	=	1000/(1	+	99f).	The	maximum	performance	of	1000	MFLOPS	occurswhen	F	=
0,	that	is,	when	there	are	no	scalar	operations.	When	F	=	0.01,	in	other

1000
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b(MFLOPS)

0.2	0.4	0.6	0.8

Fraction	F	of	nonparallelizable	operations

1.0

Figure	7.61

Illustration	of	Amdahl's	law	for	n	=	100.
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words,	when	1	percent	of	the	computations	are	scalar,	b	drops	from	1000	toapproximately	500	MFLOPS,	thus	cutting	the	throughput	in	half.	Increasing	F	to0.1	or	10
percent	reduces	b	to	less	than	100	MFLOPS,	an	order	of	magnitude	dropin	performance;	see	Figure	7.61.

This	analysis	suggests	that	the	performance	of	a	highly	parallel	computer	isvery	sensitive	even	to	small	numbers	of	nonparallel	(sequential)	operations,	a	con-clusion	that
has	been	verified	experimentally	for	many	types	of	parallel	machines.Hence	it	is	often	worthwhile	to	devote	considerable	effort	to	"parallelize"	pro-grams	for	such
machines	to	eliminate	sequential	operations.	If	we	take	the	speedupS(n)	to	be	bib	,	then	(7.15)	can	be	rewritten	as

S(n)	=

l	+	(n-l)F

(7.16)

With	F	interpreted	broadly	as	the	fraction	of	nonparallelizable	operations	orinstructions,	then	Equation	(7.16)	is	often	referred	to	as	Amdahl's	law,	after	GeneM.	Amdahl,
one	of	the	architects	of	the	IBM	System/360.

Besides	the	presence	of	nonparallelizable	code,	there	are	several	other	reasonswhy	a	computer	with	n	independent	processors	rarely	achieves	a	speedup	of	n.These
reasons	include	inefficiencies	in	task	distribution	(load	balancing)	amongthe	available	processors	and	contention	for	access	to	shared	system	resources,especially	memory
and	interconnection	networks.	It	has	been	conjectured	that	thespeedup	typically	achievable	with	n	processors	in	a	multiprocessor	system	rangesfrom	log2	n	to	nf\oge	n
(see	problem	7.30).

An	indication	of	the	influence	of	contention	for	shared	memory	on	perfor-mance	can	be	obtained	by	considering	a	system	containing	n	processors	P,,P2,-.,Pn	connected	to
m	shared	memory	units	MxMz,---Mm	via	a	crossbar	or
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Performance	of	a	shared-memory	multiprocessor.



similar	interconnection	network,	as	in	Figure	1.60b.	All	programs	and	data	used	bythe	processors	are	stored	in	the	m-unit	global	memory	and	are	accessed	via
thecrossbar	network.	It	is	reasonable	to	assume	that	the	instruction	or	data	bandwidthb	of	a	processor	P	is	proportional	to	the	rate	at	which	P.	accesses	memory.	The	lat-
ter	is,	in	turn,	proportional	to	the	average	number	of	busy	memory	units	B.	Supposefurther	that	the	probability	of	any	processor	/>■	generating	a	request	to	Mi	is	\lm\
inother	words,	the	memory	requests	are	distributed	uniformly.	Hence	the	probabilitythat	Mj	is	idle,	and	therefore	free	to	respond	to	memory	requests,	is	(1	-	\lm)"\
theprobability	p{	that	A/,	is	busy	is	1	-	(1	-	\lm)n.	If	Mi	is	busy	when	a	new	request	foraccess	to	it	is	received,	that	request	is	not	serviced	until	A/,	becomes	free	again.
Theaverage	number	of	busy	memory	units	B	is	therefore	given	by

B	=	2>,	=

1

m

(7.17)

As	might	be	expected,	if	m	is	fixed	and	n	approaches	infinity	(n	—>	°°),	then	B	—>	m.Similarly,	if	n	is	fixed	and	m	—>	<»,	then	Equation	(7.17)	implies	B	—>	n;	that	is,
allprocessors	become	busy.	Figure	7.62	plots	B	against	m	for	some	small	values	of	n.From	this	analysis	we	see	that	we	can	improve	the	performance	of	a	multiprocessorby
placing	information	that	is	frequently	accessed	by	f-	in	a	local	memory	assignedto	P:	while	limiting	the	use	of	global	memory	to	the	storage	of	infrequently
sharedprograms	and	data.

7.3.2	Multiprocessors

A	multiprocessor	is	an	MIMD	computer	containing	two	or	more	CPUs	that	cooper-ate	on	common	computational	tasks.	Multiprocessors	are	distinguished	from	multi-
computers	and	computer	networks,	which	are	systems	with	multiple	CPUsoperating	largely	independently	on	separate	tasks.	The	various	processors	makingup	a
multiprocessor	typically	share	resources	such	as	communication	facilities,	10devices,	program	libraries	and	databases	and	are	controlled	by	a	common	operatingsystem.

Motivation.	The	main	reasons	for	including	multiple	CPUs	in	a	computer	sys-tem	are	to	improve	performance	and	reliability.	Performance	is	improved	either	bydistributing
the	computation	of	a	large	task	among	several	CPUs	or	by	performingmany	small	tasks	in	parallel	using	separate	CPUs	A	multiprocessor	with	n	identi-cal	processors	can.
in	principle,	provide	n	times	the	performance	of	a	comparableSISD	system	or	uniprocessor.	A	major	goal,	therefore,	in	designing	an	/i-CPUmultiprocessor	is	to	achieve	a
speedup	Sin)	as	close	to	n	as	possible.	By	enablingsuch	resources	as	secondary	memory	to	be	shared,	a	multiprocessor	can	reduceoverall	system	costs.	Many
multiprocessors	also	have	the	advantage	of	scalability;that	is.	the	system	size	can	be	increased	incrementally	by	adding	processors	tomeet	growing	computation	needs.
Scalability	is	facilitated	by	making	all	CPUsidentical	and	allowing	each	to	execute	either	operating	system	(kernel;	or	usercode:	multiprocessors	with	these	properties	are
said	to	be	symmetric.	Finally,	sys-tem	reliability	is	improved	by	the	fact	that	the	failure	of	one	CPU	need	not	causethe	entire	system	to	fail.	The	functions	of	the	faulty	CPU
can	be	taken	over	by	theother	CPUs:	consequently,	multiprocessors	enable	fault	tolerance	to	be	incorpo-rated	into	the	system.

As	discussed	earlier,	multiprocessors	are	classified	by	the	organization	of	theirmemory	systems	(distributed	memory	and	shared	memory)	and	by	their	intercon-nection
networks	(dynamic	or	static;.	Shared-memory	and	distributed-memorymultiprocessors	are	sometimes	referred	to	as	tightly	coupled	and	loosely	coupled.respectively,
reflecting	the	speed	and	ease	with	which	they	can	interact	on	commontasks.	Multiprocessors	are	also	classified	by	the	number	of	processors	they	contain:Massively
parallel	machines	can	contain	thousands	of	processors.	Most	multipro-cessors,	however,	are	modestly	parallel,	containing	from	2	to	about	30	processors:such
multiprocessors	have	existed	smce	the	1960s.	The	relative	success	of	multi-processors	with	a	few	CPUs	stems	from	the	difficulty	of	programming	large	num-bers	of	CPUs
to	cooperate	efficiently.	The	lack	of	standard,	widely	used	languagesand	application	packages	for	parallel	programming	has	been	a	major	obstacle	towider	use	of
multiprocessors.
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Shared-bus	systems.	Most	commercial	multiprocessors	have	been	builtaround	a	single	shared	system	bus	B	because	of	B's	relative	simplicity	and	low	cost.The	CPUs,
memory,	and	10	units	are	attached	directly	to	B	and	time-share	its	com-munication	facilities.	Only	one	pair	of	units	can	use	B	at	a	time,	either	for	CPU-memory	or	IO-
memory	communication.	The	memory	units	and	10	devices	on	B	areglobal	to	all	the	processors:	hence	single-bus	multiprocessors	are	of	the	shared-memory	class.	If	the
access	time	to	the	shared	memory	is	the	same	for	each	proces-sor,	the	multiprocessor	is	said	to	be	of	the	uniform-memory	access	i	I'M	A	>	type.

The	global	bus	B	is	clearly	a	communication	bottleneck	in	shared-bus	mul-tiprocessors,	leading	to	contention	and	delay	whenever	two	or	more	units	requestaccess	to	main
memory.	In	practice,	memory	contention	limits	to	about	30	thenumber	of	CPUs	that	can	be	included	in	the	system	without	an	unacceptable	deg-radation	in	performance.
Figure	7.63	shows	that	a	single-bus	multiprocessor's	per-formance	can	be	improved	by	supplying	each	CPU	with	a	local	bus.	The	local	busis	connected	to	a	local	memory
unit	that	contains	part	of	the	shared	address	space:it	can	also	support	a	local	10	subsystem,	as	illustrated	in	Figure	7.63.	This	s>stemconfiguration	removes	most	of	the
routine	memorv	traffic	from	B	so	that	it	can	be
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Figure	7.63

Shared-bus	multiprocessor	with	global	and	local	resources.

reserved	primarily	for	interprocessor	communication.	Many	microprocessor	fami-lies	can	be	configured	as	multiprocessors	in	this	way.	The	Intel	Pentium,	for	exam-ple,
was	designed	for	use	in	shared-bus	multiprocessors,	with	standard	buses	likethe	PCI	bus	serving	as	local	buses.

Despite	its	relative	simplicity,	the	shared-bus	architecture	exhibits	some	of	thebasic	synchronization	problems	common	to	all	multiprocessors.	Consider	the	situa-tion	in
which	two	CPUs	share	a	region	R	of	global	memory	where	mutual	exclu-sion	(section	7.2.3)	applies;	that	is,	only	one	processor	should	have	access	to	theshared	region	at	a
time.	Access	to	R	is	conveniently	controlled	by	a	semaphore(flag)	F	that	indicates	whether	R	is	currently	being	used	by	some	other	process	(F	=1)	or	is	available	for	use	by
a	new	process	(F	=	0).	Before	it	attempts	to	access	R,	aCPU	first	reads	F,	which	must	be	stored	in	global	memory.	If	F	=	0,	the	CPU	thenchanges	F	to	1	and	proceeds	to
use	R.	If	it	finds	that	F	is	already	1,	then	it	does	notattempt	to	use	R.	The	mutual	exclusion	requirement	can	be	violated	if	it	is	possiblefor	two	CPUs	to	independently
access	the	semaphore	at	the	same	time	and	find	F	=0.	This	violation	can	occur	if	a	second	processor	CPU2	can	read	F	after	the	firstprocessor	CPU!	has	read	it,	but	before
CPU,	has	changed	F	to	1.	The	problem	liesin	the	fact	that	semaphore	flag	test-and-set	instructions	issued	by	the	CPUs	can	bebroken	down	into	interleaved	bus	cycles	as



follows:

Global	bus	cycle Action

i CPU,	fetches	semaphore	F	=	0.

i+l CPU2	fetches	semaphore	F	=	0.

i	+	2 CPU,	sets	F	to	1.

i	+	3 CPU2setsFto	1.

At	time	i	+	4,	both	CPU,	and	CPU2	assume	they	have	exclusive	control	over	thecritical	region	R,	with	potentially	catastrophic	consequences.	A	solution	to	this

problem,	which	is	discussed	in	section	7.3.1,	is	to	allow	semaphore	test-and-setinstructions	to	have	exclusive	control	of	the	system	bus	while	they	are	being	exe-cuted.
Such	instructions	lock	the	bus	until	their	execution	is	complete,	therebydelaying	any	test-and-set	instructions	awaiting	execution	by	other	CPUs	until	thefirst	CPU	has
safely	set	the	semaphore	to	busy.
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EXAMPLE	7.8	THE	SEQUENT	SYMMETRY	SHARED-BUS	MULTIPROCESSOR

[sequent	19	96].	The	Symmetry	multiprocessor	series	is	built	around	a	high-speedshared	bus,	multiple	CPUs	from	the	Intel	80X86/Pentium	series,	and	the	UNIX	operat-ing
system.	Symmetry	multiprocessors	can	be	variously	characterized	as	MEMD,shared	memory,	tightly	coupled,	scalable,	symmetric,	and	UMA.	They	are	typically-used	in
applications	such	as	on-line	transaction	processing	characterized	by	heavycomputation	requirements	and	a	need	for	high	reliability.

The	Symmetry	5000	system	introduced	in	1995	has	the	general	organizationdepicted	in	Figure	7.64.	It	contains	from	2	to	30	Pentium	CPUs	each	with	a	2MB	cache:there
are	no	other	local	memories.	The	CPUs	are	packaged	two	per	circuit	board;	thesystem	can	be	expanded	to	the	maximum	allowed	by	adding	CPU	boards.	The	main-memory
system	is	also	packaged	in	circuit	boards	that	facilitate	modular	expansion.	Thememory	is	interleaved	(section	6.1.2)	to	increase	performance,	and	an	error-
correctingcode	improves	reliability.	The	10	subsystem	includes	one	or	more	high-speed	IO	pro-cessors	designed	to	communicate	with	magnetic	disk	and	tape	memories	via
high-speedSCSI	buses.	Additional,	slower	IO	controllers	support	other	IO	devices,	as	well	as	var-ious	standard	external	interfaces	and	communication	protocols	such	as
Ethernet.

A	key	component	of	the	Symmetry	5000	is	its	proprietary	system	bus	that	linksall	processors,	memory	units,	and	IO	controllers.	This	Highly	Scalable	Bus	(HSB)contains	a
64-bit	data-address	bus	designed	to	transmit	(in	multiplexed	mode)	64-bit
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processors

IOcontrollers

YME	bus

Ethernet

FDDI	optical	bus

Additional	IO	devices

Figure	7.64

Organization	of	the	Sequent	Symmetry	5000	multiprocessor.

554	data	words	and	32-bit	addresses.	It	has	an	unusual	"pipelined"	data	transmission	mode

that	supports	a	simplified	form	of	package	switching,	which	allows	memory	and	10data	to	be	transmitted	in	bursts	whose	transmission	can	be	overlapped.	The	HSB	was

Parallel	Processing	designed	for	a	maximum	data	bandwidth	of	240	MB/s.

The	Symmetry's	operating	system,	DYNEX,	is	a	version	of	UNIX	with	enhance-ments	to	support	multiprocessing.	Each	CPU	acts	like	a	uniprocessor	that	is
executingindependently	under	UNIX	supervision;	it	executes	processes	from	a	list	that	all	theCPUs	share.	Interrupt	signals	are	generated	at	periodic	intervals	to	force	the
CPUs	toexamine	the	list	of	waiting	processes	and	schedule	a	high-priority	process	for	execu-tion.	This	approach	forces	all	CPUs	to	share	the	system's	workload.	To	avoid
conflictsamong	CPUs	when	executing	kernel	routines	stored	in	the	shared	memory,	a	sema-phore	mechanism	of	the	kind	discussed	earlier	enforces	mutual	exclusion.

Cache	coherence.	In	shared-bus	multiprocessors	like	the	Symmetry,	cachesplay	a	vital	role	in	reducing	the	contention	for	the	shared	system	bus.	Withoutcaches,
connecting	more	than	two	or	three	CPUs	to	the	same	bus	might	be	imprac-tical.	Typically,	each	CPU	has	a	private	one-	or	two-level	cache,	which	forms	alocal	memory	and
allows	the	CPU	to	access	data	and	instructions	without	using	thesystem	bus.	With	an	independent	cache	in	each	CPU,	the	possibility	exists	for	twoor	more	caches	to
contain	different	(inconsistent)	versions	of	the	same	informationat	the	same	time;	this	is	the	cache-coherence	problem.	This	problem	is	alleviated,but	not	solved,	by	using
write-through,	which,	as	discussed	in	section	6.3,	causesboth	the	cache	and	main	(global)	memory	to	be	updated	whenever	a	memory	writeoperation	occurs.	Suppose,	for
example,	that	one	CPU	updates	variable	X	in	bothits	cache	and	the	global	memory.	If	another	CPU	then	changes	X,	the	new	value	ofX	will	be	written	into	main	memory,
but	the	two	caches	will	contain	different	val-ues	for	X.	Subsequent	reads	from	these	caches	can	lead	to	inconsistent	results.	Thusto	ensure	coherence	we	need	a
mechanism	that	informs	each	cache	about	changesto	shared	information	stored	in	other	caches.

We	can	solve	the	cache-coherence	problem	with	either	hardware	or	software.One	software-based	solution	is	to	mark	(tag)	information	during	program	compila-tion	as
either	cacheable	or	noncacheable.	All	writable	shared	items	are	marked	asnoncacheable,	meaning	they	can	be	accessed	directly	only	from	main	memory.	Awrite-through
policy	that	requires	a	processor	to	mark	a	shared	cache	item	X	asinvalid,	or	to	be	deallocated,	whenever	the	processor	writes	into	X	can	then	ensurecache	coherence.
When	the	processor	references	X	again,	it	is	forced	to	bypass	thecache	and	access	main	memory,	thereby	always	acquiring	the	most	recent	versionof	X.	This	approach	can
significantly	degrade	system	performance,	however.	Inval-idation	also	forces	the	removal	of	needed	data	from	the	cache,	thus	increasing	itsmiss	ratio,	which,	in	turn,
increases	the	main-memory	traffic.

Hardware-based	methods	of	maintaining	cache	coherence	offer	the	advantagesof	higher	speed	and	program	transparency,	but	they	tend	to	be	expensive.	One	pos-sible



approach	is	for	a	processor	to	broadcast	its	write	operations	to	all	caches	andthe	global	memory	via	the	shared	bus.	Every	cache	controller	in	the	system	thenexamines	its
assigned	addresses	to	see	if	the	broadcast	item	is	presently	allocated	toit.	If	it	is,	the	cache	block	(line)	in	question	is	either	updated	or	marked	as	dirty(modified).	The
drawback	of	this	technique	is	that	every	cache	write	forces	allcaches	to	check	the	broadcast	data,	making	the	caches	unavailable	for	normal	pro-cessing.
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A	related,	but	less	costly,	hardware-based	method	known	as	cache	snooping	555equips	each	CPU	with	circuitry	to	continuously	monitor	or	"snoop"	on	system-busactivity
in	order	to	detect	references	by	other	processors	to	memory	addresses	cur-rently	in	its	cache.	The	CPU	can	also	signal	other	CPUs	that	it	has	a	copy	of	the
Organizationreferenced	item	and,	when	necessary,	modify	or	delay	the	other	CPUs'	main-mem-ory	accesses.	If	CPU2	attempts	to	read	(write)	memory	data	with	an
address	that	iscurrently	assigned	to	CPU,'s	cache,	CPU,	detects	this	attempt	in	what	is	called	asnoop	read	(write)	hit	by	CPU,.	On	making	a	snoop	hit,	CPU,	determines
whetheractual	or	potential	incoherence	exists	and	then	takes	appropriate	steps	to	eliminateit.	The	following	courses	of	action	are	typical:

•	Suppose	that	CPU!	makes	a	snoop	read	hit	when	its	cache	copy	of	the	requesteditem	is	dirty	and	it	has	not	yet	updated	main	memory—this	situation	can	occuronly	when
the	write-back	policy	is	used.	CPU,	signals	CPU2	to	suspend	its	readrequest	while	CPU,	updates	main	memory	by	writing	back	the	block	containingthe	requested	word.
Then	CPU!	signals	CPU2	to	complete	its	memory	read	oper-ation.

•	If	CPU,	makes	a	snoop	write	hit,	it	knows	that	its	own	cache	copy	of	therequested	item	is	about	to	become	dirty.	It	therefore	marks	that	copy	as	dirty.Hence	the	next	time
CPU,	tries	to	read	the	item	in	question,	a	cache	miss	occursthat	forces	CPU,	to	read	a	valid	copy	from	main	memory.

An	alternative	response	to	a	snoop	write	hit	by	CPU,	is	for	CPU,	to	capture	thenew	data	on	the	system	bus	as	CPU2	writes	it	to	global	memory.	CPU,	can	then	usethe
captured	data	to	update	its	cache.

EXAMPLE	7.9	THE	MESI	CACHE	COHERENCY	PROTOCOL	[MOTOROLA

1994;	anderson	and	shanley	1995].	To	maintain	consistency	in	a	multipro-cessor,	or	in	a	uniprocessor	with	independent	10	processors,	a	cache	controller	mustkeep	careful
track	of	the	state	of	each	cache	block	(line)	under	its	control.	It	does	so	byattaching	a	few	state	bits	to	every	block	stored	in	the	cache	data	memory	and	process-ing	the
states	according	to	some	coherence	algorithm	or	protocol,	as	it	is	often	called.Microprocessors	such	as	the	Pentium	and	some	PowerPC	models	employ	a	standardcache
coherence	protocol	based	on	the	following	four	states:

•	M	(modified):	The	block	has	been	modified	or	"dirtied"	by	a	recent	write	hit	to	thecache.

•	E	(exclusive):	The	block	is	"clean,"	that	is,	the	same	as	the	copy	in	main	memory,and	no	other	processor	has	a	copy.

•	5	(shared):	The	block	is	clean,	but	other	processors	may	have	a	copy.

•	/	(invalid):	The	data	in	the	block	is	not	valid.

A	cache-control	algorithm	using	these	states	is	known	as	the	MESI	coherence	protocolfor	obvious	reasons.	Figure	7.65	gives	a	slightly	simplified	version	of	the	MESI
proto-col,	which	shows	how	the	states	of	a	cache	block	change	in	response	to	various	readand	write	conditions,	assuming	that	a	write-back	policy	and	a	cache-snooping
mecha-nism	are	used.	We	also	assume	a	one-level	cache,	although	this	protocol	works	equallywell	with	multiple	cache	levels.

First	consider	the	effect	of	read	operations	on	the	state	of	a	cache	block.	Read	hitsto	the	block	leave	its	state	unchanged.	Read	misses,	however,	are	not	so	simple.	Whena
processor	P,	first	tries	to	read	the	(empty)	cache,	the	cache	controller	changes	allblock	states	to	/	(invalid)	and	forwards	the	read	request	to	main	memory.	Thus	/	actslike	a
reset	state	that	triggers	a	block	transfer	to	the	cache:	the	incoming	block's	state	is
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State-transition	graph	(simplified)	for	a	cache	block	using	the	MESI	coherence	protocol.

set	to	E	(exclusive)	if	no	other	processor	has	a	copy	of	the	same	block.	(An	initial	writealso	brings	into	the	cache	a	block	whose	state	is	marked	E.)	If	during	P{s	read
opera-tion,	a	snooping	processor	P2	signals	via	the	shared	bus	that	its	cache	has	a	clean	copyof	the	same	block,	in	which	case	no	incoherence	exists,	the	state	of	the	block
in	P,'scache	is	set	to	5	(shared)	instead	of	E.	If,	on	the	other	hand,	P2	signals	that	its	cache	hasa	dirty	(modified)	copy	of	the	same	block,	the	caches	are	no	longer
coherent.	Toresolve	this	incoherence,	the	signal	from	P2	causes	Px	to	postpone	its	memory	read	andto	relinquish	the	system	bus.	P2	then	assumes	the	role	of	bus	master
and	writes	its	mod-ified	block	back	to	main	memory.	P2	also	changes	the	state	of	its	copy	of	the	cacheblock	from	E	to	5	because	it	now	knows	that	the	block	in	question	is
shared.	This	statechange	is	specified	by	the	transition	from	£	to	5	marked	"snoop	read	hit"	on	the	rightside	of	Figure	7.65.	Finally,	the	first	processor	Px	repeats	its	main-
memory	read	requestand	obtains	a	clean	copy	of	the	block,	which	it	marks	as	5.

Now	consider	the	cache	block's	state	when	P,	addresses	a	write	hit	to	it.	If	the	tar-get	block	is	in	either	of	the	clean	states	5	or	E,	the	block's	state	changes	to	M
(modifiedor	dirty).	In	the	S	case	Px	signals	the	other	processors	that	it	is	writing	to	a	sharedblock;	they	respond	by	marking	their	copies	of	the	shared	block	/	(invalid).	The
modi-fied	cache	block	remains	in	the	M	state	in	Px	during	subsequent	reads	and	writes	to	it,unless	P,'s	own	snooping	detects	read	or	write	hits	addressed	to	the	same
block	inother	caches.

A	write	miss	by	P,	triggers	a	memory	read	operation	that	replaces	the	target	blockin	the	cache,	where	it	is	eventually	marked	M.	If	some	other	processor	P2	has	a	clean
(Sor	E)	copy	of	the	same	block,	P2	changes	the	state	of	its	copy	to	/.	If	P2	has	a	dirty	(M)copy	of	the	block	in	question,	P2	sends	a	signal	to	this	effect	to	Px,	causing	the
latter	todelay	its	memory	read.	P2	then	takes	control	of	the	system	bus	and	writes	its	modifiedblock	to	main	memory;	P2	also	changes	the	state	of	its	cache	copy	from	/,
since	itknows	that	the	copy	of	the	shared	block	in	main	memory	is	about	to	be	changed	by	Pt.Control	of	the	bus	is	then	returned	to	/>,,	which	completes	its	block	transfer.

Message-passing	computers.	As	developments	in	VLSI	technology	duringthe	1980s	ushered	in	powerful	one-chip	microprocessors	and	memory	(RAM)chips	with	capacities
in	the	multimegabit	range,	it	has	become	feasible	to	buildmassively	parallel	multiprocessors,	with	hundreds	or	thousands	of	processors.Multiprocessor	architectures	with
distributed	memory	systems,	where	interproces-sor	communication	is	by	message-passing,	avoid	most	of	the	contention	problemsinherent	in	the	use	of	single	shared
memories	and	buses.	Such	computers	can	pro-vide	extremely	high	performance,	but	they	also	pose	problems	in	algorithm	andprogram	design	that	are	far	from	being
satisfactorily	solved.

Various	static	and	dynamic	interconnection	structures	have	been	proposed	formassively	parallel	multiprocessors.	Static	structures	like	hypercubes	and	trees	areeasier	to
build	and	control	when	many	processors	are	involved.	Dedicated	buses	or10	communication	lines	typically	serve	as	interprocessor	links.	Neighboring	pro-cessors	can	then
interact	at	the	maximum	possible	rate,	with	little	interference	fromother	processors.	Interconnection	networks	are	selected	to	trade	hardware	cost	forcommunication
speed	in	some	class	of	applications.	The	hypercube	structureachieves	a	good	balance	between	these	parameters.	Consequently,	it	has	been	usedin	several	commercial
computers	of	the	massively	parallel	type	[Hayes	and	Mudge1989].

An	n-dimensional	hypercube	computer	is	characterized	by	the	presence	of	2"nodes,	each	consisting	of	a	processor	and	its	local	memory.	Each	processor	P,	hasdirect	links
to	n	other	processors	(its	neighbors);	these	links	form	the	edges	of	thehypercube.	A	set	of	2"	distinct	n-bit	binary	addresses	can	be	assigned	to	the	pro-cessors	in	such	a
way	that	P,'s	address	differs	from	each	of	its	neighbors	in	exactly1	bit;	Figure	7.60c	illustrates	hypercube	addressing	for	n	=	3.	Hypercubes	haveseveral	attractive
features:



•	A	hypercube	can	be	expanded	or	scaled	up	while	maintaining	a	good	balancebetween	the	number	of	nodes	and	the	cost	of	internode	communication.	As	n	isincremented
by	one,	the	number	of	nodes	doubles,	but	the	node	degree	and	themaximum	internode	distance	both	increase	only	by	one	(from	n	to	n	+	1).

•	A	hypercube	is	homogeneous	in	that	the	system	appears	the	same	when	viewedfrom	any	of	its	nodes.	This	feature	simplifies	programming	because	all	nodes	canexecute
the	same	programs	on	different	data	when	collaborating	on	a	commontask.

•	We	can	embed	other	useful	interconnection	structures,	such	as	rings	and	meshes,efficiently	in	the	hypercube.	We	say	that	(graph)	G	is	embeddable	in	H	if	andonly	if
every	node	in	G	can	be	mapped	into	a	distinct	node	in	H	such	that	allnodes	that	are	neighbors	in	G	are	also	neighbors	in	H.	In	other	words,	G	isembeddable	in	H	if	we	can
find	an	exact	(isomorphic)	copy	of	G	inside	H.

•	A	large	hypercube	can	support	multiple	concurrent	users	with	each	user	programassigned	to	a	private	embedded	hypercube	or	subcube	that	is	disjoint	from	otherusers'
subcubes.	For	example,	in	a	four-dimensional	hypercube	(Figure	1.66b),four-node	subcubes	can	be	assigned	to	two	users,	and	an	eight-node	subcube	canbe	assigned	to	a
third	user.

Embeddability	can	be	used	to	compare	different	interconnection	structures	formultiprocessors.	Let	Cx	with	(static)	interconnection	network	Nx	and	C2	with	inter-
connection	network	N2	be	computers	employing	similar	processors.	If	Nx	is
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(a)	A	3	x	4	mesh	and	(b)	embedding	the	mesh	in	a	four-dimensionalhypercube.

embeddable	in	a	sufficiently	large	version	of	N2,	then	C2	will	be	able	to	embed	C,.Therefore,	any	structure	embeddable	in	Cx	is	also	embeddable	in	C2,	and	C2	is	atleast
as	powerful	as	Cx	from	a	static	structural	viewpoint.	Referring	to	Figure	7.11,it	is	obvious	that	any	/c-node	system	can	be	embedded	in	a	system	of	k	or	morenodes	with
the	structure	of	a	complete	graph	(Figure	7.11/).	A	sufficiently	bigmesh-structured	system	can	embed	any	path	or	ring.	It	cannot,	however,	embed	ahypercube,	since	for	n
>	4,	every	node	of	an	^-dimensional	hypercube	has	greaterdegree	than	every	node	of	the	mesh.	A	hypercube	can	embed	both	the	ring	and	thestar	structures.	Less
obvious	is	the	fact	that	a	mesh	can	be	embedded	in	a	hyper-cube.	An	embedding	of	the	12-node	3x4	mesh	into	the	16-node	four-dimensionalhypercube	appears	in	Figure
7.66.	Heavy	lines	show	the	nodes	and	edges	of	thehypercube	that	correspond	to	those	of	the	mesh.

EXAMPLE	7.10	THE	nCUBE	HYPERCUBE	MULTIPROCESSOR	[HAYES	AND

mudge	i989;nCUBE	1990].	Hypercube	multiprocessors	were	proposed	as	early	as1962	at	the	University	of	Michigan,	but	the	first	working	machine	was	not	demon-strated
until	the	completion	of	the	six-dimensional	(64-node)	Cosmic	Cube	computer	atCaltech	in	1983.	Influenced	by	this	work,	several	commercial	hypercube	computers

were	introduced	in	the	mid-1980s,	including	Intel's	iPSC	series	and	the	nCUBE	(thenwritten	NCUBE)	series	developed	by	nCUBE	Corp.	The	original	nCUBE	1
familyincluded	hypercubes	of	various	sizes	up	to	a	10-dimensional	(1024	node)	machine.Subsequent	nCUBE	computers	increased	the	number	of	nodes	to	8192	=	213.

An	nCUBE	processor	node	is	equipped	with	a	set	of	high-speed	10	channels,	eachconsisting	of	a	serial	input	line	and	a	serial	output	line.	One	channel	connects	to	a	hostor
front-end	computer;	the	remaining	channels	connect	the	node	to	its	neighbors	in	thehypercube.	Processor-to-processor	communication	is	implemented	by
transmittingmessages	between	buffer	areas	in	the	local	memories	of	communicating	nodes.	Eachinterprocessor	link	has	both	an	address	register	pointing	to	its	message
buffer	area	anda	count	register	indicating	the	number	of	bytes	to	be	sent	or	received.	Once	a	processorinitiates	a	message	transfer,	the	processor	can	continue	with	other
tasks	while	the	inter-processor	message	transfer	proceeds	as	a	DMA	operation	between	the	memories	of	thecommunicating	nodes.	A	broadcasting	instruction	is	also
supported	that	allows	thesame	data	to	be	transmitted	to	all	processors	in	the	hypercube;	see	problem	7.38.

First	we	consider	interprocessor	communication	in	an	nCUBE	1	system.	Assumethat	an	n-dimensional	subcube	is	assigned	to	the	user	and	that	the	message	source
anddestination	nodes	have	the	binary	addresses	S	=	^„_,...5150	and	D	=	dn_l...dld0,respectively.	The	EXCLUSIVE-OR	function	R	=	S	©	D	=	rn_v..rlr0,	where	r,	=	s,	0dt	for
i	=	0,1,...,n	-	1,	controls	the	routing	process.	The	values	of	i	for	which	rt	=	1indicate	the	dimensions	of	the	hypercube	to	be	traversed	by	a	message	en	route	fromsource	to
destination.	The	operating	system	kernel	residing	in	each	node	that	receivesthe	message	reads	the	destination	address	D	(a	field	in	the	message	header);	computesR	=	P
©	D,	where	P	is	the	address	of	the	current	node;	and	scans	R	from	left	to	rightuntil	it	encounters	some	r■	=	1.	Node	P	then	forwards	the	message	to	the	neighboringnode
P"	whose	address	differs	from	P'	s	in	the	_/'th	bit.	If	R	=	0,	then	P	-	D	and	P	recog-nizes	itself	as	the	destination	node	and	proceeds	to	process	the	message.	Thus	in	a	six-
node	subcube	of	the	nCUBE	1,	a	message	being	sent	from	node	7	to	node	45	passesthrough	nodes	with	the	following	sequence	of	addresses:

5	=	000111	-»	100111	-»	101111	-»	101101	=D

This	store-and-forward	routing	method	sends	each	message	along	a	shortest	path	sothat	the	minimum	number	of	intermediate	nodes	relay	messages	between	the
sourceand	destination.	In	the	nCUBE	2	computer,	each	node	P	contains	a	high-speed	mes-sage-routing	unit	that	allows	messages	for	other	units	to	pass	though	P	without
affect-ing	P's	ongoing	operations;	this	approach	largely	eliminates	the	need	to	temporarilystore	messages	in	intermediate	nodes.



A	node	of	the	nCUBE	2	consists	of	a	full-custom	64-bit	CPU	on	a	single	IC,	plusa	six-chip	local	memory.	The	CPU's	architecture	resembles	that	of	the	Digital	VAXfamily;	it
has	a	CISC-style	instruction	set	with	fixed-point	and	floating-point	arithmeticinstructions	and	all	the	logic	necessary	for	memory	management	and	IO	control.	Itsspeedup
features	include	a	four-stage	instruction	pipeline,	an	I-cache	and	a	D-cache,	aswell	as	the	special	message	router	noted	already.	The	local	memory	size	can	range	upto	64
MB	per	node,	so	an	8192-node	system	can	have	a	distributed	memory	of	256	GB.With	a	modest	clock	rate	of	20	MHz,	each	processor	delivers	about	2.4
MFLOPS(assuming	64-bit	operations),	implying	a	peak	performance	of	around	2.4	x	8192	=19.7	GFLOPS,	so	the	nCUBE	2	was	classed	as	a	massively	parallel
"supercomputer."

The	structure	of	an	nCUBE	2	system	is	outlined	in	Figure	7.67.	The	hypercubearray	of	processors	H	is	packaged	into	printed-circuit	boards,	each	of	which	contains	a64-
node	hypercube	forming	a	subcube	of	H.	Each	processor	has	14	communicationchannels,	one	of	which	connects	to	an	IO	subsystem,	such	as	a	"farm"	of	IO	disksforming
the	system's	secondary	memory.	Many	IO	channels	to	the	hypercube	arrayenable	a	large	number	of	peripherals	to	operate	in	parallel	to	satisfy	the	nCUBE's
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Organization	of	the	nCUBE	2	hypercube	multiprocessor.

massive	computation	ability.	Each	channel	is	controlled	by	the	nCUBE	processor	usedin	the	hypercube	array.	Disk	storage	capacity	can	exceed	a	terabyte	(240	bytes),
mak-ing	the	nCUBE	well	suited	to	the	management	of	very	large	databases.

The	nCUBE	operating	system	provides	all	the	usual	UNIX	system	managementand	programmer	support	functions	(see	Example	7.8).	It	treats	a	hypercube	of	proces-sors
as	a	device,	which	in	the	UNIX	philosophy	is	a	special	type	of	file.	Consequently,a	hypercube	of	any	size	can	be	opened,	closed,	written	into,	and	read	from	like	anyother
UNIX	file.	This	feature	permits	the	operating	system	to	allocate	independent	sub-cubes	to	different	users	so	that	one	or	two	large	applications	or	many	small
applicationscan	share	the	processor	hypercube	concurrently.

Multistage	interconnection	networks.	Dynamic	interconnection	networksfor	multiprocessors	can	be	constructed	from	two-state	switching	elements	of	thekind	depicted	in
Figure	7.68.	Each	switch	5	has	a	pair	of	input	data	buses	Xj,X2;	apair	of	output	data	buses	ZUZ2;	and	some	control	logic	(not	shown).	All	four	busesare	identical	and	can
function	as	processor-processor	or	processor-memory	links.	Shas	two	states	determined	by	the	control	line	c:	a	through	or	direct	state	T,	as	illus-trated	in	Figure	7.68fr
where	Z,	=	X,	(Z,	is	connected	to	X[)	and	Z^	=	X2,	and	across	state	X	where	Zx	=	X2	and	Z2	=	X,	(Figure	7.68c).

Switch5

1	'"	-

2

Control	c(a)

X2	►

c=l(b)

Figure	7.68



(a)	Switching	element;	(b)	through	state	T;	(c)	cross	state	X.

*-	z,

•►	z,

By	using	5	as	a	building	block,	multistage	interconnection	networks	(MINs)can	be	constructed	for	use	in	massively	parallel	computers	[Siegel	1990].	Figure7.69	shows	a
small	MIN	that	has	12	switching	elements	arranged	into	three	stages(columns)	and	is	intended	to	provide	dynamic	connections	among	eight	processorsdenoted	i'ooo^in-
By	setting	the	control	signals	of	the	switching	elements	in	vari-ous	ways,	many	different	interconnection	patterns	are	possible.	The	processor-to-processor	connections
that	are	possible	depend	on	the	number	of	stages,	the	fixedconnections	linking	the	stages,	and	the	settings	of	the	switching	elements.	The	par-ticular	MIN	in	Figure	7.69
is	called	an	8	x	8	omega	network.	A	large	version	of	thisMIN	was	used	in	the	experimental	Cedar	multiprocessor	designed	at	the	Universityof	Illinois	in	the	1980s.	We	now
examine	the	major	characteristics	of	some	typicalMINs,	concentrating	on	those	designed	for	processor-to-processor	communication.

An	N	x	N	MIN	57V	provides	a	flexible	set	of	communication	links	between	TVprocessors,	which	are	the	sources	and	destinations	of	SN.	Since	the	processors	areidentified
by	n-bit	binary	addresses,	it	is	convenient	to	make	TV	=	2".	The	processor-pairs	that	are	connected	to	each	other	at	any	time	by	SN	are	determined	by	thestates	of	the
switching	elements,	each	of	which	can	be	in	either	the	through	(T)	orcross	(X)	state.	Control	logic	associated	with	the	MIN	sets	the	switch	statesdynamically	to	satisfy
interconnection	requests	from	the	processors.	A	particularMIN	state	is	retained	long	enough	to	allow	at	least	one	package	to	be	transferredthrough	the	network.	The
state	then	changes	to	match	the	source-destinationrequirements	of	the	next	set	of	packages,	and	so	on.	We	assume	that	a	processorcan	buffer	or	queue	its	outgoing
packages	until	the	MIN	is	ready	to	transfer	them.The	processors	accept	incoming	packages	as	soon	as	they	arrive.

A	fundamental	requirement	of	a	MIN	is	that	it	be	possible	to	connect	everyprocessor	P,	to	every	other	processor	P-	using	at	least	one	configuration	of	the	net-work;	this
feature	is	termed	the	full-access	property.	It	is	easy	to	show	that	theomega	network	of	Figure	7.69	is	a	full-access	network.	Figure	7.70	shows	the
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Three-stage	8x8	omega	multistage	interconnection	network	(MIN).
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Switch	settings	of	the	three-stage	omega	network	of	Figure7.69	to	connect	P^	to	each	ofthe	other	processors.

seven	unique	switch	configurations	needed	to	connect	Pqqq	to	each	of	the	other	pro-cessors;	here	S;J	=	T	(X)	indicates	that	switch	/	of	stage	j	is	set	to	the	through(cross)
state.	A	complete	network	configuration	in	which	P^	is	connected	to	P00lappears	in	Figure	7.71.	In	this	state	the	network	also	connects	P010,	P100,	and	P110to	Pon,
P101,	and	Pul,	respectively,	thus	providing	simultaneous	communicationamong	four	processor-pairs.	Reducing	the	number	of	stages	from	three	to	twoeliminates	the	full-
access	property.

Another	useful	property	of	a	MIN	is	the	ability	to	establish	a	connectionbetween	any	pair	of	processors	that	are	not	using	the	network,	without	altering	theswitch	settings
already	established	to	link	other	processors;	this	is	the	nonblockingproperty.	The	three-stage	omega	MIN	of	Figure	7.69	does	not	have	this	propertyand	is	therefore	a
blocking	network.	For	example,	suppose	that	Pqqq	is	already	con-nected	to	Pqqp	this	condition	requires	the	top	row	of	switches	to	be	set	to	TTX,	asspecified	in	Figures
7.70	and	7.71.	It	is	now	impossible	to	connect	P100	either	toP010	or	to	Pou.	The	preexisting	setting	of	S,	j	creates	a	path	from	PI00	through	stage

Stage	1

Stage	2

Stage	3



Figure	7.71

One	state	of	the	three-stage	omega	network.

1	to	S2	2-	No	links	exist	from	S2	2	to	S23,	the	third-stage	switching	element	con-nected	to	P0lQ	and	Pon;	hence	S22	cannot	be	set	to	forward	data	to	P010	or	PQn.This
type	of	blocking	causes	communication	delays	similar	to	those	occurring	in	asingle-bus	system	when	several	processors	attempt	to	use	the	system	bus	simulta-neously.
Nonblocking	MINs	require	an	excessive	number	of	switches	for	mostcomputer	applications.	An	NxNcrossbar	switch	is	an	example	of	a	nonblockingnetwork	because	it
allows	any	idle	row	to	be	connected	to	any	idle	column.	How-ever,	it	contains	N2	complex	crosspoint	switches,	whereas	anNxNomega	networkcontains	only	(N/2)	log2	N
simpler	2x2	switches.

A	few	basic	interstage	wiring	patterns	characterize	the	most	common	MINtypes	proposed	for	multiprocessors.	Each	such	pattern	is	a	mapping	vj/	from	a	set	ofsources
{S,}	to	a	set	of	destinations	{Dw{i)	}	for	/	=	0,1,...,N	-1.	Here	5,	is	the	addressof	an	output	port	of	a	processor	or	switching	element,	and	Dv(l)	is	the	address	of	theinput
port	to	which	5,	is	wired.	The	shuffle	pattern	is	defined	by	the	following	map-ping:

0(0	=	2i+l(2i)/Nj	(modulo	AO

(7.18)

Here	o	is	the	shuffle	function	illustrated	by	Figure	7.72a	for	N	=	8.	The	nameshuffle	comes	from	the	fact	that	the	destination	addresses	0,	1,2,	3,	4,	5,	6,	7	can	bemapped
into	(connected	to)	the	source	addresses	0,	4,	1,	5,	2,	6,	3,	7	by	interleavingthe	first	half	0,	1,	2,	3	of	the	address	sequence	with	the	second	half	4,	5,	6,	7	in	themanner	of	a
perfectly	shuffled	deck	of	cards.	Let	each	address	i	be	represented	bythe	corresponding	n-bit	binary	number	bn_lbn_2...b0.	An	equivalent	definition	to(7.18)is

o(/)	=	bn_2bn

boK-

(7.19)

indicating	that	the	shuffle	function	corresponds	to	rotating	the	source	address	1	bitto	the	left	to	determine	the	destination	address.	By	following	a	shuffle	connectionwith
N/2	switching	elements,	each	of	which	can	exchange	(cross)	a	pair	of	buses,we	obtain	the	single-stage	shuffle-exchange	network,	shown	in	Figure	1.12b	for	thecase	N	=	S.
The	omega	network	of	Figure	7.69	is	built	from	n	=	\og2N	shuffle-exchange	stages.

Another	useful	class	of	MINs	is	based	on	the	butterfly	connection	depicted	inFigure	7.73a.	The	4x4	single-stage	butterfly	network	appears	in	Figure	7.736;note	that	the
butterfly	connection	is	placed	after,	rather	than	before,	the	N/2	switch-ing	elements.	Consider	an	NxN	multistage	network	with	n	stages	1,2,	...,	n	and	Nport	addresses	i	=
0,	1,terfly	function	p\	is	defined	as	follows	fork	=	1,	2,...,	n	—	1:

.,	N	-	1,	where,	as	before,	i	=	brl_lbn_2"bQ.	The	klh	but-

PA,-i"	^+i^A-i	'Vo)	=	K-\	"	bk+lbob

k-\

b]bk

Thus	$k	interchanges	bits	0	and	k	of	the	source	address	to	obtain	the	destinationaddress.	For	example,	when	k	=	1	and	jV	=	4,	we	obtain

Pi	(00)	=	00P,(01)=10P,(10)	=	01P,(H)=11corresponding	to	the	interconnection	pattern	on	Figure	7.73a.
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Figure	7.72

(a)	Shuffle	connection	for	N	=	8	and	(b)	single-stage	shuffle-exchange	network.

The	connection	pattern	defined	by

er!(0	=	V«-A-3	~*i	(7-20)

is	called	the	inverse	shuffle	function	a-1.	Equation	(7.20)	is	the	same	as	Equation(7.19),	defining	the	shuffle	function	a	with	the	direction	of	the	address	bit
rotationreversed.	Figure	7.74	shows	a	16	x	16	version	of	a	MIN	called	the	indirect	hyper-cube	network,	which	in	the	N	x	N	case	consists	of	log2	N	stages	of	N/2
switchingelements;	the	wiring	patterns	following	the	stages	are	defined	by	(3,,	(32,	■■■>	Pn-i>CT1.	This	MTN's	name	comes	from	the	fact	that	it	can	easily	simulate	the
connec-tions	of	a	static	hypercube	interconnection	network;	see	problem	7.39.

Indirect	hypercube	and	shuffle-exchange	MINs	have	similar	properties.	Sup-pose	that	the	directions	of	all	the	arrows	in	an	N	x	N	shuffle-exchange	network	arereversed,
implying	that	the	shuffle	connection	a	in	each	stage	is	replaced	by	a-1.The	resulting	Nx	N	inverse	omega	network	and	the	N	x	Nindirect	hypercube	net-work	are
essentially	the	same	MIN	drawn	in	different	ways.	Consequently,	for

(a)

(b)

Figure	7.73(a)	Butterfly	connectionfor	N	=	4	and	(b)	single-stage	butterfly	network.

each	state	of	the	indirect	hypercube	network,	there	is	a	state	of	the	inverse	omeganetwork	that	connects	the	N	processors	in	exactly	the	same	way,	and	vice	versa.This
equivalence	is	not	obvious	and	explains	the	many	names	under	which	thisclass	of	MINs	appears	in	the	literature	(inverse	omega,	indirect	binary	n-cube,	but-terfly,	and	so
forth).

Since	an	address	contains	n	=	\og2N	bits,	at	least	n	=	log2N	stages	must	bepresent	for	an	N	x	N	MIN	to	have	the	full-access	property.	With	this	number	ofstages,	it	is	also
easy	to	determine	the	switch	settings	needed	to	connect	an	arbi-trary	pair	of	processors,	since	each	stage	controls	1	bit	(dimension)	of	the	addressspace.	We	illustrate	this
for	the	indirect	hypercube	MIN	of	Figure	7.74.	Supposethat	a	source	processor	with	binary	address	S	=	sn_lsn_2's0	is	to	be	connected	to	adestination	processor	with
address	D	=	dn_xdn_2d§.	As	in	the	static	hypercube

565

CHAPTER	7

System

Organization

Stage	1

Stage	2

Stage	3

Stage	4

Figure	7.74

16x16	indirect	hypercube	network.

566	routing	algorithm	(Example	7.10),	we	compute	R	=	S®D=	rn_lrn_2	rQ,	and	use	R

section	7	3	t0	contr°l	*e	MIN's	switch	settings.	If	r,	=	0,	then	all	the	switches	in	stage	i	+	1

Parallel	Processing	(assuming	again	that	the	stages	are	numbered	1,	2,	...,	n)	are	set	to	the	through	(T)state;	these	switches	are	set	to	the	cross	(X)	state	if	r,	=	1.	For
example,	Figure	7.74shows	the	switch	settings	to	connect	source	S	=	2	to	destination	D	=	14.	In	this	casei?	=	0010	©	1110=	1100,	requiring	two	T	and	two	X	switch
settings	as	indicated.The	heavy	lines	in	Figure	7.74	mark	the	path	along	which	packages	travel	from	Sto	D.	If	all	switches	are	set	to	T,	then	S	=	D,	so	each	processor	is
connected	to	itselfvia	a	path	through	log2/V	switches.	Changing	the	state	of	the	switch	in	stage	/	+	1along	this	path	from	T	to	X	connects	the	source	processor	to	the
destination	proces-sor	that	differs	from	it	in	the	ith	address	bit.	It	follows	that	there	is	only	one	paththrough	each	of	the	foregoing	(log2AO-stage	networks	linking	every
source-desti-nation	pair.

The	routing	of	packages	through	a	MIN	can	be	managed	by	a	centralized	con-troller	attached	to	the	network	that	examines	all	source-destination	address	pairs	S,D
generated	by	processors	and	sets	the	appropriate	switching	elements	to	the	statesspecified	by	R	=	S	©	D.	An	alternative	is	to	attach	R	as	a	routing	tag	to	each	pack-age	to
be	transmitted	from	5	to	D	and	to	use	R	to	set	the	switching	element	statesas	the	package	passes	through	the	MIN.	When	the	package	enters	a	switch	Sji+1	instage	/	+	1,
SjJ+l	examines	the	routing	tag	R	using	control	logic	built	into	theswitch	for	this	purpose.	&l+]	then	sets	its	own	state	to	T	if	r,	=	0,	and	to	X	if	rx■	=	1.Thus	the	centralized
controller	can	be	replaced	by	decentralized	control	logic	dis-tributed	throughout	the	MIN.	Each	package	determines	its	own	path	through	theMIN	and	so	can	be	viewed	as
self-routing.	For	example,	to	transmit	a	packagefrom	S	=	2	to	D	=	14	in	the	four-stage	MIN	of	Figure	7.74,	the	routing	tag	R	=r3r2riro	=	1100	is	appended	to	the	package
generated	by	the	source	processor	P2.The	switch	52	,	attached	to	P2	in	stage	1	inspects	bit	r0	of	R.	Since	r0	=	0,	switchS2i	sets	itself	to	the	through	state	T.	This	setting
causes	the	package	to	be	sent	tothe	topmost	switch	Sl2	in	stage	2,	which	also	sets	its	state	to	T,	since	r,	=	0.	Thepackage	proceeds	to	the	final	two	stages,	which	set
themselves	to	the	cross	state	X,since	r2	=	r3	=	1.

The	Butterfly	computer	developed	by	Bolt,	Beranek	and	Newman	Inc.	around1980	[Crowther	et	al.	1985]	and	its	successor	the	TC2000	introduced	in	1989	areexamples	of
commercial	multiprocessors	based	on	MINs.	They	are	shared-memoryMIMD	computers	in	which	the	MIN	connects	N	processors	to	N	memory	units	thatform	the	shared
memory.	In	the	original	Butterfly	multiprocessor,	the	processorsare	based	on	the	Motorola	680X0	series,	and	TV	ranges	from	1	to	256.	Every	proces-sor	contains	a
microprogrammed	coprocessor	to	handle	virtual	memory	manage-ment,	package	transfer	to	and	from	the	MIN,	and	related	functions.

The	Butterfly's	MIN	has	single-chip	4x4	switching	elements,	each	of	whichis	obtained	by	cascading	two	copies	of	the	basic	butterfly	network	of	Figure	7.72.Consequently,
the	processor-memory	interconnection	network	is	an	TV	x	TV	butter-fly	MIN	composed	of	log2/V	stages	of	2	x	2	switching	elements.	Data	transmissionthrough	the
network	is	by	bit-serial	packages,	which	can	be	transmitted	at	a	rate	of32	Mb/s	along	any	processor-memory	path.	Each	package	contains	its	destinationaddress	and	is
made	self-routing	in	the	manner	described	earlier	by	employing2	bits	of	the	destination	address	to	determine	the	setting	of	each	4x4	switchthrough	which	the	package
passes.	Should	two	packages	attempt	to	use	the	samelink	in	the	MIN	simultaneously,	one	is	allowed	to	proceed	and	the	other	is	retrans-



mitted	after	a	short	delay.	This	type	of	application-dependent	contention	increasesthe	execution	time	of	a	typical	program	by	only	a	few	percent.

7.3.3	Fault	Tolerance
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Fault	tolerance	has	been	defined	as	"the	ability	of	a	system	to	execute	specifiedalgorithms	correctly	regardless	of	hardware	failures	and	program	errors"	[Avizie-nis	1971].
It	is	of	some	concern	in	all	computer	systems,	while	in	applications	suchas	spacecraft	control	and	telephone	switching,	fault	tolerance	is	a	major	designgoal	[Siewiorek
and	Swarz	1992].	Most	hardware	failures	have	physical	causessuch	as	component	wear	or	electromagnetic	interference.	The	nature	and	frequencyof	these	failures	can	be
determined	experimentally,	which	makes	it	possible	tostudy	the	faults	and	their	consequences	using	analytic	or	simulation	models.	Soft-ware	faults	are	primarily	due	to
algorithm	or	programming	mistakes	(design	errors)and	so	are	more	difficult	to	deal	with.

Redundancy.	Fault	tolerance	is	intimately	associated	with	the	concept	ofredundancy.	When	a	component	fails,	its	duties	must	be	taken	over	by	other,	fault-free	components
of	the	system.	If	those	components	are	intended	to	improve	onlythe	reliability	of	the	system	and	do	not	significantly	affect	its	computing	perfor-mance,	they	are	termed
redundant.	Redundancy	can	be	introduced	in	several	over-lapping	ways:

•	Hardware	redundancy:	Multiple	copies	of	critical	hardware	units.

•	Software	redundancy.	Multiple	versions	of	programs	for	critical	operations.

•	Information	redundancy:	Error-correcting	or	error-detecting	codes.

•	Time	redundancy:	Repeating	or	retrying	critical	operations.

The	goal	of	these	redundant	design	features	is	to	prevent	failures	due	to	physicalfaults	or	design	mistakes	from	producing	errors,	that	is,	data	values	or	operatingmodes
that	lead	to	system	failure.	Information	redundancy	via	coding	methods	isdiscussed	in	section	3.2.1.	In	this	section,	we	examine	the	use	of	redundant	hard-ware	to	achieve
fault	tolerance.

Two	broad	approaches,	static	and	dynamic	redundancy,	have	been	identifiedfor	designing	fault-tolerant	systems.	Static	redundancy	refers	to	the	use	of	redun-dant
hardware	or	software	components,	which	form	a	permanent	part	of	the	sys-tem,	to	mask	the	error	signals	generated	by	faults.	One	form	of	static	redundancyreplaces	a
critical	unit	that	generates	a	word	X	with	n	>	3	copies	of	that	unit,	con-figured	to	generate	n	independent	copies	of	X	in	parallel.	If	the	unit	in	question	is	aprocessor,	then
the	resulting	system	is	a	type	of	multiprocessor.	The	n	versions	of	Xare	applied	to	a	circuit	called	a	voter,	which	is	designed	to	output	the	value	of	Xappearing	on	the
majority	of	its	n	input	buses.	Thus	errors	produced	by	any	of	thereplicated	units	are	masked	by	the	voter,	provided	more	than	half	of	the	units	pro-duce	the	correct	X
values	at	all	times.	A	system	of	this	type	with	n	identical	unitsand	a	voter	is	said	to	employ	n-modular	redundancy	(nMR).

A	frequently	implemented	version	of	nMR	is	triple	modular	redundancy(TMR),	in	which	n	=	3,	as	shown	in	Figure	7.75.	In	this	case	the	behavior	of	thevoter	is	defined	by
the	logic	equation

A	=	A	j	A	2	+	AiA-i	+	A	2	A	3
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Figure	7.75

Example	of	triple	modular	redundancy	(TMR).

where	+	denotes	the	(word)	OR	operation;	this	is	the	well-known	majority	func-tion.	The	voter's	output	X	always	has	the	correct	value,	assuming	that	no	more	thanone	of
Xx	^2^3	is	incorrect	and	that	the	voter	itself	does	not	fail	in	a	way	that	pro-duces	an	erroneous	output.	Thus	a	TMR	system	can	tolerate	faulty	behavior	by	anyone	of	its
triplicated	units.	Although	static	redundancy	can	be	implemented	at	anycomplexity	level,	it	is	normally	implemented	at	the	processor	level	where	the	repli-cated	units	are
CPUs,	memory	units,	switching	networks,	or	entire	computers.

Dynamic	redundancy	tolerates	faults	by	actively	reorganizing	the	system	sothat	the	functions	of	the	faulty	unit	are	transferred	to	one	or	more	fault-free	units.The
reorganization	is	usually	achieved	in	three	steps:

1.	Fault	diagnosis:	Diagnostic	procedures	are	carried	out	to	detect	the	fault	andisolate	it	to	a	replaceable	or	repairable	unit.

2.	Fault	elimination:	The	fault	is	removed	from	the	system	either	by	repairing	thefaulty	unit,	replacing	it	by	a	spare,	or	logically	reconfiguring	the	system	aroundthe	fault.

3.	Recovery:	Procedures	are	executed	to	restore	the	system	to	a	state	that	existedbefore	the	fault	occurred.	Normal	operation	is	resumed	from	that	point.

Although	more	complex	to	manage	than	static	redundancy,	dynamic	redundancyhas	the	advantage	that	faulty	units	can	be	rapidly	eliminated	from	the	system.	Inthe	static
case	faults	can	accumulate	undetected	until	a	total	system	failure	occurs.Figure	7.76	shows	an	example	of	a	fault-tolerant	system	employing	dynamicredundancy.	It	is
called	a	duplex	system	because	it	contains	two	identical	(dupli-cated)	copies	of	the	basic	nonredundant	or	simplex	unit.	The	two	units	operate	intandem,	performing	the
same	operations	on	the	same	(or	duplicated)	data	at	thesame	time.	A	circuit	called	a	match	detector	or	equality	checker	does	a	continuouscomparison	of	the	results
generated	by	the	duplicated	units.	When	the	match	detec-tor	finds	a	mismatch	indicating	the	occurrence	of	a	fault,	normal	operation	is	sus-pended	and	a	testing
procedure	is	initiated	to	identify	the	faulty	unit.	Onceidentified,	the	faulty	unit	is	disconnected	from	the	system,	logically	if	not	physi-cally.	The	system	can	then	be
restarted	in	simplex	mode	using	only	the	fault-freeunit.	The	failed	unit	can	be	repaired	off-line	and	eventually	restored	to	the	system.

U

u

Configurationcontrol

System Matchdetector i	► System



input output

n

U

Figure	7.76Example	of	a	du plex	systen 1.
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Redundant	disk	arrays.	Magnetic	hard	disks	(section	6.1.3)	are	the	principaltechnology	employed	for	secondary	memory	systems	in	computers.	While	provid-ing	large
amounts	of	storage	at	low	cost	per	bit,	disk	memories—both	magneticand	optical—have	several	drawbacks.

•	They	have	relatively	slow	data-transfer	rates.

•	Their	electromechanical	construction	makes	them	prone	to	both	transient	andcatastrophic	failures.

A	way	to	increase	the	data-transfer	rate	is	to	build	a	disk	memory	from	an	array	ofsmall	disk	units,	all	capable	of	operating	in	parallel.	With	n	such	parallel	units,
theeffective	data-transfer	rate	is	n	times	that	of	a	single	unit.	Furthermore,	includingredundant	disk	units	in	the	array	can	improve	fault	tolerance.	In	the	late	1980sthese
considerations	led	to	a	general	approach	to	disk-memory	design	known	asredundant	array	of	inexpensive	disks	(RAID),	which	has	since	been	widelyadopted	by
manufacturers	of	disk	memories	[Chen	et	al.	1994].

The	idea	behind	RAID	is	to	distribute	the	stored	data	over	a	set	of	disks	config-ured	to	appear	like	a	single	large	disk.	The	data	can	be	distributed	in	various	waysreferred
to	as	RAID	levels	0:6,	or	simply	as	RAID-0:6.	The	different	RAID	levels,all	of	which	are	illustrated	in	Figure	7.77,	provide	different	performance-costtrade-offs.	In	RAID-0,
the	n	disk	units	are	intended	to	increase	performance	only.There	is	no	redundancy	for	fault	tolerance,	and	so	the	system	is	vulnerable	to	thefailure	of	a	single	disk.	RAID-1
is	a	duplex	design	with	In	instead	of	n	units,	whereall	data	written	onto	one	disk	is	duplicated	on	another.	This	high-cost	approach	haslong	been	used	under	the	name	disk
mirroring	in	applications	that	must	recoverinstantly	from	a	fault.

The	remaining	five	RAID	organizations	have	less	redundancy	and	rely	on	var-ious	coding	schemes	to	implement	fault	tolerance.	RAID-2	employs	error-correct-ing	codes	of
the	type	found	in	RAMs	and	has	extra	disks	to	store	check	(parity)	bitsfor	all	data	words	stored	in	the	main	disks.	As	discussed	in	section	3.2.1,	to	achievesingle-error
correction,	we	need	c	check	bits	for	every	n	data	bits,	where	2l	>	n	+c	+	1.	Therefore,	c	~	log2n	redundant	disk	units	are	required	to	tolerate	singleerrors.	The	n	+	c
disks	of	RAID	2	can	be	thought	of	as	storing	(n	+	c)-bit	wojds,with	one	particular	bit	position	assigned	to	each	disk	in	interleaved	fashion.	(Other
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Figure	7.77

Redundant	arrays	of	inexpensive	disks	(RAID);	shaded	blocks	denote	redundant	data.

noninterleaved	storage	patterns	are	also	allowed.)	When	an	inconsistent	check	bitis	detected	during	a	read	operation,	the	erroneous	codeword	identifies	the	errone-ous
bit	and	hence	the	faulty	disk	that	contains	it.

It	is	not	necessary	to	have	RAID	in	order	to	detect	an	error	in	a	disk	unit,since	the	unit's	controller	can	easily	do	so	via	its	internal,	conventional	mecha-nisms	for	error
detection.	Hence	it	is	enough	to	store	a	single	parity	bit	in	order	tocorrect,	and	therefore	tolerate,	a	single	error	in	any	word.	This	approach	is	thebasis	of	RAID-3,	where
each	(n	+	l)-bit	data	word	bin_\bin_2"biQpi'\s	spreadover	an	(n	+	l)-unit	disk	array.	One	(redundant)	disk	stores	all	the	parity	bits	{/?,},and	its	contents	are	computed	on
the	fly	via	a	parity	equation	of	the	form:

Pl	=	bin_x	©	bin_2	©	©	bu	©	•	©	bl0	(7.21)

If	an	error	is	detected	in	disk;',	then	the	lost	or	damaged	b,,;s	in	disk	j	can	be	recov-ered	from	the	remaining	n	disks	according	to	the	following	equation	implied	by(7.21).

b,	t	=	bi	„_>	©	b:	„_■>	©

'i,n-\

i.n-2

©Vi®Vi®	®bi0@p,

Intuitively,	the	parity	disk	stores	the	"sum"	of	the	data	on	the	other	disks.	On	a	diskfailure	the	lost	data	is	obtained	by	"subtracting"	the	data	on	the	n	-	1	good	disks

from	the	contents	of	the	parity	disk.	(Recall	that	the	EXCLUSIVE-OR	operation	©corresponds	to	sum	or	difference	modulo	2).

The	RAID-4	scheme	is	similar	to	RAID-3	except	that	blocks	of	arbitrary	sizeare	interleaved,	rather	than	individual	bits.	Because	the	single	parity	disk	tends	toact	as	a
bottleneck—it	does	not	participate	in	read	operations,	for	example—RAID-5,	which	distributes	the	parity	bits	evenly	over	all	available	disks,	is	pre-ferred	to	RAID-4.	In
RAID-4	and	5,	write	operations,	especially	short	writes,	arecomplicated	and	performance	is	reduced	by	the	fact	that	it	is	necessary	to	read	allthe	disk	units,	including	units
not	being	written	into,	in	order	to	compute	the	newparity	bits.	The	final	scheme,	RAID-6,	uses	two	redundant	disk	units	and	multibiterror-correcting	codes	to	tolerate	the
failure	of	up	to	two	disk	units.
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Reliability.	The	ability	of	a	system	to	tolerate	faults	can	be	measured	in	sev-eral	ways.	One	useful	fault-tolerance	measure	is	availability,	defined	as	the	frac-tion	of	its
operating	lifetime	during	which	the	system	is	not	disabled	by	faults.	Theavailability	of	the	AT&T	No.	1	Electronic	Switching	System	(ESS),	one	of	the	ear-liest	computer-
controlled	telephone	exchanges	(first	deployed	in	the	1960s),	wasspecified	at	two	hours	of	downtime	over	an	expected	operating	life	of	40	years.This	value	is	equivalent	to
an	availability	of	99.9994	percent.

A	more	common	fault-tolerance	measure	is	reliability	R(t),	defined	as	theprobability	of	a	unit	or	system	surviving	(functioning	correctly)	for	a	period	ofduration	t.	The
reliability	of	a	unit	can	be	estimated	from	the	failure	statistics	for	alarge	number	of	samples	of	the	unit.	The	failure	rate	is	the	fraction	of	the	samplesthat	fail	per	unit
time.	For	most	physical	devices,	the	failure	rate	varies	with	time	inthe	manner	shown	in	Figure	7.78.	During	the	early	life	of	the	unit	(the	burn-inperiod),	a	high	failure
rate	is	experienced	that	reflects	faults	occurring	during	man-ufacture	or	installation.	A	high	failure	rate	is	again	encountered	toward	the	end	ofthe	unit's	life	(the	wear-out
period).	During	most	of	the	unit's	working	life,	how-ever,	failures	can	be	expected	to	occur	randomly	at	a	fairly	constant	rate;	thisperiod	corresponds	to	the	flat	central
part	of	the	"bathtub"	curve	of	Figure	7.78.

Analytic	approaches	based	on	probability	theory	have	long	been	successfullyused	to	study	the	reliability	of	computer	systems.	Suppose	that	N(0)	copies	of	aunit	such	as	a
CPU	begin	their	operating	life	(after	the	burn-in	period)	at	time	t	=	0.Let	N(t)	be	the	number	of	units	surviving	after	time	t	so	that	the	number	of	failedunits	Nj-(t)	is	N(0)	-
N(t).	The	reliability	R(t)	of	the	unit	is	given	by	the	fraction	of

Burn-in
Operating

life
Wear-out

Failure	rate \j »,4	►

1

Time

Figure	7.78

Typical	variation	of	failure	rate	with	time.

572	surviving	units	at	time	t;	that	is
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Parallel	Processing	"(*>	~	/V(0)	(7.22)

which	can	be	interpreted	as	the	probability	of	any	unit	surviving	to	time	t.	Let	A.denote	the	unit's	failure	rate,	which,	in	accordance	with	Figure	7.78,	is	assumed	tobe
constant.	Therefore,	the	number	of	units	dNf	that	fail	during	the	small	interval	oftime	from	no	t	+	dt	is	given	by

dNf=XN(t)dt	(7.23)

Now	N(t)	=	N(0)	-	Nf(t)	and	N(0)	is	independent	of	t;	hence	dN	=	-dNf.	Substitut-ing	into	Equation	(7.23),	we	obtain

dN=-XN(t)dt

Now	(7.23)	implies	that	dR	=	dN/dN(0);	hence	dR	=	-\N(t)	dt/N(0).	Using	(7.23)again	to	replace	N(t)/N(0)	by	R(t),	we	obtain

f	=	~lR(t)

Integration	with	the	boundary	value	R(0)	=	1	yields

R(t)	=	e*	(7.24)

This	classical	exponential	law	of	failure	is	very	often	used	to	model	the	reliabilityof	the	components	in	a	computer	system.

From	the	reliability	R(t)	we	can	obtain	a	single	number	MTTF	called	the	meantime	to	failure,	which	is	a	useful	measure	of	the	expected	working	life	of	a	unit.Letting	F(t)
denote	the	unreliability	1	-	R(t),	MTTF	can	be	defined	as	follows:

MTTF	=	j	tf(t)dt	where/(0	=	^^	(7.25)

o	"t

The	MTTF	corresponding	to	the	exponential	reliability	function	(7.24)	is

MTTF	=	J	tXe~X'dt	=	\

so	the	expected	working	life	of	a	unit	with	an	exponentially	distributed	reliability	isthe	reciprocal	of	its	failure	rate.

System	reliability.	Once	the	failure	rates	of	its	individual	units	are	known	orcan	be	estimated,	it	becomes	possible	to	calculate	the	reliability	of	the	entire	sys-tem.	Two
basic	circuit	system	structures	from	a	reliability	point	of	view	are	theseries	and	parallel	configurations	appearing	in	Figure	7.79.	In	a	series	system	(Fig-ure	7.79a),	it	is
assumed	that	if	any	component	fails,	the	entire	system	fails.	Hencethe	system	reliability	which,	for	brevity,	we	denote	by	R	instead	of	R(t),	is	a	prod-uct	of	the	component
reliabilities.

R	=	l\R,

i=	1

«i

R2

Rn

(a)

Figure	7.79

Two	basic	reliability	structures:	(a)	series	and	(b)	parallel.

(*)
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In	a.	parallel	system	(Figure	1.19b),	on	the	other	hand,	all	components	must	fail	inorder	for	the	system	to	fail.	Hence	the	system's	unreliability	F	=	1	-	R	is	the	prod-uct	of
the	component	unreliabilities	1	-	R{,	from	which	it	follows	that

R	=	1



no-*,-)

(7.26)

As	these	equations	show,	putting	units	in	series	decreases	reliability,	while	puttingunits	in	parallel	increases	reliability.	A	parallel	connection	of	n	units	is	a	basicfault-
tolerant	structure;	we	find	it,	for	example,	in	duplex	and	TMR	systems,	wheren	=	2	and	3,	respectively.

Systems	can	sometimes	be	decomposed	into	series	and	parallel	subsystems,and	their	reliability	can	be	calculated	by	repeated	application	of	the	precedingequations.	For
example,	the	series-parallel	system	S	in	Figure	7.80	consists	of	twosubsystems	S,	and	52,	which	are	connected	in	series;	S{	and	52	are	themselves	par-allel	systems.
Assuming	that	each	individual	unit	has	reliability	R,	the	system	reli-ability	R(S)	is	given	by

R(S)	=	[l-(\-R)i][l-(l-R)2]

=	6R2	-	9R3	+	5R4-R5

Let	us	now	apply	the	preceding	equations	to	a	TMR	system	like	Figure	7.75.We	can	view	it	as	three	parallel	copies	of	U	in	series	with	a	voter	V.	Assume	that

R

R

s

R

Figure	7.80

Example	of	a	series-parallel	system

574	each	of	the	triplicated	units	has	reliability	R](t)	=	e~h	and	that	the	voter	has	reliabil-
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Parallel	Processing	t0	time	L	The	system	reliability	R3(t)	is	then	given	by

R3(t)	=	[P2(t)	+	P3(t)]Rv(t)Now	P2(t)	=	[2)(e~X'HI-e~X'),	while	P3(t)	='	(e~X'y,	hence

R3(t)	=	(3e~2X'-2e~iX')e~	v'	(7.27)

The	voter	is	usually	much	simpler	than	the	functional	units;	consequently,	its	reli-ability	is	very	high.	If	we	assume	/?v(r)	=	1,	that	is,	if	we	ignore	the	possibility	ofvoter
failure,	then	Equation	(7.27)	reduces	to

R3(t)	=	3e'2X'-2e'3X'	(7.28)

Figure	7.81	plots	this	equation	for	X	=	0.01.	The	reliability	of	a	single	unit	/?,(/)	=e-k	is	shown	for	comparison.	For	values	of	R	less	than	about	0.7/X,	the	reliabilityof	the
TMR	system	is	greater	than	that	of	the	simplex	system;	beyond	this	point	itsreliability	is	less.	In	practice,	TMR	reliability	can	be	higher	than	the	foregoinganalysis
suggests,	since	the	system	may	continue	to	function	correctly	even	if	twounits	fail.	For	example,	if	the	two	failed	units	never	generate	incorrect	output	sig-nals	at	the	same
time,	then	the	voter	still	produces	the	correct	output.The	unreliability	density	function/(f)	corresponding	to	(7.28)	is

fit)	=	jt[\-R3(t))	=	6e-2X'-6e-3X'Substituting	into	(7.25)	yields	the	mean	time	to	failure	MTTF3	for	a	TMR	system.

MTTF3=	J	t(6e~2X'-6e~3X')dt	(7.29)

o

Integrating	(7.29)	by	parts,	we	obtain

MTTF,	=	[t(-3e'2X'	+	2e-3X')L-\	(-3e~2Xt	+	2e~3X')dt	=	jr

Since	the	MTTF	of	the	corresponding	simplex	system	is	l/X,	the	MTTF	of	theTMR	system	is	the	smaller	of	the	two.	These	values	are	consistent	with	Figure7.81,	which
shows	that	while	the	TMR	system's	initial	reliability	is	high,	it	falls	offmore	rapidly	than	the	simplex	reliability	as	the	two	systems	age.

The	foregoing	reliability	analysis	considered	only	static	systems	in	which	thereare	no	maintenance	or	repair	activities.	No	matter	how	fault	tolerant	we	make	sucha
system,	it	can	be	expected	that	its	reliability	R(t)	-»	0	as	t	-»	°o.	With	repair,	how-ever,	it	is	possible	to	increase	the	chances	of	the	system	functioning	correctly	attime	t
beyond	R(t)	to	a	value	termed	the	{instantaneous)	availability	A{t).	In	gen-eral,	A(t)	is	the	sum	of	R(t),	the	probability	that	no	faults	occurred	up	to	time	t,	andthe
probability	that	the	system	failed	before	t	but	was	repaired	and	continues	to	sur-vive.	With	regular	repair	we	can	make	A{t)	approach	a	nonzero	steady-state	valueas	t
increases.	The	working	life	of	a	dynamic	system	that	is	always	repaired	after	afailure	occurs	consists	of	an	alternating	sequence	of	periods	of	fault-free	normaloperation
and	periods	during	which	the	system	is	down	for	repairs.	The	system's

1.0

Reliability	0.5

W	TMR

Vv	R3(t)	=	3<r°	02'	_	2e-O03<

XV Simplex

1 Rt(t)	=	e-°-0i'
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Figure	7.81

Reliability	comparison	between	TMR	and	simplex	systems.

actual	availability,	therefore,	over	its	entire	lifetime	L	is	the	ratio	of	its	total	fault-free	working	life	to	L.	If	the	repair	process	makes	the	system	"as	good	as	new,"then	the
expected	(average)	duration	between	the	completion	of	a	repair	and	theoccurrence	of	the	next	fault	is	the	system's	MTTF.	Similarly,	we	may	characterizethe	duration	of
the	repair	process	by	the	mean	time	to	repair	(MTTR),	which	is	theexpected	time	between	system	failure	and	the	completion	of	repair.	The	expectedavailability	A	of	the
system,	which	is	usually	what	is	meant	by	the	termavailability,	is	therefore	given	by	the	following	useful	formula:

A	=

MTTF

MTTF+MTTR

(7.30)

The	denominator	MTTF	+	MTTR	is	referred	to	as	the	mean	time	between	failures(MTBF)	and	is	approximately	the	same	as	MTTF	when	MTTR	is	very	small.Equation
(7.30)	indicates	that	availability	can	be	increased	either	by	increasing	thesystem's	inherent	reliability,	as	indicated	by	MTTF,	or	by	reducing	the	timeneeded	for	repair
after	a	fault	occurs.

We	conclude	with	an	example	of	a	commercial	fault-tolerant	multiprocessorseries,	the	Tandem	NonStop,	whose	technology	evolution	reflects	that	of	thecomputer	industry
in	general	[Kong	1994].	This	series	began	in	1976	with	theNonStop	I,	a	small-scale	multiprocessor	based	on	bipolar	(TTL)	MSI	integratedcircuit	technology.	Its	CPU	was	a
custom-designed	16-bit	processor	of	the	CISCtype,	with	a	hardwired,	stack-oriented	organization.	Operating	at	a	clock	frequencyof	10	MHz,	CPU	performance	was	about
0.7	MIP.	The	NonStop	I	had	no	cache,	avirtual	memory	of	512	KB,	and	each	system	contained	from	2	to	16	processors.	Adecade	and	several	models	later,	the	Tandem	VLX
(1986)	employed	bipolar	(ECL)gate-array	ICs	and	a	32-bit	microprogrammed	architecture	incorporating	suchspeedup	techniques	as	pipelining	and	a	64KB	unified	cache.
The	CPU	performancehad	increased	to	3.0	MIPS	at	12	MHz,	and	virtual	memory	had	expanded	to	1	GB.The	Tandem	Himalaya	series,	introduced	in	1993,	employs	the
MIPS	R4400	64-bit

576	microprocessor,	an	off-the-shelf	CMOS	RISC.	This	superscalar	microprocessor

supports	a	two-level	cache	and	a	virtual	memory	of	2M	B;	its	performance	is	in	the

Parallel	Processing	^	MIPS	range	at	200	MHz.	Tandem's	Himalaya	systems	are	designed	in	two-	or

four-processor	clusters	built	around	a	high-speed	shared	bus.	Massively	parallelsystems	containing	hundreds	of	processors	can	be	constructed	by	linking	clusterstogether
via	a	large-scale	interconnection	network	with	a	meshlike	structure.	Tan-dem's	goal	of	high	performance	coupled	with	high	hardware	and	software	integrityhas
increasingly	become	the	concern	of	the	entire	computer	industry.

EXAMPLE	7.11	THE	TANDEM	NONSTOP	HIMALAYA	MULTIPROCESSOR

[KONG	1994].	Starting	in	the	mid-1970s,	Tandem	Computers	Inc.	was	the	first	com-puter	maker	to	focus	on	commercial	applications	with	high	availability	as	the
principaldesign	goal.	An	important	example	is	on-line	transaction	processing	(OLTP),	such	assecurities	trading	or	on-line	ticket	reservation,	where	even	a	brief	system
shutdown	canentail	huge	economic	losses.	Applications	of	this	sort	also	tend	to	have	very	high	per-formance	requirements.	Tandem's	"NonStop"	architectural	approach
was	developedwith	the	following	specific	objectives:

•	A	system	organization	that	prevents	any	one	hardware	fault—a	single-pointfailure—from	causing	a	crash	or	compromising	the	integrity	of	the	system	or	appli-cations
software

•	Dynamic	on-line	detection	of	faults,	removal	of	faulty	units	for	repair,	and	return	ofrepaired	units	to	service	while	redundant	components	keep	the	system	in	operation

•	Scalability	that	allows	processor,	memory,	and	10	capacity	to	be	increased	withoutaffecting	the	application's	software.

To	meet	these	objectives	and	remain	cost	competitive	with	mainstream	computermanufacturers,	Tandem	opted	for	a	modular	multiprocessor	architecture	in	which
themultiple	processors	provide	much	of	the	redundancy	needed	both	for	fault	toleranceand	for	high	performance.	Components	that	are	not	naturally	redundant	such	as
thepower	supply,	system	bus,	and	10	controllers	are	duplicated	to	ensure	that	all	theirsingle-point	failures	can	be	masked.	For	example,	disk	mirroring	(RAID-1)	is	used
toautomatically	create	backup	copies	for	all	data	in	secondary	memory.	Standard	codingtechniques	check	for	errors	occurring	in	the	major	data	paths	and	main	memory.
TheNonStop	operating	system	kernel	is	built	around	duplex,	distributed	processes	thatexchange	messages	for	interprocess	communication.	Hard	disks	and	other	10
devicesare	connected	to	two	10	controllers,	one	of	which	"owns"	each	device.	10	deviceownership	can	be	switched	by	the	operating	system	at	any	time.	Software	control
ofeach	10	device	resides	in	a	redundant	primary/backup	pair	of	processes.	The	primaryprocess	manages	the	device	but	also	sends	"checkpoint"	information	to	the
backupprocess	to	keep	it	up-to-date	in	case	it	must	take	control	of	the	10	device.	User	pro-cesses	are	handled	in	a	similar	way;	when	a	user	process	starts	on	one
processor,	abackup	copy	of	the	same	process	is	automatically	started	on	another	processor.

Figure	7.82	shows	the	structure	of	a	four-processor	cluster	or	"section,"	which	isthe	basic	hardware	building	block	of	every	NonStop	system.	Each	processor	contains
aCPU,	a	portion	of	main	memory,	and	an	10	processor.	The	processors	in	a	section	com-municate	with	one	another	via	a	high-speed	interprocessor	bus,	the	Dynabus,
which	isduplicated.	A	set	of	IO	buses	(channels)	links	each	processor	to	a	set	of	10	controllersso	that	every	IO	controller	is	connected	to	two	processors.	The	processors	in
a	sectionare	tightly	linked	via	the	Dynabus.	The	sections,	in	turn,	can	communicate	via	a	LAN-style	network	to	form	a	loosely	coupled	system	containing	tens	or	hundreds
of	clusters.Such	configurations	are	well	suited	to	OLTP	servers,	which	typically	deal	with	hugenumbers	of	largely	independent	tasks.

Although,	as	noted	above,	the	Tandem	family	has	evolved	steadily	to	embraceadvances	in	hardware	technology,	the	overall	design	philosophy	depicted	in	Figure7.82	has
remained	remarkably	intact	from	one	generation	to	the	next.	The	originalNonstop	I	(1976)	was	based	on	a	custom-designed	16-bit	CISC	processor;	recent	prod-ucts	like
the	Himalaya	series	(1993)	use	off-the-shelf	64-bit	RISC	microprocessors.Each	Himalaya	CPU	actually	contains	two	R4400s	operating	in	lockstep,	with	one	pro-cessor	(the
slave)	serving	as	a	check	on	the	other	(the	master).	The	Himalaya	alsointroduces	a	novel	type	of	interconnection	network,	referred	to	as	TorusNet,	whichuses	fiber-optic
cables	to	connect	the	clusters.	Clusters	(sections)	can	be	linkedtogether	in	a	ring	network,	and	each	cluster	participates	in	separate	H	(horizontal)	andV	(vertical)	rings.
The	TorusNet	H	and	V	rings	accommodate	up	to	4	and	14	clusters,respectively,	so	56	clusters	or	224	processors	can	be	connected	in	this	way.	As	illus-trated	by	Figure
7.83,	the	interconnection	network	has	a	toroidal	structure	in	whichevery	cluster	is	directly	linked	to	four	others,	and	indirectly	to	all	the	clusters	in	thesystem.	By
providing	many	alternative	paths	among	its	processors,	a	large	Himalayasystem	can	tolerate	the	simultaneous	failure	of	several	of	its	clusters	and	their	intercon-nections.
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Processor	cluster	(section)	in	Tandem	NonStop	computers.
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Toroidal	interconnection	network	of	the	Tandem	Himalayacomputer.

7.4SUMMARY

The	communication	methods	used	in	a	computer	system	depend	on	the	physicaldistances	involved.	Intrasystem	communication	uses	shared	buses	that	transmitbinary
signals	a	word	at	a	time	over	short	distances.	Intersystem	communication,on	the	other	hand,	is	implemented	using	serial-by-bit	data	transmission.	Manyinterconnection
structures	and	transmission	media	are	possible,	and	they	offer	var-ious	trade-offs	between	bandwidth	and	cost.	Data	transfer	over	a	shared	bus	can	besynchronous	with
clock	control	or	asynchronous	with	handshaking	control	signals.At	any	time	only	two	units	can	be	logically	connected	to	the	bus:	a	bus	master,such	as	a	CPU,	an	10
processor	(IOP),	or	a	direct	memory	access	(DMA)	control-ler,	and	a	bus	slave	such	as	a	memory	unit	or	an	10	port.	Arbitration	techniquessuch	as	daisy	chaining	or	polling
determine	which	of	several	requesting	units	gainsaccess	to	the	bus.	Buses	are	characterized	by	the	numbers	and	types	of	data,address,	and	control	lines	they	contain	and
by	the	conventions	(protocols)	they	usefor	signal	selection,	synchronization,	and	arbitration.	Standard	buses	such	as	thePCI	bus	are	widely	used	as	system	or	10	(local)
buses.

A	computer	network	is	a	connected	set	of	computers	and	other	system	compo-nents	separated	by	large	physical	distances.	Various	standards	exist	for	computernetworks,
with	the	seven-layer	OSI	Reference	Model	providing	general	guidelinesfor	standardization.	A	representative	standard	architecture	for	local-area	network(LANs)	is
Ethernet,	which	employs	a	shared	cable	link	and	CSMA/CD	arbitration.

Input-output	systems	are	distinguished	by	the	extent	of	CPU	involvement	in10	operations.	The	use	of	CPU	programs	to	control	all	phases	of	an	10	operation	iscalled
programmed	IO.	By	providing	IO	devices	with	DMA	and	10	interrupt	con-trol,	data	transfers	can	be	implemented	independently	of	the	CPU.	Maximum	speedand
independence	are	achieved	by	providing	IOPs	capable	of	executing	their	ownprograms	to	manage	10	operations.	Overall	management	of	a	computer	is	handledby	an
operating	system,	which	is	responsible	for	efficient	sharing	of	a	computer'scentral	processing,	memory,	and	IO	resources,	both	hardware	and	software.	Theoperating
system	supervises	a	set	of	concurrent	processes,	which	implement	sys-tem	and	user	tasks.	Among	the	more	widely	used	operating	systems	are	UNIX,used	primarily	in
workstations,	and	Windows,	used	in	personal	computers.

The	motivations	for	introducing	parallelism	into	computer	systems	are	higherperformance	and	reliability.	Many	methods	have	been	proposed	for	classifyingcomputer
parallelism.	A	distinction	is	made	between	shared-memory	and	distrib-uted-memory	(message-passing)	computers;	parallel	processors	are	also	classifiedby	their
interconnection	structures.	Examples	of	static	interconnections	are	meshesand	hypercubes,	while	dynamic	interconnections	are	exemplified	by	shared	busesand
multistage	interconnection	networks	(MINs).	The	performance	of	a	parallelprocessor	depends	on	its	architecture	and	the	programs	it	executes.	A	basic	perfor-mance
measure	is	the	speedup	S(n),	defined	as	the	ratio	of	execution	time	on	asequential	computer	to	execution	time	on	a	comparable	computer	of	parallelism	n.The	speedups
achieved	in	practice	are	less	than	n	due	to	such	effects	as	memorycontention	and	the	presence	of	nonparallelizable	code.

A	computer	containing	more	than	one	CPU	is	a	multiprocessor.	The	CPUs	canbe	tightly	coupled	via	shared	memory	or	loosely	coupled	via	messages	transmittedbetween
the	processors'	local	memories.	Multiprocessors	have	been	designedaround	various	interconnection	networks	of	which	the	shared	bus	is	the	most	com-mon.	Advances	in
VLSI	technology	have	made	it	feasible	to	construct	massivelyparallel	distributed-memory	machines	using	such	interconnection	structures	ashypercubes.	Some	large
multiprocessors	rely	on	MINs	like	the	omega	network	forprocessor-memory	or	processor-processor	communication.	A	few	multiprocessorshave	fault	tolerance	as	a
primary	design	goal,	which	they	achieve	via	various	formsof	static	or	dynamic	redundancy;	for	example,	n-modular	redundancy	(nMR).	Faulttolerance	is	measured	by
reliability,	availability,	and	the	mean	times	to	failure(MTTF)	and	repair	(MTTR).
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7.5PROBLEMS

7.1.	Explain	why	the	single	shared	bus	is	so	widely	used	as	an	interconnection	medium	inboth	sequential	and	parallel	computers.	What	are	its	main	disadvantages?

7.2.	A	useful	characteristic	of	an	interconnection	network	represented	by	an	/i-node	graphG	is	its	bisection	width,	defined	as	the	minimum	number	of	edges	that	must	be



removedto	divide	G	into	two	parts,	such	that	each	part	contains	nil	edges	(if	n	is	even)	or	onepart	contains	one	more	edge	than	the	other	(if	n	is	odd).	A	small	bisection
width	cancorrespond	to	a	dataflow	bottleneck	and	so	is	undesirable.	Calculate	the	bisectionwidths	of	the	six	graphs	in	Figure	7.11.
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(a)

00

Figure	7.84

Two	proposed	interconnection	structures	for	computers:	(a)	pyramidand	(b)	cube-connected-cycles	network.

7.3.	A	pyramid	graph	consists	of	a	complete,	quaternary	(degree	4)	rooted	tree	of	k	levels,with	extra	links	to	make	every	level	into	a	two-dimensional	mesh.	With	the
apex(root)	as	level	1,	each	level	k	contains	4k~l	processors	forming	a21"'	x	2*_I	mesh.	Athree-level	pyramid	appears	in	Figure	7.84a.	(a)	Calculate	the	number	of	nodes,
themaximum	node	degree,	and	the	maximum	intemode	distance	(diameter)	in	a	&-levelpyramid,	(b)	A	pyramid	tries	to	combine	the	advantages	of	mesh	and	tree
networks.To	what	extent	is	it	successful?

7.4.	A	cube-connected-cycles	(CCC)	graph	is	formed	from	a	^-dimensional	hypercube	byreplacing	each	node	jc,	(which	is	of	degree	k)	of	the	hypercube	with	a	&-node	ring
orcycle	C,.	Each	node	of	C,	is	connected	to	a	distinct	edge	of	the	J-member	set	originallyconnected	to	xt.	A	three-dimensional	CCC	graph	appears	in	Figure	l.S4b.	(a)
Calculatethe	number	of	nodes,	the	maximum	node	degree,	and	the	diameter	of	a	fc-dimensionalCCC	graph,	(b)	To	what	extent	is	the	CCC	graph	an	improvement	over	the
hypercubeas	a	computer	interconnection	structure?

7.5.	Define	each	of	the	following	terms	in	the	context	of	bus	design:	handshaking,	lock	sig-nal,	master	unit,	skew,	tristate,	wait	state.

7.6.	Analyze	the	three	bus-arbitration	methods—daisy	chaining,	polling,	and	independentrequesting—with	respect	to	communication	reliability	in	the	event	of	hardware
fail-ures.

7.7.	Consider	the	timing	diagram	for	a	read	operation	over	the	PCI	bus	shown	in	Figure7.25.	(a)	Draw	a	similar	timing	diagram	to	show	a	four-word	read	transfer
occurring	atthe	maximum	possible	rate	(burst	mode),	(b)	Repeat	this	problem	for	a	four-wordburst-mode	write	operation.

7.8.	Intel	designed	the	Multibus	(IEEE	Standard	796)	as	a	standard	system	bus	for	micro-processor-based	computers.	It	supports	a	heterogeneous	set	of	8-	and	16-bit
micropro-cessors	in	multiprocessing	configurations.	Figure	7.85	summarizes	the	86	lines(excluding	20	for	power	and	ground)	that	make	up	the	Multibus,	(a)	How	large	a
mem-ory	address	space	is	supported	(without	special	logic)?	(b)	What	types	of	IO	addressingare	supported?

Signal	type Buslines Functions

Data	and	address DAT0A5 Data	bus	(16	lines)

ADR0.23 Address	bus	(24	lines)

Data-transfer	control MRDC Memory	read	enable

and	handshaking IORC IO	read	enable

MWTC Memory	write	enable

I	owe IO	write	enable

XACK Acknowledge

Bus	arbitration	and BREQ Bus	request

timing CBRQ Common	bus	request

BUSY Bus	busy

BCLK Bus	clock

BPRN Bus	priority	in

BPRO Bus	priority	out

Interrupt	control INTO:! Interrupt	request	(8	lines)

INTA Interrupt	acknowledge

Miscellaneous	control CCLK Master	clock

INIT System	initialization

BHEN Byte	high	enable

INH	1:2 Inhibit	memory	(2	lines)



LOCK Lock	bus
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Figure	7.85

Structure	of	the	Multibus	(IEEE	796)	standard	bus.

7.9.	The	Multibus	(Figure	7.85)	has	a	set	of	arbitration	lines	for	transferring	bus	controlamong	a	set	of	potential	master	units.	BUSY	is	activated	(BUSY	-	0)	by	the
currentbus	master,	and	this	line	prevents	any	other	unit	from	becoming	master	until	it	is	deac-tivated.	When	BUSY	=	1,	a	unit	can	gain	control	of	the	Multibus	via	the	bus
prioritylines	BPRN	and	BPRO,	which	can	be	daisy-chained	as	shown	in	Figure	7.86.	A	po-tential	master	then	requests	control	of	the	Multibus	by	deactivating	its	BPRO
line,which	prevents	all	lower-priority	units	from	accessing	the	bus.	The	requesting	unittakes	control	of	the	bus	if	its	own	BPRN	line	has	not	been	deactivated	by	a	higher-
priority	unit.	Design	a	faster,	parallel	method	for	arbitration	of	the	Multibus	that	uses

Multibus

fe Bus

< <:

5; master	2 ~

Highest	priority

Figure	7.86

Some	of	the	bus-arbitration	logic	in	the	Multibus.

Lowest	priority

582	only	the	existing	control	lines	and	a	small	amount	of	extra	logic.	Assume	that	up	to

eight	potential	bus	masters	can	be	present.
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7.10.	Compare	and	contrast	the	CSMA/CD	and	token-passing	network-arbitration	tech-niques	from	the	viewpoints	of	response	time,	fairness,	and	fault	tolerance.

7.11.	A	computer	network's	reliability	is	sometimes	measufed	by	its	connectivity.	The	nodeconnectivity	cN(G)	of	network	G	is	defined	as	the	smallest	number	of	nodes
whose	re-moval	disconnects	G,	that	is,	eliminates	all	paths	between	at	least	two	nodes,	or	elsereduces	G	to	the	trivial	1-node	0-edge	graph	GT.	(a)	What	is	the	node
connectivity	ofthe	ARPANET	as	it	appears	in	Figure	1.31?	(b)	What	is	cN(G)	when	G	=	Kn,	the	com-plete	graph	of	n	nodes?

7.12.	Another	measure	of	the	reliability	of	a	network	G	(see	the	preceding	problem)	is	itsedge	connectivity	cE(G),	defined	as	the	smallest	number	of	edges	whose	removal
dis-connects	G	or	reduces	it	to	GT.	If	G	has	n	nodes	and	m	edges,	then	prove	that	cE(G)	<

l(2m)/nj.

7.13.	Define	each	of	the	following	IO	control	methods:	programmed	10,	DMA	controllers,IOPs.	List	the	advantages	and	disadvantages	of	each	method	with	respect	to
program-design	complexity,	10	bandwidth,	and	interface	hardware	costs.

7.14.	Consider	a	32-bit	microprocessor	with	32-bit	data	and	address	buses.	The	CPU	clockfrequency	is	50	MHz,	and	a	memory	load	or	store	instruction	cycle	takes	two
clockcycles.	Memory-mapped	10	is	used,	and	the	CPU	supports	both	vectored	interruptsand	DMA	block	transfers	with	arbitrary	block	length.	Typical	interrupt	response
timeis	15	CPU	clock	cycles.	It	is	desired	to	add	to	the	system	a	hard	disk	drive	with	a	data-transfer	rate	of	N	bits/s.	Estimate	the	maximum	value	that	N	can	have	for	each
of	thefollowing	ways	of	controlling	the	disk	drive:	programmed	IO	and	DMA.	Show	yourcalculations,	and	state	all	your	assumptions.

7.15.	(a)	A	typical	CPU	allows	most	interrupt	requests	to	be	enabled	and	disabled	under	soft-ware	control.	In	contrast,	no	CPU	provides	facilities	to	disable	DMA	request
signals.Explain	why	this	is	so.	(b)	Suppose	you	want	to	be	able	to	occasionally	delay	a	CPU'sresponse	to	a	DMA	request	until	the	end	of	the	current	instruction	cycle.
Design	thenecessary	add-on	logic	to	implement	this	type	of	delayed	DMA	request,	assuming	thata	conventional	one-chip	CPU	is	being	used	whose	internal	hardware	or
instruction	setcannot	be	modified.	A	pair	of	existing	instructions	should	serve	to	turn	on	(enable)	andturn	off	(disable)	the	DMA	delay.	State	clearly	all	the	assumptions
underlying	your	de-sign.

7.16.	A	CISC	computer	consists	of	a	CPU	and	an	IO	device	D	connected	to	main	memoryM	via	a	one-word	shared	bus.	The	CPU	can	execute	a	maximum	of	IO6	instructions
persecond.	An	average	instruction	requires	five	machine	cycles,	three	of	which	use	thememory	bus.	A	memory	read	or	write	operation	uses	one	machine	cycle.	Suppose
thatthe	CPU	is	continuously	executing	"background"	programs	that	require	90	percent	ofits	instruction	execution	rate	but	no	IO	instructions.	Now	D	is	to	be	used	to
transfervery	large	blocks	of	data	to	and	from	M.	(a)	If	programmed	IO	is	used	and	each	one-word	IO	transfer	requires	the	CPU	to	execute	two	instructions,	estimate	the
maximumIO	data-transfer	rate	rMAX	possible	through	D.	(b)	Estimate	rMAX	if	DMA	is	used.

7.17.	In	addition	to	supporting	memory-IO	communication,	some	DMA	controllers	andIOPs	also	support	block	transfers	from	one	region	of	main	memory	to	another;	that
is,they	perform	memory-to-memory	communication	via	DMA	block	transfers,	(a)	Ex-plain	how	a	main-memory	block	transfer	can	be	implemented	by	an	IOP	such	as
theIntel	8089.	Describe	also	the	IO	instructions	needed	to	set	up	this	type	of	operation,	(b)What	are	the	advantages	and	disadvantages	of	this	type	of	main-memory	block
transfer

compared	with	implementing	the	same	data	transfer	by	means	of	a	BLOCK	MOVE	in-struction,	such	as	is	found	in	some	CPU	instruction	sets?

7.18.	Often	a	new	model	of	a	microprocessor	has	instructions	not	found	in	older	members	ofthe	same	microprocessor	family.	The	older	microprocessors	can,	however,	be
updatedby	providing	them	with	programs	that	implement	the	new	instructions	in	software,	aprocess	called	emulation.	(Note	the	resemblance	to	emulation	of	instructions
via	mi-croprograms.)	Explain	how	an	old	microprocessor	can	use	an	interrupt	mechanism	todetermine	when	a	particular	instruction	should	be	emulated	in	this	way,	rather
than	beexecuted	directly.

7.19.	Consider	the	pipelined	multiply	and	add	instructions	appearing	in	Figure	7.42.	Supposethat	the	number	of	execution	stages	of	multiply	is	increased	from	four	to	six
(EX	1:6)and	the	number	of	execution	stages	of	add	is	increased	from	one	to	two	(EX1:2).	Con-sider	execution	of	the	following	three-instruction	code	segment.

rl	:=	r4	x	rO;r2	:=	r4	+	r6;r3	:=	r2	x	r5;

(7.31)

7.20.

(a)	What	is	the	minimum	number	of	cycles	to	process	this	code	with	out-of-ordercompletion	allowed?	(b)	What	is	the	minimum	number	of	cycles	to	process	this	codewith
in-order	completion?	Include	in	your	answers	timing	diagrams	in	the	style	ofFigure	7.42.

Imprecise	interrupts	can	be	avoided	without	the	performance	penalty	of	in-order	com-pletion	if	a	check	is	made	in	advance	for	interrupt-causing	conditions.	For
example,floating-point	multiply	instructions	only	generate	interrupts	due	to	overflow	or	under-flow.	Overflow	occurs	only	if	the	sum	of	the	multiplier	and	multiplicand's
exponentsplus	one	exceeds	the	largest	valid	exponent	value;	a	similar	condition	holds	for	under-flow.	The	Pentium's	floating-point	logic	contains	special	hardware	to	test



for	condi-tions	of	this	sort.	If	the	potential	interrupt	conditions	are	not	present,	fast,	out-of-orderexecution	is	permitted	in	situations	like	that	of	Figure	7.42;	otherwise,	in-
order	execu-tion	is	enforced.	Suppose	that	in	the	preceding	problem,	the	multiplier	completes	a	testfor	potential	interrupts	in	two	clock	cycles.	What	is	the	minimum
number	of	cyclesneeded	to	process	the	code	(7.31)	when	no	potential	interrupts	are	detected	for	multi-ply?	Give	a	timing	diagram	for	this	case	in	the	style	of	Figure	7.42.

7.21.	Instructions	such	as	store	instructions	that	modify	memory	make	it	difficult	to	supportprecise	interrupts	in	pipelined	CPUs.	Why	is	this	so?	Outline	a	design	method
to	solvethis	problem.

7.22.	What	are	the	advantages	of	defining	two	distinct	classes	of	software	processes	for	sys-tem	management:	system	(supervisor)	processes	and	user	processes?	Describe
thehardware	features	typically	provided	in	a	CPU	to	support	this	process	dichotomy.

7.23.	The	following	three-instruction	program	written	in	80X86	assembly	language	is	pro-posed	for	implementing	the	wait	or	test-and-set	function	for	a	binary	semaphore
5;	allmajor	actions	of	the	instructions	are	specified	by	the	comments.	The	CPU	is	connectedvia	the	Multibus	(refer	to	Figure	7.85)	to	a	global	memory	storing	5.	The
MultibusLOCK	signal	is	not	activated	unless	the	prefix	LOCK	precedes	an	instruction	to	whichthe	signal	is	applicable.

WAIT:	TESTS,0

JNE	WAIT

Fetch	the	variable	S	and	compare	to	zero.	Set	the	Z	flagto	1	if	S	=	0	(not	busy);	otherwise,	set	the	Z	flag	to	0.

Jump	to	WATT	if	Z	=	1;	otherwise,	continue	to	nextinstruction.
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MOVS,	1	Set	S	to	1	(busy)

584	(a)	Explain	why	this	code	fails	to	meet	the	mutual	exclusion	requirement	for	sema-

phore	access,	(b)	Design	a	replacement	program	that	solves	this	problem,	using	com-ments	to	explain	your	instructions.	Indicate	how	exclusive	access	to	S	is	ensured.

Problems

7.24.	Consider	the	operating	system	state	described	by	the	resource	allocation	graph	G	ofFigure	7.51.	Let	resource	R6	and	the	edges	connected	to	it	be	removed	from	G
to	forma	new	graph	G'.	(a)	Does	G'	contain	a	deadlock?	{0)	Suppose	that	P3	and	P5	requestaccess	to	R3	in	G'.	Can	these	new	requests	lead	to	deadlock?	(c)	Suppose	that
P,	andP2	request	access	to	a	new	resource	/?7	added	to	G'.	Can	this	lead	to	deadlock?

7.25.	(a)	Identify	and	briefly	compare	the	mechanisms	available	for	interprocess	communi-cation	in	the	UNLX	operating	system,	(b)	What	are	the	advantages	and
disadvantagesof	treating	all	10	devices	as	logical	files	in	the	manner	of	UNDC?

7.26.	Redesign	the	parallel	summation	program	of	Figure	7.56	for	execution	by	the	binarytree	computer	whose	structure	appears	in	Figure	1.60d.	Assume	that	N=2P~1
and	thatthe	N	numbers	to	be	added	are	stored	in	the	leaf	nodes	initially.	The	final	sum	is	to	bestored	in	the	topmost	(root)	node.

7.27.	Classify	under	the	headings	(/')	shared/distributed	memory,	and	(if)	SIMD/MIMD/MISD,	the	following	computers	mentioned	in	this	chapter:	nCUBE	2,	Sequent	Sym-
metry,	Tandem	Himalaya.	Identify	each	computer's	interconnection	structure	type.

7.28.	Let	30	be	the	degree	of	parallelism	of	a	certain	parallel	computer	C.	Let/	be	the	frac-tion	of	the	operations	performed	by	C	that	are	strictly	scalar	(cannot	be
processed	inparallel).	Assume	that	all	other	operations	are	processed	at	the	maximum	possible(vector)	rate.	Let	20	be	the	speedup	achieved	by	C	for	the	tasks	under
consideration.

(a)	What	is/?	(b)	By	how	much	must/be	changed	to	increase	the	speedup	to	90	per-cent	of	the	maximum	possible?

7.29.	Consider	a	vector	supercomputer	that	processes	vectors	whose	average	length	is	N.	Theaverage	setup	time	for	vector	operations	is	T0,	and	the	CPU	(and	pipeline)
clock	periodis	rdock.	Derive	an	expression	for	the	efficiency	E	of	the	computer	in	terms	of	N,	T0,

and	Tdock-

7.30.	It	has	been	conjectured	from	observing	real	multiprocessors,	that	because	of	memoryand	bus	conflicts,	algorithm	inefficiencies,	and	so	on,	the	actual	speedup	S(n)
obtainedwhen	n	identical	processors	are	used	to	execute	a	single	large	program	Q	lies	betweenlog2	n	and	nl\o%e	n.	Show	that	if	we	assume	the	probability	of	being	able
to	assign	Q	toi	processors	is	l/i,	for	i	=	1,2,	...,	n,	we	obtain	the	upper	bound	nfloge	n	on	S(n).

7.31.	(a)	Let	s	denote	the	fraction	of	time	that	must	be	spent	on	the	serial	parts	of	a	pro-gram	Q,	and	let	p	denote	the	fraction	spent	on	the	parallelizable	parts	of	Q.
Assumingthat	s	+	p	=	1,	show	that	Amdahl's	law	for	the	speedup	S(n)	achievable	by	an	«-pro-cessor	computer	executing	Q	can	be	reformulated	as	follows:

S(n)	=	—±—s	+	p/n

(b)	Amdahl's	law	makes	the	implicit	assumption	that/?	is	independent	of	N.	In	prac-tice,	the	problem	size	tends	to	increase	with	n\	that	is,	problems	expand	to	use
theadditional	processors.	This	situation	suggests	that	the	time	for	a	serial	processor	toexecute	Q	should	be	represented	by	s	+	pn,	given	that	it	runs	in	time	s	+	p	-	I	on
theparallel	processor.	With	this	assumption,	derive	an	alternative	expression	for	S(n).Comment	on	its	implications	concerning	the	performance	of	massively	parallel	com-
puters.

7.32.	A	useful	measure	of	communication	delay	in	static	multiprocessor	interconnectionstructures	is	the	average	distance	dav	between	all	pairs	of	nodes	(processors).
Calculaterfav	as	a	function	of	n	for	any	three	of	the	six	structures	listed	in	Figure	7.11.

7.33.	A	multiprocessor	with	two	CPUs	Px	and	P2	employs	the	shared-bus	multiprocessor	585organization	(Figure	7.63)	and	the	MESI	cache-coherence	protocol	(Figure
7.65).	As-sume	each	local	memory	is	an	LI	cache.	List	the	actions	of	Px	and	P2	in	response	toeach	of	the	following	situations,	giving	the	final	states	of	all	affected	cache
blocks:(a)	Px	reads	a	word	Wx	that	is	in	its	cache	(a	read	hit).	P2	also	has	a	copy	of	Wx,	andboth	copies	are	marked	5	(shared),	(b)	Px	writes	to	Wx	in	its	cache	(a	write	hit).
AgainP2	has	a	copy	of	Wx,	and	both	copies	are	marked	5.	(c)	/>,	writes	to	Wx,	but	now	Wx	isnot	assigned	to	its	cache	(a	write	miss).	However,	P2	has	a	cache	copy	of	Wx
that	ismarked	E	(exclusive),	(d)	Px	reads	Wx,	but	Wx	is	not	assigned	to	its	cache	(a	readmiss).	Once	more,	P2	has	a	cache	copy	of	Wx	that	is	marked	E	(exclusive).

7.34.	Consider	the	MESI	cache-coherence	protocol	as	defined	in	Figure	7.65.	Some	of	theindicated	state	transitions	caused	by	regular	or	snoop	hits	and	misses	force	a
blocktransfer	from	global	to	local	(cache)	memory.	Identify	three	such	cases	and	briefly	ex-plain	why	the	block	transfer	is	needed.

7.35.	The	PowerPC	Model	603,	unlike	the	Model	601,	employs	a	three-state	cache	coher-ence	protocol	called	MEI,	which	is	defined	as	a	"coherent	subset"	of	the	MESI
protocolthat	omits	the	5	(shared)	state,	(a)	Since	the	processors	in	a	multiprocessor	configura-tion	of	603s	still	need	to	know	whether	their	cache	data	is	shared,	suggest
how	the	MEIprotocol	handles	this	issue,	(b)	Construct	a	state	diagram	similar	to	Figure	7.65	for	theMEI	protocol.

7.36.	With	Figure	7.66	as	a	guide,	devise	a	general	labeling	procedure	to	embed	a	two-dimensional	mesh	of	size	nx	x	n2	in	an	n-dimensional	hypercube	for	some	n.
Illustrateyour	method	by	using	it	to	embed	a	4	x	4	mesh	in	a	four-dimensional	hypercube.

7.37.	(a)	Show	by	construction	that	for	sufficiently	large	n,	it	is	possible	to	embed	a	&-nodecycle	(ring),	where	k	is	even,	in	an	^-dimensional	hypercube	graph,	(b)	Show
that	nomatter	how	large	n	is,	it	is	impossible	to	embed	the	pyramid	graph	of	Figure	7.84a,	orany	larger	pyramid,	in	a	hypercube.

7.38.	A	multiprocessor	node	must	sometimes	send	a	message	to	more	than	one	other	proces-sor,	a	task	referred	to	as	broadcasting.	Suppose	that	a	node	P0	in	an	n-
dimensional	hy-percube	system	has	to	broadcast	a	message	to	all	2"	-	1	other	processors.	Thebroadcasting	is	subject	to	the	constraints	that	the	message	can	be	forwarded
(retrans-mitted)	by	a	node	only	to	a	neighboring	node	and	that	each	node	can	transmit	only	onemessage	at	a	time.	Assume	that	each	message	transmission	between
adjacent	nodes	re-quires	one	time	unit.	In	a	two-dimensional	system,	for	example,	P0	could	broadcast	amessage	MESS	as	follows:	At	time	/	=	0,	P0	sends	MESS	to	Px.	At	t
-	1,	P0	sendsMESS	to	P2	and	Px	sends	MESS	to	F3,	thus	completing	the	broadcast	in	two	time	units.Construct	a	general	broadcasting	algorithm	for	the	^-dimensional
case	that	allows	amessage	to	reach	all	nodes	in	n	time	units.	Specify	clearly	the	algorithm	used	by	eachnode	to	determine	the	neighboring	nodes	to	which	it	should
forward	an	incoming	mes-sage.

7.39.	Figure	7.87	shows	a	three-stage	version	N	of	an	indirect	hypercube	MIN.	(a)	Supposethe	four	switching	elements	5,2,	S2	2,	53	2,	S4	2	forming	stage	2	are	set	to	the
X	state,while	the	eight	remaining	switches	are	set	to	the	T	state.	Show	that	these	switch	settingssimultaneously	connect	the	output	of	Ptjk\.o	the	input	of	P.-..	for	all	i,j,k.
(b)	Determinethe	switch	settings	needed	to	connect	P^to	/*-	for	all	i,j,k,	and	also	the	settings	need-ed	to	connect	Pijk	to	Pv7	for	all	i,j,k.	(c)	Explain	why	N	is	called	a
hypercube	network.

7.40.	Construct	a	diagram	for	a	four-stage	16	x	16	omega	network	in	the	same	style	as	Figure7.74.	Show	the	switch	settings	required	to	connect	input	port	3	to	output
port	12.

7.41.	The	through	(T)	and	cross	(X)	states	of	the	switching	element	5	of	Figure	7.68	can	beaugmented	by	the	two	additional	states	defined	in	Figure	7.88.	These	are
termed	the
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Figure	7.87

Three-stage	indirect	hypercube	network.

upper	(U)	and	lower	(L)	broadcast	states	because	they	allow	an	incoming	message	tobe	sent	to	both	output	ports	simultaneously.	Show	that	if	the	two-state	switch	5	of
Fig-ure	7.68	is	replaced	by	the	four-state	switch	5',	then	an	N	x	AT	omega	network	has	a	statethat	allows	data	on	any	of	its	input	ports	to	be	broadcast	directly	to	any
subset	of	itsoutput	ports.

7.42.	Show	that	deleting	the	final	stage	of	an	N	x	N	omega	network	with	n	=	log2N	stagesdestroys	its	full-access	property.

7.43.	A	MIN	linking	a	set	of	processors	is	said	to	provide	dynamic	full	access	if	any	proces-sor	Pj	can	be	connected	to	any	other	processor	P-	by	a	finite	number	of	passes
throughthe	MIN,	where	any	intermediate	processors	visited	act	as	store-and-forward	stations.Clearly	a	full-access	network	can	link	any	processor-pair	in	a	single	pass,	(a)
Showthat	if	stage	3	is	deleted	from	the	MIN	of	Figure	7.87	the	resulting	two-stage	MIN	hasthe	dynamic	full-access	property	but	not	the	full-access	property,	(b)	Is
dynamic	full-access	retained	after	deleting	two	stages	from	this	MIN?	Justify	your	answer.

7.44.	Determine	whether	or	not	the	4	x	4	switching	element	used	in	the	BBN	Butterfly	com-puter	has	the	full-access	and	nonblocking	properties.

7.45.	A	computer	series	has	a	mean	failure	rate	of	one	fault	in	5	years;	this	rate	remains	fairlyconstant	over	a	normal	10-year	life.	If	a	customer	purchases	a	new	computer
of	thistype,	what	is	the	probability	that	at	least	one	fault	will	occur	by	the	end	of	the	first	year?

X,

*i	—

X-,

—*z2

^

1

c	=	2
c	=	3

(a) (b)

z,

Figure	7.88

Extended	switching	elements(a)	upper	broadcast	state	U;and	(b)	lower	broadcaststate	L.

7.46.	A	certain	computer	part	is	assumed	to	follow	the	exponential	failure	law.	The	proba-bility	that	it	does	not	survive	more	than	50	days	is	0.92.	How	often	can	one
expect	tohave	to	replace	this	particular	part?

7.47.	Let	F(t)	be	the	unreliability	function	for	a	certain	class	of	components.	The	hazardfunction	z(t),	which	is	interpreted	as	the	instantaneous	failure	rate,	is	defined	by



z(t)	=

fit)

where/(r)	=	d-^F(t)	dt

7.48.

Suppose	that	fit)	=	0.25	-	0.03125r,	where	t	is	measured	in	years.	Calculate	the	reli-ability	function	R(t),	the	hazard	function	z(t),	and	the	mean	time	to	failure	(MTTF)
forthese	components.

(a)	A	system	is	constructed	by	connecting	n	copies	of	a	unit	U	in	parallel.	If	the	reli-ability	of	U	is	0.8,	how	many	copies	of	U	are	needed	in	order	for	the	system
reliability7to	be	(/)	at	least	0.9,	and	(ii)	at	least	0.999?	(b)	A	certain	server	crashes	about	once	everythree	days.	It	takes	an	average	of	3.5	hours	to	restore	normal
operation.	What	are	thesystem's	availability	and	MTTF?

7.49.	A	variant	of	TMR	called	TMR/Simplex	has	triplicated	units	and	a	match	circuit	to	iden-tify	the	failed	unit	when	the	first	failure	occurs.	The	system	begins	operation
as	a	TMRconfiguration.	When	the	first	failure	is	detected,	the	system	structure	is	changed	fromTMR	to	simplex	using	one	of	the	two	correctly	working	units.	Normal
operation	thencontinues	until	the	simplex	configuration	fails.	If	the	reliability	of	each	unit	is	e~'J	andthe	voter	and	match	circuit	are	perfectly	reliable,	calculate	the
reliability	and	MTTF	ofthe	TMR/Simplex	system.

7.50.	Consider	the	14	x	4	torus	that	forms	the	interconnection	network	linking	nodes	(sec-tions)	in	the	Tandem	Himalaya	computer.	Determine	each	of	the	following
parametersfor	this	network:	(a)	the	diameter	of	the	network;	(b)	the	minimum	number	of	edgesneeded	to	break	the	network	into	two	disconnected	parts;	(c)	the	minimum
number	ofedges	needed	to	break	it	into	two	disconnected	parts,	each	having	the	same	number	ofnodes	(this	is	the	bisection	width).
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IO	instructionsCharacter,	161
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Data-processing	instruction,	23Data-processing	unit,	21Data-transfer	instruction,	23,	194Data-transfer
rate,	406Deadlock,	534-536Decimal	number	codes,	171Decoder,	90Dedicated	bus,	97Degree,	node,
490Delay	slot,	369Delayed	branching,	381Demand	swapping,	444Demultiplexer,	90Denormalized	number,
177Design,	top-down,	73Design	level,	71Design	problem,	69Design	verification,	108Destructive	readout
(DRO),	405Diameter,	of	graph,	491Difference	Engine,	3,	13-15Digital,	3

Digital	audio	tape	(DAT),	474Digital	Equipment	computers

Alpha-based,	122

PDP	series,	35,	507

VAX	series,	35,	122



VAX-11/780	computer,	463,465Digital	Equipment	Corp.,	35Digital	video	disk	(DVD),	425Direct
addressing,	154,	185Direct	mapping,	in	cache,	451,

460-462Direct	memory	access;	see	DMADirective,	203,	204Disk	mirroring,	569,	576Displacement	(offset),
182,	187,

433Distance,	in	graph,	491Distributed-memory	computer,	56,

539-541,544,557Divider

combinational	array,	250

sequential,	245-249Division

fixed-point,	244-251

floating-point,	266

Division—Cont.

nonrestoring,	248

pencil-and-paper,	245

by	repeated	multiplication,	250

restoring,	248

SRT,	248DMA	(direct	memory	access),	504,

511-515DMA	block	transfer,	513DMA	channel,	515,	526DMA	controller,	505,	513

design	of,	315-319DRAM;	see	RAMDuplex	system,	568Dynamic	full-access	network,	586Dynamic
microprogramming,	334

Eckert,	J.	Presper,	17Eckert-Mauchly	Corp.,	19Edge	triggering,	77,	128Editor	program,	71ED	VAC
computer,	18Effective	address,	182,	187,	433Efficiency

of	parallel	computer,	548

of	pipeline,	373Electronic	computer,	17Embeddability,	in	hypercube,	557Embedded	system,	52Emulation,
307,	332Emulator,	332Encoder,	90ENIAC	computer,	17Erlang,	A.	K.,	123Error,	567

round-off,	170Error	detection	and	correction,	165-166Espresso	program,	82,	321Ethernet,
485^87Euclid's	algorithm,	309Euler,	Leonhard,	8Euler	circuit,	8,	9E-unit,	21,	115Exception,	147Excess-
three	code,	171Excitation	table,	312EXCLUSIVE-OR,	65,	72

593
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Execute	step,	139Execution	trace,	147Expansion

of	adder,	229

of	ALU,	258Exponent,	floating-point,	173Exponential	law	of	failure,	572

Failure	rate,	571

Fan-in,	75

Fan-out,	76

Fault	diagnosis,	568

Fault	elimination,	568

Fault	tolerance,	567-577



Fault-tolerant	computers,	543

Felt.	Dorr	E.,	17

Ferrite-core	memory,	19,	27

Fetch	step,	139

Field	programming,	98

Field-programmable	gate	array;	see

FPGAFIFO	(first-in	first-out)	replacement

policy,	447,	449Finite	differences,	method	of,	13Finite-state	machine,	8,	79Firmware,	308

First-generation	computer.	19Fixed-point	arithmetic,	223-251

addition,	224-233

division,	244-251

multiplication,	233-244

subtraction,	225-227Fixed-point	number,	20,	167-173Fixed-point	unit,	258;	see	also	ALUFlag	register.
147Flash	memory,	415Flip-flop.	76

D	type,	77

JKtype,	128Floating-point	adder,	270-272,

277-280Floating-point	arithmetic,	266-275Floating-point	number,	28,	167.173-178

B6500/7500,	216

IBM	System/360-370,	178

IEEE	754	standard,	175-178.	269

Floating-point	unit.	268;	see	alsoCoprocessor

of	68040,	287-289Floppy	disk	memory,	422Flushing,	pipeline,	380Flynn,	Michael	J.,	543Flynn's
classification	of	computers,	543Forbidden	list,	375

FORTRAN	programming	language,	29FPGA	(field-programmable	gate	array),100-104

ACT	series,	101.	131Fragmentation,	memory,	439Frequency	modulation,	484Full	adder.	74,	89Full-access
network,	561Full-adder	equations,	224Full-subtracter	equations,	227Functional	completeness.	75

Gate	level,	39,	71

Gate	types,	72,	75

Gated-clocking,	131

Gate-level	design,	73-83

Gateway,	54

GCD	(greatest	common	divisor),	309

GCD	processor,	309-315

GEC	Plessey	1601	ALU,	264

General-register	organization,	147

Glitch,	78

Goldbach,	Christian,	7

Goldbach's	conjecture,	7

Graph.	8.	64



of	interconnection	network.	491

resource	allocation,	535Guard	bit.	267

Half	adder,	67,	127Half-adder	equations,	224Halting	problem.	8Handshaking	signals,	498Hard	disk
memory,	422Hardware	description	language:	see

HDLHardwired	control,	307design	of,	308-331

Harvard	Mark	I,	17,	18,	19Harvard	University,	17Harvard-class	computer,	59Hazard,	pipeline,	379,
382HDL	(hardware	description	language),

22,	66-69,	105-107Heuristic	procedure,	12,	71Hewlett-Packard	PA-RISC	computer,

122Hexadecimal	(hex)	code,	173Hidden	bit,	176Hierarchy,	72,	402,	426High-impedance	state,	493History
buffer,	523Hit	ratio,	430block,	448Hollerith,	Herman,	17Homogeneous	network,	490Horizontal
microinstruction,	337html	(hypertext	markup	language),	54http	(hypertext	transport	protocol),	54,

488Hypercube	computer,	545,	557-560Hypercube	interconnection	network,

490indirect,	564

I	C	(inter-integrated	circuit)	bus,	529IAS	computer,	19-27,	50

vector	addition	program	for,	25IBM	Corp.,	17IBM	computers

3033,381

4300,	34

701,	19

801,43,381

PC	series,	41

POWER	architecture,	465

RISC	System/6000,	43,	47

System/360	Model	91,	270-272,	386,452

System/360	series,	32-34,	335,	524

System/370	series,	34,	334,	369

System/390	series,	34IC	(integrated	circuit),	32,	35IC	density,	36IC	packaging,	36

IEEE	(Institute	of	Electrical	and

Electronics	Engineers),	67,	175IEEE	754	floating-point	number

standard,	175-178,	269IEEE	796	bus	standard	(Multibus),	580ILLIAC	IV	computer,	543Immediate
addressing,	157,	179,	185Inclusion	property,	449Index	register,	187Indexed	addressing,	185Indirect
addressing,	186Indirect	hypercube	network,	564Indirection,	levels	of,	185Industry	Standard	Architecture
(ISA)

bus,	483Input-output;	see	IOInput-output	processor;	see	IOPInstitute	for	Advanced	Studies,

Princeton,	19Instruction	buffer,	384Instruction	buffer	register,	22Instruction	cache	(I-cache),
465Instruction	cycle,	23,	44,	116,	139Instruction	execution	time,	121Instruction	format,	178-191

MIPSRX000,	182-184

Motorola	680X0,	179

RISC	I	computer,	181Instruction	issue,	multiple,	384Instruction	mix,	121Instruction	pipeline,	149,	364-
371Instruction	register,	21Instruction	retry,	371Instruction	scheduling,	dynamic,	386Instruction	set

basic,	143

ARM6,	151-154,162

IAS	computer,	22-24,	27



MIPS	RX000,	197-202

Motorola	680X0,	154-158,	179

Motorola	PowerPC,	47-50

Turing	machine,	5,	193

representative,	194-196Instruction	stream,	543Instruction	types,	194Instruction-level	parallelism,	47,
539Instruction-set	processor;	see	CPU,	IOPIntegrated	circuit;	see	IC
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Integrated	Device	Technology	products71256	SRAM,	46271B74	cache-tag	RAM,	462IDT721CL	multiplier,
240

Intel	products4004	4-bit	microprocessor,	378085	8-bit	microprocessor,	60,	209,

508,5198089	IO	processor,	5338089	IOP,	525-52880960	microprocessor,	52980X86	microprocessor
series,	41,	42,481

8255	IO	interface	circuit,	509

8256	IO	interface	circuit,	510i960	RP	IO	processor,	528iPSC	multiprocessor,	559Pentium	microprocessor,
41,	43,

439^41Interconnection	network,	117,488-491;see	also	Bus;	Communication

crossbar,	489,	544,	563

hypercube,	490

mesh,	490

multistage	(MIN),	560-567

ring,	490

shared	bus,	489,	544

star,	490

types	of,	490Interface	message	processor	(IMP),	487International	Business	Machines	Corp.;

see	IBMInternational	Standards	Organization

(ISO),	485Internet,	54,	487Interrupt	handler,	515Interrupts,	34,	139,505,512,515-523

in	Motorola	680X0,	520-522

multiple-line,	517

pipeline,	522

precise,	522

single-line,	516

vectored,	517-520Intersystem	communication,	483Intractable	problem,	8,	10-12,	76Intranet,
54Intrasystem	communication,	483

Inverse	omega	network,	564

Inverse	shuffle	connection,	564

IO	(input-output),	5



IO	bus,	482

IO	control,	.482,	504

IO	devices,	42,	52,	117

types	of,	118IO	instructions,	194,	507,	523

Digital	PDP-8,	507

IAS	computer,	27

IBM	System/360,	524

Intel	8085,	508

Intel	80X86,	507

Zilog	Z80,	508IO	interface	circuits,	509-511IO	operation,	28,	504IO	port,	52,	138,	505IO	program,	505IO
system,	52IO-mappedIO,	139,506IOP	(input-output	processor),	28,	115,505,	523-529

Intel	8089,	525-528,	533

Intel	i960	RP,	528

organization	of,	525Iowa	State	University,	17ISDN	(integrated	services	digital

network),	484I-unit,	21,	115

Jacquard	loom,	16

Java,	29

JK	flip-flop,	128

Kernel,	of	operating	system,	531Kerr	effect,	425

LAN	(local-area	network),	54,	484

Latch,	77

Latencyof	pipeline,	276,	376of	serial-access	memory,	418

Leibniz,	Gottfried,	13

Level,	design,	71

Level	1	(LI)	cache,	470

Level	2	(L2)	cache,	470

Level	triggering,	77

Limit	address,	433

LINC	computer,	35

Line,	cache,	453

Link;	see	Bus

Linker,	204

Little's	equation,	124

Little-endian,	163

Load	instruction,	142

Load/store	architecture,	44,	142

Local	bus,	483,	501

Locality	of	reference,	428-429



Logarithm,	2

Logic	function,	73

Logic	level,	39,	71

Logical	address,	428

Logical	instruction,	194

Loosely-coupled	multiprocessor,	56,

551;	see	also	Distributed-memory

computerLRU	(least	recently	used)	replacement

policy,	447,	449LSI	(large-scale	integration),	36Lukasiewicz,	Jan,	31

m-address	machine,	179M/M/l	queueing	model,	123Machine	language,	19,	202Macroinstruction	(macro),
203,	209Magnetic-disk	memory,	421-423Magnetic-surface	recording,	420Magnetic-tape	memory,
423Magneto-optical	disk	memory,	425Main	memory,	3,	51Mainframe	computer,	33,	40Manchester
University,	19,	530Mantissa,	173Mask	programming,	97Massachusetts	Institute	of	Technology

(MIT),	19,	530Massive	parallelism,	56,	551Match	circuit,	458,	568Matrix	multiplication,	290Mauchly,
John	W.,	17Mealy,	G.	H.,	309Mealy	machine,	309

Mean	time	before	failure	(MTBF),	407,

575Mean	time	to	failure	(MTTF),	572Mean	time	to	repair	(MTTR),	575Mechanical	computers,	13-17MEI
cache-coherence	protocol,	585Memory

access	mode	of,	404

associative,	457-459

cost	of,	402,	430

external,	138,402

hierarchical,	402,	426

main,	3,	51,	116

performance	of,	402,	429^132

random	access,	117,	404,	407-418

read	only,	405

secondary,	27,	117,401

serial	access,	117,	404,	418-425

types	of,	400

virtual,	428Memory	address	register,	22Memory	allocation,	443^4-52

best-fit,	445

first-fit,	445

preemptive,	446Memory	fault,	447Memory	hierarchy,	402,	426Memory	interference,	416Memory
management	unit	(MMU),

160,	432Memory	map,	433Memory	mapping;	see	Address

translationMemory	technology,	400-425Memory-mapped	IO,	139,	505Mesh	interconnection	network.
490MESI	cache	coherence	protocol,	555Message,	483Message	switching,	484Message-passing	computer;
see

Distributed-memory	computerMFLOPS	(millions	of	floating-point

operations	per	second),	548Microassembler,	332Microassembly	language,	332Microcomputer,	37,
40Microcontroller,	52as	IOP,	528



597

INDEX
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INDEX

Microinstruction,	306,	332

branch,	348

horizontal,	337

operate,	348

parallelism	in,	334-337

timing	of,	338

vertical,	337Micron	Technology	64Mb	DRAM,

412—415Microoperation,	306Microprocessor,	37,	51,	115Microprogram,	34,	306,	332Microprogram
counter,	337Microprogram	sequencer,	341,	357-361

AMD	2909,	341-344,	352

AMD	2910,	352

Texas	Instruments	890,	359-361Microprogrammed	control,	307,

332-364,	365Microprogramming,	34

dynamic,	334

in	Motorola	680X0	series,	160,	363Microsoft	Corp.,	41Microsoft	products

MS/DOS	operating	system,	41

Windows,	41MIMD	computer,	543MIN	(multistage	interconnection

network),	560-567Minicomputer,	35,	40MIPS	(millions	of	instructions	per

second),	45,	121,371MIPS	Computer	Systems	Inc.,	182MIPS	Computer	Systems	products

R10000	microprocessor,	389

R2/3000	microprocessor,	368,381-383,435,451

R4400	microprocessor,	575

RX000	series,	182-184,	197-202MISD	computer,	543Miss	ratio,	430MITS	Altair	computer,	41MITSInc.,41

Modem	(modulator-demodulator),	483Monophase	microinstruction,	339Moore,	E.	F.,	309Moore,	Gordon
E.,	60Moore	machine,	309

Moore's	law,	60MOS	IC	technology,	38Motorola	products

68020	microprocessor,	154-160,275,

28768040	microprocessor,	275,

287-28968060	microprocessor,	154680X0	microprocessor	series,	41,

154,179,205-208,	514,	520-52268450	DMA	controller,	51568851	MMU,	160

68881	coprocessor,	159

68882	coprocessor,	159,	273-275,287

PowerPC	601	microprocessor,	371

PowerPC	620	microprocessor,	468



PowerPC	microprocessor	series,	41,47-50,	463,	465MSI	(medium-scale	integration),	36Multibus,
580Multichip	module,	36Multicycling,	259Multimedia	equipment,	42Multiple	precision,	171,
259Multiplexer,	87-90

as	function	generator,	87Multiplexing,	488,	493Multiplication

bit-sliced,	350-353

Booth,	238-240,	242-244,	297

fixed-point,	233-244

floating-point,	266

matrix,	290

program	for,	144

pencil-and-paper,	233

Robertson,	236-238,	319-325,344-353Multiplier	circuit

carry-save,	285

combinational	array,	240,	244

counter-based,	133

hardwired	control	for,	319-325

microprogrammed	control	for,344-353

pipelined,	284-286

sequential,	sign-magnitude,	106,110-114

Multiplier	circuit—Cont.

sequential,	twos-complement,234-244,	319-325.	344-353

Wallace	tree,	285Multiprocessor,	35,	56,	550-567

1-D	array,	539-541

loosely-coupled,	551

scalability,	of,	551

Sequent	Symmetry,	553

Sequent	Symmetry	5000,	552

shared-bus,	551-554

symmetric,	551

tightly-coupled,	551Multiprogramming,	32Multistage	interconnection	network

(MIN),	560-567Mutual	exclusion,	533,	552

NaN	(not	a	number),	177

Nanodata	Corp.,	362

Nanodata	QM-1	computer,	362

Nanoinstruction,	362

Nanoprogramming,	361-364in	68000	microprocessor,	363

nCUBE	Corp.,	559

nCUBE	hypercube	computers,	558



Negative	number	codes,	168

Network;	see	Computer	network;Interconnection	network

Newton	personal	digital	assistant,150

n-modular	redundancy	(/?MR),	567

Noise,	165,483

Nonblocking	network,	562

Nondestructive	readout	(NDRO),	405

Nonweighted	number	code,	172

Normalized	number,	175

Number	formatfixed-point,	20,	167-173floating-point,	28,	173-178

Offset;	see	DisplacementOmega	network,	561One-address	instruction,	191One-hot	design	method,	308,
313-315Ones-complement	code,	168

On-line	transaction	processing	(OLTP).

576Opcode,	179Open	architecture,	41Open	Systems	Interconnection	(OSI)

reference	model,	485Operating	system,	32,	529-538

Atlas,	530

DYNIX,	554

kernel	of,	531

MS/DOS,	41

Multics,	530

NonStop,	576

OS/360,	530

UNIX,	530,	536-538

VMS,	532

Windows,	41OPT	(optimal)	replacement	policy,	447Optical	memory,	424Optimal	algorithm,
71Orthogonality,	186Overflow

fixed-point,	170,	227

floating-point,	267

Packet,	54,	485

Packet	switching,	54

Page,	429,	438

Page	frame,	438

Page	mode,	memory	access,	414

Page	size,	442

Page	table,	438

PAL	(programmable	array	logic),

100Parallel	computers,	384

classification	of,	542-547



performance	of,	547-550Parallel	processing,	11,	539-551;	see

also	Multiprocessor;	PipelineParallelism

instruction-level,	47,	539

microinstruction-level,	334—337

processor-level,	539Parity	bit,	165Pascal,	Blaise,	13Pascal	programming	language.	29Patterson,	David	A.,
181

599
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INDEX

PCI	(peripheral	componentinterconnect)	bus,	41,	483,501-504Performance,	8,	42

cache,	466

measurement	of,	44-47,	120-126,371-373

memory,	402,	429-432

parallel	computer,	547-550

pipeline,	371-383Personal	computer	(PC),	40-42Philips	Semiconductor	Corp.,	529Physical	address.
428Pipeline

4-bit	serial	adder,	109

arithmetic,	275-292,	364

collision	in,	374

control	dependency	in,	379-381

data	dependency	in,	382

design	of,	278-280

feedback	in,	280

floating-point	adder,	277-280

hazard	in,	379,	382

instruction,	364-371

interrupts	in,	522

latency	of,	276,	376

microinstruction,	308,	365

multifunction,	279

multiplier,	284-286

optimizing	size	of,	373

performance	of,	371-383

space-time	diagram	for,	372

two-stage,	365

vector	sum,	280-283Pipeline,	instruction,	149Pipeline	processing,	275-292Pipelining,	35,	45,	149PLA
(programmable	logic	array),	98PLD	(programmable	logic	device),

97-104Point-of-sale	(POS)	terminal,	52Poisson,	Simeon-Denis,	124Poisson	process,	124Polish	notation,



31Polyphase	microinstruction,	339Pop	instruction,	29,	189,	191Positional	notation,	167Primary	cache,
470

Princeton-class	computer,	59Printed	circuit	board,	36Priority	encoder,	91Privileged	instruction,	34,
160Procedure,	3Process,	530,'537Process	control	block,	532Processor;	see	CPU,	IOPProcessor	level,	40,
71,	114-126Processor-level	design,	118-126Processor-level	parallelism,	539Product-of-sums	(POS)	form,
75Program,	3,	306Program	control	unit,	3,	21

hardwired,	326-331

microprogrammed,	354-364Program	counter,	21Program	execution,	145Program	execution	time,
45Program	status	word,	34Program-control	instruction,	194Programmable	array	logic	(PAL),
100Programmable	logic	array	(PLA),	98Programmable	logic	device;	see	PLDProgrammable	read-only
memory;	see

PROMProgrammed	IO,	504,	505-511Programming	language

assembly,	20

high-level,	29

machine,	19PROM	(programmable	read-only

memory),	99,	405,	415Protocol,	bus,	495Protocol,	communication,	485Prototype	design,
119Pseudoinstruction;	see	DirectivePunched	card,	16,	17Push	instruction,	29,	189,	191Pyramid	graph,
580

Quantum	Atlas	II	hard-disk	memory,

422Queueing	model,	123-126

M/M/l,	123

of	shared	computer,	125Queueing	theory,	123

Radix,	of	number,	167

RAID	(redundant	array	of	inexpensive

disks),	569-571RAM	(random-access	memory),	117,404,	407-418

cached	DRAM	(CDRAM),	417

^-dimensional,	408

design	of,	411—415

dynamic	(DRAM),	37,	406

multiport,	258

Rambus,	417

semiconductor,	409^411

static	(SRAM),	406,	410

synchronous	DRAM	(SDRAM),	417Rambus,	417

Random	replacement	policy,	451Random-access	memory;	see	RAMRead-only	memory;	see	ROMRead-
write	memory,	405Real	address,	428,	431Receive	instruction,	540,	544Recovery,	568Redundancy,	567

dynamic,	568

n-modular	(nMR),	567

static,	567

triple	modular	(TMR),	567Refreshing,	of	memory,	406,	415Register,	83

parallel,	94

shift,	95Register	file,	257,	401Register	level,	40,	71Register	renaming,	386Register-level	components,



83Register-level	design,	104-114Register-transfer	language;	see	HDLRegister-transfer	level,	40,
71Relative	addressing,	187Reliability,	571Replacement	policy,	444,	446-452

comparison	of,	448

FIFO	(first-in	first-out),	447,	449

LRU	(least	recently	used),	447,	449

OPT	(optimal),	447

random,	451

simplified	LRU	(SLRU),	477

stack,	449

Reservation	station,	386Reservation	table,	375Residual	control,	339Resource	allocation	graph,	535Return
address,	210Return	instruction,	31,	210Ring	counter,	18Ring	network,	490RISC	(reduced	instruction	set

computer),	43,	179,	197RISC	1	computer,	181Robertson,	James	E.,	236,	248Robertson	multiplication
algorithm,

236-238ROM	(read-only	memory),	405,	415

as	function	generator,	99Rounding,	171Round-off	error,	170

Scalability,	of	multiprocessor,	551

Scalar,	541

Scientific	notation,	173

SCSI	(Small	Computer	System

Interface)	bus,	482SECDEDcode,	166,215Secondary	cache,	470Secondary	memory,	27,	401Second-
generation	computer,	27Seek	time,	418Segment,	437Segment	descriptor,	437Segment	table,	437Self-
routing	network,	566Semantic	gap,	180Semaphore,	534,	552Semiconductor	technology,	32,

36-38Send	instruction.	540,	544Sequent	Computer	Systems	Inc.,	543Sequent	Symmetry	computer,	543,
552,

553Sequential	circuit,	76,	79-83Serial	adder,	79,	102,	224Serial-access	memory,	117,	404.

418^125magnetic	disk,	421-423magnetic	tape,	423

601

INDEX

602

INDEX

Serial-access	memory—Cont.

magneto-optical,	425

optical,	424Server,	54

Set-associative	addressing,	462^465Setup	time,	77Shannon,	Claude	E.,	66Shared	bus,	97,	489,	491-504,
544Shared-memory	computer.	56.	543Shift	operation.	95Shift	register.	95Shuffle	connection,	563Shuffle-
exchange	network,	563Sign	extension,	181Signed	number	codes.	168Significand,	173Sign-magnitude
code,	168SIMD	computer,	543Simon,	Herbert	A.,	72Simplex	system,	568Simplified	LRU	(SLRU)
replacement

policy,	477Simulator	program,	71SISD	computer.	543.	551Slide	rule.	1,	3Snooping,	cache,	555Software
compatible,	33Space	utilization,	431Space-time	diagram,	pipeline,	372Spatial	locality,	429SPEC
performance	measure.	122,

467Speculative	execution,	380.	387Speedup

of	parallel	computer,	547



of	pipeline.	373SRAM;	see	RAMSSI	(small-scale	integration),	36Stack,	29.	148.210

in	Motorola	680X0,	189Stack	computer,	29Stack	pointer,	31,	148,	189Stack	replacement	policy,	449Stage,
pipeline,	276Star	interconnection	network,

490State	diagram,	129State	table,	79,	308

State	transition	graph,	129Static	redundancy,	567Status	register,	34,	147Storage;	see	MemoryStore	and
forward.	484,	559

c

Store	instruction,	142

Stored-program	computer.	18,	163

Strobe	signal.	497

Structure.	65

Subroutine,	209

Subtracter,	225-227

Subtraction

fixed-point.	225-227

sign-magnitude.	295

twos-complement,	226Sum-of-products	(SOP)	form,	75Sun	Microsystems	computers,

picoJava.	30

SPARC,	43

SuperSpare,	387Supercomputer.	35.	55Superscalar,	47,	371,384Superscalar	processing,	384-
390Supervisor	program,	139Supervisor	state,	34,	160Sweeney,	Dura	W.,	248Switch	level,	39Switching
element,	560.	585Switching	network;	see	MINSymmetric	multiprocessor,	551Synchronous	circuit,
79Synchronous	operation,	78Synthesis.	69Synthesis	program.	71,	76

Espresso,	82,	321System,	64

hierarchical.	72System	bus,	481System	design,	64System	level,	40.	114System	reliability,	572Systolic
array,	290-292

Table	lookup,	100Tag

address,	in	cache.	453

in	word,	164

Tandem	computers,

Himalaya	series,	575-578NonStop	series.	575VLX,	575Tandem	Computers	Inc.,	576Task-initiation
diagram	(TID),	378TCP/IP	(Transmission	Control

Protocol/Internet	Protocol),	54,

487Technology	independence,	40Temporal	locality,	429Test-and-set	instruction,	533Texas	Instruments
products888	8-bit	ALU,	35988X	microprocessor	series,	359890	microprogram	sequencer,

359-361Third-generation	computer,	32Thrashing,	444Three-address	instruction,	191Throughput,
371Tightly-coupled	multiprocessor,

551;	see	also	Shared-memory

computerTime-sharing	system,	32Timing	diagram,	495Timing,	of	bus,	495-498TMR	(triple-modular
redundancy),	567,

573TMR/Simplex,	587Tocher,	Keith	D.,	248Token,	487

Token-passing	network,	487Tomasulo,	R.	M.,	386Tomasulo's	algorithm,	386Top-down	design,	73Tractable



problem,	8Transistor,	27Translation	look-aside	buffer	(TLB),

435Trap,	201,273,	520Traveling	salesman	problem,	10,	12Tree	computer,	545Tristate	buffer,	493Tristate
logic,	493^*95Truncation,	171Truth	table,	65Turing,	Alan	M.,	5

Turing	machine,	5,	193addition	program	for,	6halting	problem	for,	8universal,	7Two-address	instruction,
191Two-level	circuit,	75Two-out-of-five	code,	172Twos-complement	code,	168,	182Type	declaration,	164

UMA	(uniform-memory	access)

computer,	551Unary	number,	6Undecidable	problem,	8Underflow

fixed-point,	170

floating-point,	267Uniprocessor,	551

U.S.	Department	of	Defense.	29,	54,	67UNI	VAC	computer,	19Universal	asynchronous	receiver-
transmitter	(UART),	511University	of	California,	Berkeley,	43,

181University	of	Illinois,	561University	of	Michigan,	558University	of	Pennsylvania,	18UNIX	operating
system,	530,	536-538User	program,	139User	state,	34

Vacuum	tube,	27

Vector,	83,	541

Vector	addition	program

for	680X0,	156-158,	205-208

for	IAS	computer,	25,	50

for	PowerPC,	48-50

in	FORTRAN,	29Vector	instruction,	283Vector	processor,	55,	283Vector	sum	pipeline,	280-283Vectored
interrupt.	517-520Verilog,	67.	127Vertical	microinstruction.	337Very	long	instruction	word	(VLIW).398
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VHDL,	67-69

Virtual	address,	428,	431

Virtual	memory,	160,	428

VLSI	(very	large-scale	integration),	35,

36Volatile	memory,	406von	Neumann,	John,	18von	Neumann	bottleneck,	43,	403,	452von	Neumann
computer,	27,	51Voter,	567

Wilkes	design	scheme,	333

Word,	20,	34,	83,	161

Word	gate,	86

Word-based	Boolean	algebra,	85

Working	set,	429

Workstation",	40

World	Wide	Web,	55,	488

Writable	control	memory,	334

Write	back,	cache,	456



Write	through,	cache,	457

Wait	state,	496Wallace	tree,	285Watchdog	timer,	511Whirlwind	computer,	19Wide-area	network	(WAN),
484Wilkes,	Maurice	V.,	34,	333

Zero	extension,	182Zero-address	machine,	191Zero-detection	circuit,	38Zilog	Z80	microprocessor,
508Zuse,	Konrad,	17Zuse's	computers,	17
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