
DRONACHARYA GROUP OF INSTITUTIONS, GREATER

NOIDA

Affiliated to Uttar Pradesh Technical University, Noida

Approved by AICTE

DEPARTMENT OF INFORMATION TECHNLOGY

Lab Manual for

Principles of Programming Language (ECS-553)

List of Experiments

1. Define a LISP function to compute sum of squares.

2. Define a LISP function to compute difference of squares. (if x > y return x2 -y 2 , otherwise

y2 - x2).

3. Define a Recursive LISP function to solve Ackermann’s Function.

4. Define a Recursive LISP function to compute factorial of a given number.

5. Define a Recursive LISP function which takes one argument as a list and returns last

element of the list. (Do not use last predicate).

6. Define a Recursive LISP function which takes one argument as a list and returns a list

except last element of the list. (Do not use but last predicate).

7. Define a Recursive LISP function which takes one argument as a list and returns reverse of

the list. (Do not use reverse predicate).

8. Define a Recursive LISP function which takes two arguments first, an atom, second, a list,

returns a list after.

LAB OBJECTIVE

 Overview of Rule Based Programming Language

 Basic Concept of Lisp Language

 Advance Programming

 Lisp is a family of computer programming languages with a long history and a distinctive, fully

parenthesized Polish prefix notation.

 Lisp is the second-oldest high-level programming language in widespread use today

 Lisp was originally created as a practical mathematical notation for computer programs, influenced

by the notation of Alonzo Church's lambda calculus. It quickly became the favored programming

language for artificial intelligence (AI) research. As one of the earliest programming languages,

Lisp pioneered many ideas in computer science, including tree data structures, automatic storage

management, dynamic typing, conditionals, higher-order functions, recursion, and the self-

hosting compiler.

LISP Connection to Artificial Intelligence:

 Lisp was closely connected with the artificial intelligence research community,

especially on PDP-10 systems.

 Lisp was used as the implementation of the programming language Micro Planner which

was used in the famous AI system SHRDLU.

https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Polish_notation
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Alonzo_Church
https://en.wikipedia.org/wiki/Lambda_calculus
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Tree_data_structure
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Dynamic_typing
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Higher-order_function
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Self-hosting
https://en.wikipedia.org/wiki/Self-hosting
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/PDP-10
https://en.wikipedia.org/wiki/Planner_programming_language
https://en.wikipedia.org/wiki/SHRDLU

Guidelines to Students

 Equipment in the lab for the use of student community. Students need to maintain a proper

decorum in the computer lab. Students must use the equipment with care. Any damage is

caused is punishable.

 Students are required to carry their observation / programs book with completed exercises

while entering the lab.

 Students are supposed to occupy the machines allotted to them and are not supposed to talk or

make noise in the lab. The allocation is put up on the lab notice board.

 Lab can be used in free time / lunch hours by the students who need to use the systems should

take prior permission from the lab in-charge.

 Lab records need to be submitted on or before date of submission.

 Students are not supposed to use floppy disks

Experiment 1

Define a LISP function to compute sum of squares

(defun sumsqr (x y)

(+(* x x)(* y y)))

Write (sumsqr 2 3);

OUTPUT :

sumsqr

13

Experiment 2

 Define a LISP function to compute differance of squares .(if x > y return x2– y2 ,

Otherwise y2 – x2)

(defun diffsqr (x y)

(if(> x y)

(-(* x x) (* y y))

(-(* y y) (* x x))))

Write (diffsqr 2 3)

OUTPUT :

DIFFSQR

5

Experiment 3

 Define a Recursive LISP function to solve Ackermann’s Function.

(defun ackermann (m n) "The Ackermann Function"

(cond ((= m 0) (+ n 1))

 ((= m 1) (+ n 2))

 ((= m 2) (+ 3 (* n 2)))

 ((= m 3) (+ 5 (* 8 (- (expt 2 n) 1))))

 (t (cond ((= n 0) (ackermann (- m 1) 1))

 (t (ackermann (- m 1) (ackermann m (- n 1))))

))

))

Write (ackermann 2 3)

OUTPUT :

ACKERMANN

9

Experiment 4

 Define a Recursive LISP function to compute the factorial of given number.

(defun factorial (N)

 "Compute the factorial of N."

 (if (= N 1)

 1

 (* N (factorial (- N 1)))))

Write (factorial 5)

OUTPUT :

FACTORIAL

120

Experiment 5

 Define a Recursive LISP function which takes one argument as a list and return last element of

The list.(do not use last predicate.)

(defun last_element(ab_list)

(first(reverse ab_list)))

Write (last_element (a b c d))

OUTPUT :

LAST_ELEMENT

D

Experiment 6

 Define a Recursive LISP function which takes one argument as a list and return list except last

element of the list.(do not use butlast.)

(defun not_last(ab_list)

(reverse(rest(reverse ab_list))))

Write (not_last '(a b c d e))

OUTPUT :

NOT_LAST

(A B C D)

Experiment 7

 Define a Recursive LISP function which takes one argument as a list and return reverse of the

list. (do not use reverse predicate).

(defun list-append (L1 L2)

 "Append L1 by L2."

 (if (null L1)

 L2

 (cons (first L1) (list-append (rest L1) L2))))

(defun show-list-reverse (L)

 "Create a new list containing the elements of L in reversed order."

 (if (null L)

 nil

 (list-append (show-list-reverse (rest L))

 (list (first L)))))

Write (show-list-reverse '(1 2 3 4))

OUTPUT :

LIST-APPEND

SHOW-LIST-REVERSE

(4 3 2 1)

Experiment 8

 Define a Recursive LISP function which takes two argument first an atom second a list returns

a list after removing first occurrence of that atom within the list.

(defun remove(lst elt)

(cond((null lst)nil)

((equal(first lst)elt)(rest lst))

(elt(cons(first lst)

(remove(rest lst)elt)))))

Write (remove '(1 2 3 3 4 4)'3)

OUTPUT :

REMOVE

(1 2 3 4 4)

