

DRONACHARYA GROUP OF INSTITUTIONS, GREATER NOIDA

Affiliated to Mahamaya Technical University, Noida
Approved by AICTE

 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Lab Manual for
Microprocessor Lab EEC-456

Syllabus

EEC-456 : MICROPROCESSOR LAB
L T P
0 0 2

1. To study 8085 microprocessor System
2. To study 8086 microprocessor System
3. To develop and run a programme to find out largest and smallest number
4. To develop and run a programme for converting temperature from F to C degree
5. To develop and run a programme to compute square of a given number
6. To develop and run a programme for computing ascending/descending order of a number.
7. To perform interfacing of RAM chip to 8085/8086
8. To perform interfacing of keyboard controller
9. To perform interfacing of DMA controller
10. To perform interfacing of UART/USART

Aim : 1 To study 8085 microprocessor System

 Intel 8085 is an 8-bit, N-channel Metal Oxide semiconductor (NMOS) microprocessor
 It is a 40 pin IC package fabricated on a single Large Scale Integration (LSI) chip
 The Intel 8085 uses a single +5V DC supply for its operation
 Its clock speed is about 3MHz
 The clock cycle is of 320 ns
 The time for the clock cycle of the Intel 8085 is 200 ns
 It has 80 basic instructions and 246 opcodes

Address and Data Bus

 Address Bus
 The 8085 has eight signal lines, A15-A8, which are unidirectional and used as the high

order address bus
 Multiplexed Address/Data Bus
 The signal lines AD7-AD0 are bidirectional
 They serve a dual purpose

 They are used as the low-order address bus as well as the data bus
 In executing an instruction, during the earlier part of the cycle, these lines are used as the low-

order address bus as well as the data bus
 During the later part of the cycle, these lines are used as the data bus
 However the low order address bus can be separated from these signals by using a latch

Control and Status Signals

Machine Cycle IO/M S1 S0 Control signals

Opcode Fetch 0 1 1 RD=0

Memory Read 0 1 0 RD=0

Memory Write 0 0 1 WR=0

I/O Read 1 1 0 RD=0

I/O Write 1 0 1 WR=0

Interrupt
Acknowledge

1 1 1 INTA=0

Halt Z 0 0 RD, WR=z and INTA=1

Hold Z X X RD, WR=z and INTA=1

Reset Z X X RD, WR=z and INTA=1

Functional Description

Lab :2 To study 8086 microprocessor System

Solution:

 16Bit Microprocessor : 8086

Features of 8086

-8086 is a 16bit processor. It’s ALU, internal registers works with 16bit binary word

- 8086 has a 16bit data bus. It can read or write data to a memory/port either 16bits or 8 bit at a
time

- 8086 has a 20bit address bus which means, it can address upto 220 = 1MB memory
Location

- Frequency range of 8086 is 6-10 MHz

Important 8086 Pin Diagram/Description

AD15±AD0

ADDRESS DATA BUS: These lines constitute the time multiplexed
memory/IO address and data bus.

ALE

Address Latch Enable. A HIGH on this line causes the lower order 16bit address bus to be
latched that stores the addresses and then, the lower order 16bit of the address bus can be used
as data bus.

READY

READY is the acknowledgement from the addressed memory or I/O device that it will complete
the data transfer.

INTR

INTERRUPT REQUEST: is a level triggered input which is sampled during the last clock cycle of
each instruction to determine if the processor should enter into an interrupt acknowledge
operation. A subroutine is vectored to via an interrupt vector lookup table located in system
memory. It can be internally masked by software resetting the interrupt enable bit. INTR is
internally synchronized. This signal is active HIGH.

INTA

Interrupt Acknowledge from the MP

NMI
NON-MASKABLE INTERRUPT: an edge triggered input which causes
an interrupt request to the MP. A subroutine is vectored to via an interrupt vector
lookup table located in system memory. NMI is not maskable internally
by software.

RESET: causes the processor to immediately terminate its present
activity. The signal must be active HIGH for at least four clock cycles. It
restarts execution

MN/MX

MINIMUM/MAXIMUM: indicates what mode the processor is to operate in. The two modes are
discussed in the following sections.

M/IO : Differentiate between the Memory and I/O operation. A LOW on this pin indicated I/O
operation and a HIGH indicated a Memory Operation

HOLD : The 8086 has a pin called HOLD. This pin is used by external devices to gain control of
the busses.

HLDA :

When the HOLD signal is activated by an external device, the 8086 stops executing instructions
and stops using the busses. This would allow external devices to control the information

8086 MINIMUM AND MAXIMUM MODES of operation

MN/MX

Minimum mode The 8086 processor works in a single processor environment.
All control signals for memory and I/O are generated by the microprocessor.
Maximum mode is designed to be used when a coprocessor exists in the system.
8086 works in a multiprocessor environment. Control signals for memory and
I/O are generated by an external BUS Controller.

Aim : To develop and run a programme to find out largest and smallest
number

Solution: Program to find minimum/smallest number in the array(8085 Kit)

 Explanation :

 We have an array of 10 numbers for e.g. So we initialize the counter with 10. Also we initialize a pointer to point these
numbers.

 Compare first number with initial number. If number < minimum number, save number otherwise increment pointer to
compare next number. Decrement counter, compare till all the numbers are compared. Store the maximum number in
memory location E000 H.

 Algorithm :

Step I : Initialize pointer.
Step II : Initialize counter.
Step III : Initialize minimum =0
Step IV : Compare number with maximum.
 If no carry i.e. if number is smaller don’t
 interchange then goto step VI
Step V : Save the minimum number.
Step VI : Decrement counter.
Step VII : Increment pointer.
Step VIII : Check if count = 0. If not goto step IV.
Step IX : Store the maximum number.
Step XI : Stop.

 Flowchart : Refer flowchart 33.
 Program :

 Instruction Comment
 LDA D000H
 MOV C, A ; Initialize counter
 LXI H, D001H ; Initialize pointer
 MOV A, M
 INX M
BACK: CMP M ; Is number < miniumum
 JC SKIP
 MOV A, M ; If number < minimum
 ; then interchange.
SKIP: INX H
 DCR C
 JNZ BACK
 STA E000H ; Store minimum number
 HLT ; Terminate program execution

Program to find maximum number in the array (8086 Kit)

Explanation :

 We have an array of 10 numbers. So we initialize the counter with 10. Also we initialize a pointer to point these
numbers.

 Compare first number with initial maximum number i.e. zero. If number > maximum number, save number
otherwise increment pointer to compare next number. Decrement counter, compare till all the numbers are
compared. Store the maximum number in MAX. Display the maximum number.

 Algorithm :

Step I : Initialize the data segment.
Step II : Initialize pointer.
Step III : Initialize counter.
Step IV : Initialize base pointer for array.
Step V : Compare number with maximum. If no carry goto step VII
Step VI : Save the maximum number.
Step VII : Decrement counter.
Step VIII : Increment pointer.
Step IX : Check if count = 0. If not goto step V.
Step X : Store the maximum number.
Step XI : Display result.
Step XII : Stop.

 Flowchart : Refer flowchart 37.
 Program :
.model small
.stack 100
.data
 array db 61h, 05h, 42h, 05H, 12H, 15h, 09h, 14h, 56h, 38h ; Array of10nos
 max db 0
.code
 mov ax, @data ; Initialize DS
 mov ds, ax ;
 xor di, di ; Initialise pointer
 mov cl, 10 ; Initialise counter
 lea bx, array ; Initialise base pointer for array
 mov al, max ; Get maximum number
back: cmp al, [bx+di] ; Compare number with maximum
 jnc skip
 mov dl, [bx+di] ; If no > this no swap
 mov al, dl ;
skip: inc di ; Increment pointer
 dec cl ; Decrement counter
 jnz back ; check whether all the nos
 ; have been scanned
 mov max, al ; Store maximum number
 mov ch, 02h ; Count of digits to be
 ; displayed
 mov cl, 04h ; Count to roll by 4 bits
 mov bh, al ; Result in reg bh

l2: rol bh, cl ; roll bl so that msb
 ; comes to lsb
 mov dl, bh ; load dl with data to be
 ; displayed
 and dl, 0fH ; get only lsb

 cmp dl, 09 ; check if digit is 0-9
 ; or letter A-F
 jbe l4
 add dl, 07 ; if letter add 37H
 ; else only add 30H
l4: add dl, 30H
 mov ah, 02 ; Function 2 under
 ; INT 21H
 ; (Display character)
 int 21H
 dec ch ; Decrement Count jnz l2
 mov ah, 4cH ; Terminate Program
 int 21H
end

 Flowchart 37

 Result :

C:\programs>tasm maxno.asm
Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland International
Assembling file: maxno.asm
Error messages: None
Warning messages: None
Passes: 1
Remaining memory: 437k
C:\programs>tlink maxno.obj
Turbo Link Version 3.0 Copyright (c) 1987, 1990 Borland International
C:\programs>maxno

Aim: To develop and run a programme to compute square of a given number

Explanation :

 To find the square of a number we multiply the number with itself.
 Store the result.

 Algorithm :

Step I : Initialize the look up table pointer.
Step II : Initialize the source memory pointer and destination memory pointer.
Step III : Get the number.
Step IV : Compute the square of number. Result is stored in the A register.
Step V : Store the result to the required destination location.
Step VI : Increment source memory pointer.
Step VII : Increment destination memory pointer.
Step VIII : Check if number is last number. If not goto step III
Step IX : Stop.

 Flowchart : Refer flowchart 32.
 Program :

 Instruction Comment
 LXI H, D100H ; Initialize lookup ; table pointer
 LXI D, D000H ; Initialize source
 ; memory pointer
 LXI B, D200H ; Initialize
 ; destination
 ; memory pointer
BACK: LDAX D ; Get the number
 MOV L,A ; A point to the
 ; square
 MOV A,M ; Get the square
 STAX B ; Store the result
 ; at destination
 ; memory location
 INX D ; Increment
 ; source memory pointer
 INX B ; Increment destination
 ; memory pointer
 MOV A,C
 CPI 05H ; Check for last number
 JNZ BACK ; If not repeat
 HLT ; End of program

Aim: To develop and run a programme for computing ascending/descending order of a
number

 Solution 1. Program to sort the numbers in ascending order

Explanation :

 Consider that a block of N words is present. Now we have to arrange these N words in ascending order, Let N = 4 for
example. We will use HL as pointer to point the block of N words.

 Initially in the first iteration we compare first number with the second
number. If first number < second number, don’t interchange the contents,
otherwise if first number > second number swap the contents.

 In the next iteration we go on comparing the first number with third number.
If first number < third number, don’t interchange the contents. If first number
> third number then swapping will be done.

 Since the first two numbers are in ascending order the third number will go to
first place, first number in second place and second number will come in third
place in the second iteration only if first number > third number.

 In the next iteration first number is compared with fourth number. So
comparisons are done till all N numbers are arranged in ascending order. This
method requires approximately n comparisons.

 Algorithm :
Step I : Initialize the number of elements counter.
Step II : Initialize the number of comparisons counter.
Step III : Compare the elements. If first element
 < second element goto step VIII else
 goto step V.
Step IV : Swap the elements.
Step V : Decrement the comparison counter.
Step VI : Is count = 0 ? if yes goto step VIII else
 goto step IV.
Step VII : Insert the number in proper position
Step VIII : Increment the number of elements counter.
Step IX : Is count = N ? If yes, goto step XI else goto step II
Step X : Store the result.
Step XI : Stop.

Program :

 Instruction Comment

 MVI B, 09 ; Initialize counter 1

START: LXI H, D000H ; Initialize memory pointer

 MVI C, 09H ; Initialize counter 2

BACK: MOV A, M ; Get the number in accumulator

 INX H ; Increment memory pointer

 CMP M ; Compare number with next number

 JC SKIP ; If less, don’t interchange

 JZ SKIP ; If equal, don’t interchange

 MOV D, M ; Otherwise swap the contents

 MOV M, A

 DCX H ; Interchange numbers

 MOV M, D

 INX H ; Increment pointer to next memory location

SKIP: DCR C ; Decrement counter 2

 JNZ BACK ; If not zero, repeat

 DCR B ; Decrement counter 1

 JNZ START ; If not zero, repeat
 HLT ; Terminate program execution

Solution 2 : Program to sort the numbers in descending order
Explanation :

 Consider that a block of N words is present.

 Now we have to arrange these N numbers in descending order, Let N = 4 for example.

 We will use HL as pointer to point the block of N numbers.

 Initially in the first iteration we compare the first number with the second number. If first number > second number don’t
interchange the contents. If first number < second number swap their contents. Now at the end of this iteration first two
elements are sorted in descending order.

 In the next iteration we will compare the first number along with third. If first > third don’t interchange contents otherwise
swap the contents. At the end of this iteration first three elements are sorted in descending order. Go on comparing till all
the elements are arranged in descending order. This method requires approximately n comparisons.

 Algorithm :

Step I : Initialize the number of elements counter.

Step II : Initialize the number of comparisons counter.

Step III : Compare the elements.

 If first element > second element goto step VIII else goto step V.

Step IV : Swap the elements.

Step V : Decrement the comparison counter.

Step VI : Is count = 0 ? If yes, goto step VIII else goto step IV.

Step VII : Insert the number in proper position.

Step VIII : Increment the elements counter.

Step IX : Is count = N ? If yes, goto step XI else goto step II.

Step X : Stop

Program :
 Instruction Comment

 MVI B, 09 ; Initialize counter 1
START : LXI H, D000H ; Initialize memory pointer
 MVI C, 09H ; Initialize counter 2
BACK : MOV A, M ; Get the number in accumulator
 INX H ; Increment memory pointer
 CMP M ; Compare number with next number
 JNC SKIP ; If more, don’t interchange

 JZ SKIP ; If equal, don’t interchange
 MOV D, M ; Otherwise swap the contents
 MOV M, A
 DCX H ; Interchange numbers
 MOV M, D
 INX H ; Increment pointer to next memory location
SKIP: DCR C ; Decrement counter 2
 JNZ BACK ; If not zero, repeat
 DCR B ; Decrement counter 1
 JNZ START ; If not zero, repeat
 HLT ; Terminate program execution

Aim: To perform interfacing of RAM chip to 8085/8086

Explanation:

Read only memory (ROM)
• Flash memory (EEPROM)
• Static Random access memory (SARAM)
• Dynamic Random access memory (DRAM).
• Pin connections common to all memory devices are: The address input, data
output or input/outputs, selection input and control input used to select a read or
write operation.

• Address connections: All memory devices have address inputs that select a
memory location within the memory device. Address inputs are labeled from A0

to An.

• Data connections: All memory devices have a set of data outputs or
input/outputs. Today many of them have bi-directional common I/O pins.

• Selection connections: Each memory device has an input, that selects or enables
the memory device. This kind of input is most often called a chip select (CS),
chip enable (CE) or simply select (S) input.

RAM memory generally has at least one CS or S input and ROM at least one
CE .
• If the CE , CS, S input is active the memory device perform the read or write.
• If it is inactive the memory device cannot perform read or write operation.
• If more than one CS connection is present, all most be active to perform read or
write data.

• Control connections: A ROM usually has only one control input, while a RAM
often has one or two control inputs.

• The control input most often found on the ROM is the output enable (OE) or
gate (G), this allows data to flow out of the output data pins of the ROM.

• If OE and the selected input are both active, then the output is enable, if OE is
inactive, the output is disabled at its high-impedance state.

• The OE connection enables and disables a set of three-state buffer located within
the memory device and must be active to read data.
• A RAM memory device has either one or two control inputs. If there is one
control input it is often called R/W.
• This pin selects a read operation or a write operation only if the device is selected
by the selection input (CS).

If the RAM has two control inputs, they are usually labeled WE or W and OE
or G .

• (WE) write enable must be active to perform a memory write operation and OE
must be active to perform a memory read operation.

• When these two controls WE and OE are present, they must never be active at
the same time.

• The ROM read only memory permanently stores programs and data and data was
always present, even when power is disconnected.

• It is also called as nonvolatile memory.

• EPROM (erasable programmable read only memory) is also erasable if exposed
to high intensity ultraviolet light for about 20 minutes or less, depending upon the
type of EPROM.

• We have PROM (programmable read only memory)

• RMM (read mostly memory) is also called the flash memory.

• The flash memory is also called as an EEPROM (electrically erasable
programmable ROM), EAROM (electrically alterable ROM), or a NOVROM
(nonvolatile ROM).

• These memory devices are electrically erasable in the system, but require more

time to erase than a normal RAM.
• EPROM contains the series of 27XXX contains the following part numbers :
2704(512 * 8), 2708(1K * 8), 2716(2K * 8), 2732(4K * 8), 2764(8K * 8),
27128(16K * 8) etc..
• Each of these parts contains address pins, eight data connections, one or more
chip selection inputs (CE) and an output enable pin (OE).
• This device contains 11 address inputs and 8 data outputs.
• If both the pin connection CE and OE are at logic 0, data will appear on the
output connection . If both the pins are not at logic 0, the data output connections remains at their high
impedance or off state.
• To read data from the EPROM Vpp pin must be placed at a logic 1.

Static RAM Interfacing

• The semiconductor RAM is broadly two types – Static RAM and Dynamic RAM.

• The semiconductor memories are organised as two dimensional arrays of memory
locations.

• For example 4K * 8 or 4K byte memory contains 4096 locations, where each
locations contains 8-bit data and only one of the 4096 locations can be selected at
a time. Once a location is selected all the bits in it are accessible using a group of
conductors called Data bus.

• For addressing the 4K bytes of memory, 12 address lines are required.

• In general to address a memory location out of N memory locations, we will
require at least n bits of address, i.e. n address lines where n = Log2 N.

• Thus if the microprocessor has n address lines, then it is able to address at the
most N locations of memory, where 2n=N. If out of N locations only P memory
locations are to be interfaced, then the least significant p address lines out of the
available n lines can be directly connected from the microprocessor to the
memory chip while the remaining (n-p) higher order address lines may be used
for address decoding as inputs to the chip selection logic.
• The memory address depends upon the hardware circuit used for decoding the
chip select (CS). The output of the decoding circuit is connected with the CS pin
of the memory chip.
• The general procedure of static memory interfacing with 8086 is briefly described
as follows:
1. Arrange the available memory chip so as to obtain 16- bit data bus width. The
upper 8-bit bank is called as odd address memory bank and the lower 8-bit bank is
called as even address memory bank.

2. Connect available memory address lines of memory chip with those of the
microprocessor and also connect the memory RD and WR inputs to the
corresponding processor control signals. Connect the 16-bit data bus of the
memory bank with that of the microprocessor 8086.
3. The remaining address lines of the microprocessor, BHE and A0 are used for
decoding the required chip select signals for the odd and even memory banks. The
CS of memory is derived from the o/p of the decoding circuit.
• As a good and efficient interfacing practice, the address map of the system should
be continuous as far as possible, i.e. there should not be no windows in the map
and no fold back space should be allowed.
• A memory location should have a single address corresponding to it, i.e. absolute
decoding should be preferred and minimum hardware should be used for
decoding.

Dynamic RAM

• Whenever a large capacity memory is required in a microcomputer system, the
memory subsystem is generally designed using dynamic RAM because there are
various advantages of dynamic RAM.

• E.g. higher packing density, lower cost and less power consumption. A typical
static RAM cell may require six transistors while the dynamic RAM cell requires
only a transistors along with a capacitor. Hence it is possible to obtain higher
packaging density and hence low cost units are available.

• The basic dynamic RAM cell uses a capacitor to store the charge as a
representation of data. This capacitor is manufactured as a diode that is reversebiased
so that the storage capacitance comes into the picture.

• This storage capacitance is utilized for storing the charge representation of data
but the reverse-biased diode has leakage current that tends to discharge the
capacitor giving rise to the possibility of data loss. To avoid this possible data
loss, the data stored in a dynamic RAM cell must be refreshed after a fixed time
interval regularly. The process of refreshing the data in RAM is called as Refresh
cycle.

• The refresh activity is similar to reading the data from each and every cell of
memory, independent of the requirement of microprocessor. During this refresh
period all other operations related to the memory subsystem are suspended. Hence
the refresh activity causes loss of time, resulting in reduce system performance.
• However keeping in view the advantages of dynamic RAM, like low power
consumption, high packaging density and low cost, most of the advanced
computing system are designed using dynamic RAM, at the cost of operating
speed.
• A dedicated hardware chip called as dynamic RAM controller is the most
important part of the interfacing circuit.
• The Refresh cycle is different from the memory read cycle in the following
aspects.
1. The memory address is not provided by the CPU address bus, rather it is
generated by a refresh mechanism counter called as refresh counter.
2. Unlike memory read cycle, more than one memory chip may be enabled at a time

so as to reduce the number of total memory refresh cycles.
3. The data enable control of the selected memory chip is deactivated, and data is
not allowed to appear on the system data bus during refresh, as more than one
memory units are refreshed simultaneously. This is to avoid the data from the
different chips to appear on the bus simultaneously.
4. Memory read is either a processor initiated or an external bus master initiated and
carried out by the refresh mechanism.
• Dynamic RAM is available in units of several kilobits to megabits of memory.
This memory is arranged internally in a two dimensional matrix array so that it
will have n rows and m columns. The row address n and column address m are
important for the refreshing operation.
• For example, a typical 4K bit dynamic RAM chip has an internally arranged bit
array of dimension 64 * 64 , i.e. 64 rows and 64 columns. The row address and
column address will require 6 bits each. These 6 bits for each row address and
column address will be generated by the refresh counter, during the refresh cycles.
• A complete row of 64 cells is refreshed at a time to minimizes the refreshing
time. Thus the refresh counter needs to generate only row addresses. The row
address are multiplexed, over lower order address lines.
• The refresh signals act to control the multiplexer, i.e. when refresh cycle is in
process the refresh counter puts the row address over the address bus for
refreshing. Otherwise, the address bus of the processor is connected to the address
bus of DRAM, during normal processor initiated activities.
• A timer, called refresh timer, derives a pulse for refreshing action after each
refresh interval.
• Refresh interval can be qualitatively defined as the time for which a dynamic
RAM cell can hold data charge level practically constant, i.e. no data loss takes
place.
• Suppose the typical dynamic RAM chip has 64 rows, then each row should be
refreshed after each refresh interval or in other words, all the 64 rows are to
refreshed in a single refresh interval.
• This refresh interval depends upon the manufacturing technology of the dynamic
RAM cell. It may range anywhere from 1ms to 3ms.
• Let us consider 2ms as a typical refresh time interval. Hence, the frequency of the
refresh pulses will be calculated as follows:
• Refresh Time (per row) tr = (2 * 10 -3) / 64.
• Refresh Frequency fr = 64 / (2 * 10 -3) = 32 * 103 Hz.
• The following block diagram explains the refreshing logic and 8086 interfacing
with dynamic RAM.
• Each chip is of 16K * 1-bit dynamic RAM cell array. The system contains two
16K byte dynamic RAM units. All the address and data lines are assumed to be
available from an 8086 microprocessor system.
• The OE pin controls output data buffer of the memory chips. The CE pins are
active high chip selects of memory chips. The refresh cycle starts, if the refresh
output of the refresh timer goes high, OE and CE also tend to go high.
• The high CE enables the memory chip for refreshing, while high OE prevents the
data from appearing on the data bus, as discussed in memory refresh cycle. The
16K * 1-bit dynamic RAM has an internal array of 128*128 cells, requiring 7 bits
for row address. The lower order seven lines A0-A6 are multiplexed with the
refresh counter output A10-A16.

 AIM: To perform interfacing of keyboard
controller.

Explanation:

• To give directions or data values to users, many microprocessor-controlled instruments and machines need
to display letters of the alphabet and numbers. In systems where a large amount of data needs to be displayed
a CRT is used to display the data. In system where only a small amount of data needs to be
displayed, simple digit-type displays are often used.

• There are several technologies used to make these digit-oriented displays but we
are discussing only the two major types.

• These are light emitting diodes (LED) and liquid-crystal displays (LCD).

• LCD displays use very low power, so they are often used in portable, batterypowered
instruments. They do not emit their own light, they simply change the reflection of available light. Therefore,
for an instrument that is to be used in lowlight conditions, you have to include a light source for LCDs or use
LEDs which emit their own light.

• Alphanumeric LED displays are available in three common formats. For displaying only number and
hexadecimal letters, simple 7-segment displays

• To display numbers and the entire alphabet, 18 segment displays The 7- segment type is the least
expensive, most commonly used and easiest to interface with, so we will concentrate first on how to interface
with this type.

 Directly Driving LED Displays: Figure shows a circuit that you might connect to a parallel port on a
microcomputer to drive a single 7-segment , common-anode display. For a common-anode display, a
segment is tuned on by applying a logic low to it.

• The 7447 converts a BCD code applied to its inputs to the pattern of lows required to display the number
represented by the BCD code. This circuit connection is referred to as a static display because current is
being passed through the display at all times.

• Each segment requires a current of between 5 and 30mA to light. Let’s assume you want a current of
20mA. The voltage drop across the LED when it is lit is about 1.5V.

• The output low voltage for the 7447 is a maximum of 0.4V at 40mA. So assume that it is about 0.2V at
20mA. Subtracting these two voltage drop from the supply voltage of 5V leaves 3.3V across the current
limiting resistor. Dividing 3.3V by 20mA gives a value of 168Ω for the current-limiting resistor. The voltage
drops across the LED and the output of 7447 are not exactly predictable and exact current through the LED is
not critical as long as we don’t exceed its

