INFORMATION TECHNOLOGY /CSIT

B.TECH IV YEAR

(INFORMATION TECHNOLOGY /CSIT) CURRICULUM STRUCTURE

		SI	EMES	STEF	R- VII								
Sl. No.	Subject Codes	Subject	Periods			Evaluation Scheme				End Semester		Total	Credit
			L	T	P	CT	TA	Total	PS	TE	PE		
1	KHU701/KHU702	HSMC -1 / HSMC-2	3	0	0	30	20	50		100		150	3
2	KCS07X	Departmental Elective-IV	3	0	0	30	20	50		100		150	3
3	KCS07X	Departmental Elective-V	3	0	0	30	20	50		100		150	3
4	KOE07X	Open Elective-II	3	0	0	30	20	50		100		150	3
5	KIT751A	The Department may conduct one Lab of either of the two Electives (4 or 5) based on the elective chosen for the curriculum. The Department shall on its own prepare complete list of practical for the Lab and arrange for proper setup and conduct accordingly.	0	0	2				25		25	50	1
6	KIT752	Mini Project or Internship Assessment*	0	0	2				50			50	1
7	KIT753	Project 1	0	0	8				150			150	4
8		MOOCs (Essential for Hons. Degree)		I	1	1	<u> </u>	1	1	l	<u> </u>		
		Total	12	0	12							850	18

^{*}The Mini Project or internship (4 - 6 weeks) conducted during summer break after VI semester and will be assessed during VII semester.

SEMESTER- VIII

Sl. No.	Subject	Subject	Periods		Evaluation Scheme				End Semester		Total	Credit	
110.	Codes		L	T	P	CT	TA	Total	PS	TE	PE		
1	KHU801/KHU802	HSMC-2 [#] /HSMC-1 [#]	3	0	0	30	20	50		100		150	3
2	KOE08X	Open Elective-III	3	0	0	30	20	50		100		150	3
3	KOE08X	Open Elective-IV	3	0	0	30	20	50		100		150	3
4	KIT851	Project	0	0	18				100		300	400	9
5		MOOCs (Essential for Hons. Degree)											
		Total	9	0	18			·				850	18

INFORMATION TECHNOLOGY /CSIT

Departmental Elective-IV

- 1. KCS071 Artificial Intelligence
- 2. KCS072 Natural language processing
- 3. KCS073 High Performance Computing
- 4. KCS074 Cryptography and Network Security
- 5. KCS075 Design & Development of Applications
- 6. KCS076 Software Testing
- 7. KCS077 Distributed Systems

Departmental Elective-V

- 1. KCS078 Deep Learning
- 2. KCS079 Service Oriented Architecture
- 3. KCS710 Quantum Computing
- 4. KCS711 Mobile Computing
- 5. KCS712 Internet of Things
- 6. KCS713 Cloud Computing
- 7. KIT071 Software Project Management

INFORMATION TECHNOLOGY /CSIT

B.TECH. (IT/CSIT)

SEVENT SEMESTER (DETAILED SYLLABUS)

	Artificial Intelligence (KCS071)						
Course Outcome (CO) Bloom's Knowledge Leve							
	At the end of course , the student will be able to	understand					
CO 1	CO 1 Understand the basics of the theory and practice of Artificial Intelligence as a discipline and						
CO 1	about intelligent agents.						
CO 2	CO 2 Understand search techniques and gaming theory.						
CO 3	The student will learn to apply knowledge representation techniques and problem solving						
	strategies to common AI applications.						
CO 4	Student should be aware of techniques used for classification and	clustering.	K_2 , K_3				
CO 5	CO 5 Student should aware of basics of pattern recognition and steps required for it.						
	DETAILED SYLLABUS		3-0-0				
Unit	Торіс						
ı	INTRODUCTION: Introduction—Definition — Future of Artificial Intelligence — Characteristics of Intelligent Agents— Typical Intelligent Agents — Problem Solving Approach to Typical AI problems.						
II	PROBLEM SOLVING METHODS: Problem solving Methods – Search Strategies- Uninformed – Informed – Heuristics – Local Search Algorithms and Optimization Problems – Searching with Partial Observations – Constraint Satisfaction Problems – Constraint Propagation – Backtracking Search – Game Playing – Optimal Decisions in Games – Alpha – Beta Pruning – Stochastic Games						
III	KNOWLEDGE REPRESENTATION: First Order Predicate Logic – Prolog Programming – Unification – Forward Chaining-Backward Chaining – Resolution – Knowledge Representation – Ontological Engineering-Categories and Objects – Events – Mental Events and Mental Objects – Reasoning Systems for Categories – Reasoning with Default Information						
IV	SOFTWARE AGENTS: Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.						
v	APPLICATIONS: AI applications – Language Models – Information Retrieval- Information Extraction – Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware – Perception – Planning – Moving						

Text books:

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach," Prentice Hall, Third Edition, 2009.
- 2. I. Bratko, "Prolog: Programming for Artificial Intelligence", Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.
- 3. M. Tim Jones, —Artificial Intelligence: A Systems Approach(Computer Science)||, Jones and Bartlett Publishers, Inc.First Edition, 2008
- 4. Nils J. Nilsson, —The Quest for Artificial Intelligencel, Cambridge University Press, 2009.
- 5. William F. Clocksin and Christopher S. Mellish, Programming in Prolog: Using the ISO Standard, Fifth Edition, Springer, 2003.
- 6. Gerhard Weiss, —Multi Agent Systems, Second Edition, MIT Press, 2013.
- **7.** David L. Poole and Alan K. Mackworth, —Artificial Intelligence: Foundations of Computational Agentsl, Cambridge University Press, 2010.